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ABSTRACT
Osteocytes are the most abundant cell type in bone
and are distributed throughout the mineralised bone
matrix forming an interconnected network that ideally
positions them to sense and to respond to local
biomechanical and systemic stimuli to regulate bone
remodelling and adaptation. The adaptive process is
dependent on the coordinated activity of osteoclasts
and osteoblasts that form a so called bone multicellular
unit that remodels cortical and trabecular bone through
a process of osteoclast-mediated bone resorption,
followed by a phase of bone formation mediated by
osteoblasts. Osteocytes mediate their effects on bone
remodelling via both cell–cell interactions with
osteoclasts and osteoblasts, but also via signaling
through the release of soluble mediators. The
remodelling process provides a mechanism for
adapting the skeleton to local biomechanical factors
and systemic hormonal influences and for replacing
bone that has undergone damage from repetitive
mechanical loading.

Throughout postnatal life bone undergoes
continuous structural reorganisation and
adaptation. The adaptive process is depend-
ent on the coordinated activity of osteoclasts
and osteoblasts that form a so called bone
multicellular unit (BMU) that remodels cor-
tical and trabecular bone through a process
of osteoclast-mediated bone resorption, fol-
lowed by a phase of bone formation
mediated by osteoblasts.1 The remodelling
process provides a mechanism for adapting
the skeleton to local biomechanical factors
and systemic hormonal influences and for
replacing bone that has undergone damage
from repetitive mechanical loading.2 3

Importantly, under physiological condi-
tions, the amount of bone that is removed
during the phase of bone resorption is
matched by the amount of bone that is added
by bone formation. The mechanisms involved
in ‘coupling’ of bone resorption and forma-
tion are mediated in part by the release of
bone growth factors, including transforming

growth factor-β (TGF-β) and bone morpho-
genetic proteins (BMPs), which are released
from the bone matrix during the phase of
bone resorption.4 5 Osteoclasts provide an
additional source of coupling factors includ-
ing BMP-6, sphingosine-1-phosphate and
Wnt-10b that induce osteoblast-mediated
bone formation.6 7 Osteoclasts also produce
factors that inhibit osteoblast differentiation
and activity.8

Although there have been major advances
in identifying the mechanisms involved in
the regulation of osteoclast and osteoblast
differentiation and activity, the specific cellu-
lar events associated with activation of BMUs
and the initiation of bone remodelling until
recently have been a matter of controversy.
Rodan and Martin9

first proposed a key role
of osteoblasts in initiating bone remodelling
through the release of pro-osteoclastogenic
mediators. Recent studies using a variety of
experimental approaches have, however,
challenged this concept. For example, Corral
et al10 and more recently Galli et al11 used
genetic approaches to delete mature osteo-
blasts in mouse models and showed that this
did not affect osteoclast-mediated bone
resorption. Importantly, morphological
studies demonstrate that mature bone
forming osteoblasts are not present during
the activation of the BMU,1 indicating that
alternate mechanisms must be involved in
the initiation of bone remodelling.
Several lines of evidence have now estab-

lished a key for osteocytes in the regulation
of bone remodelling.12 13 Osteocytes are the
most abundant cell type in bone and are dis-
tributed throughout the mineralised bone
matrix forming an interconnected network
that ideally positions them to sense and to
respond to local and systemic stimuli to regu-
late bone remodelling and adaptation. These
effects are mediated via both cell–cell inter-
actions with osteoclasts and osteoblasts but
also via signalling through the release of
soluble mediators. Recent studies by Xiong
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et al14 and Nakashima et al15 provide convincing evi-
dence supporting a critical role for osteocytes in regulat-
ing the effects of mechanical loading on bone
remodelling. They deleted receptor activator of NF-κB
ligand (RANKL), the master regulator of osteoclastogen-
esis, in osteocytes and showed that the animals devel-
oped an osteopetrotic phenotype and were resistant to
bone loss induced by mechanical unloading using tail
vein suspension. These findings support the observations
of Tatsumi et al16 who used genetic approaches to select-
ively ablate osteocytes and showed that the animals lost
the capacity to increase bone loss in response to unload-
ing. Osteocytes also are a source of osteoprotegerin
(OPG), the potent inhibitor of RANKL,17 and differen-
tial production of OPG and RANKL by osteocytes pro-
vides a unique mechanism by which osteocytes can
regulate osteoclast-mediated bone resorption (figure 1).
In addition to OPG and RANKL, osteocytes are the

source of a diverse array of products that have the cap-
acity to modulate bone remodelling, including small
molecule mediators such as prostanoids, nitric oxide,
and nucleotides, as well as a broad spectrum of cyto-
kines and growth factors such as insulin-like growth
factor-1 (IGF-1), vascular endothelial cell growth factor
(VEGF) and TGF-β.13 18–24 Osteocytes also are a major
source of fibroblast growth factor 23, which regulates
serum phosphorus levels by increasing renal phosphate
excretion.25 Recent studies have drawn attention to the
role of two osteocyte-derived products, sclerostin and
Dickkopf-related protein 1 (DKK-1), in the regulation of
bone remodelling. These molecules are potent and spe-
cific inhibitors of the Wnt/β-catenin pathway, which
plays a major role in the regulation of osteoblast-
mediated bone formation.26 Robling and co-workers
were the first to show that mechanical loading decreased
the expression of sclerostin and DKK-1 in osteocytes.
The decrease in the production of these Wnt pathway
inhibitors by osteocytes resulted in upregulation of
β-catenin signaling in osteoblasts and an associated

increase in bone formation27–29 (figure 2). In contrast,
unloading resulted in increased expression of sclerostin
and DKK-1 and reduction in bone formation. Osteocytes
also play a role in mediating the effects of parathyroid
hormone (PTH) on bone formation. These effects are
in part attributable to PTH-induced suppression of scler-
ostin by osteocytes.30–32 In addition, there is evidence
that PTH-induces increases in RANKL production by
osteocytes, indicating a key role of osteocytes in mediat-
ing the effects of PTH on osteoclast-mediated bone
resorption.33

Studies by Morse et al34 have provided further insights
into the role of osteocyte-derived sclerostin in regulation
of bone formation. They examined the effects of
loading and unloading in mice in which the Sost gene
was deleted in osteocytes. Sclerostin is the product of
the Sost gene and deletion of Sost resulted in loss of
sclerostin production by osteocytes. They found that
mice lacking the gene maintained the capacity to
increase bone mass in response to loading, indicating
the existence of sclerostin-independent mechanisms for
regulating bone formation. In contrast, bone loss was
attenuated in the mice that lacked the Sost gene, indicat-
ing that osteocyte-derived sclerostin played a key role in
mediating the effects of unloading on bone formation.
The loss of bone was attributable to a decrease in bone
formation but also an effect on bone resorption, indicat-
ing that in addition to effects on bone formation, scler-
ostin and the Wnt/β-catenin pathway in osteocytes also
contributes to the regulation of osteoclast-mediated
bone resorption. This effects is in part related to a
decrease in osteocyte-derived OPG resulting in a shift in
the RANKL/OPG ratio favouring increased RANKL-
mediated osteoclastogenesis.
As discussed above, in addition to the role of bone

remodelling in providing a mechanism for adapting the
skeleton to mechanical loading and systemic hormones,
BMU-mediated bone remodelling also provides a mech-
anism for replacing bone that has undergone damage

Figure 1 Osteocyte-derived receptor activator of NF-κB
ligand (RANKL) increases bone resorption. Osteocytes control

unloading-induced bone loss by induction of RANKL in

osteocytes, which results in increased osteoclast-mediated

bone resorption.

Figure 2 Osteocyte-derived sclerostin and Dickkopf-related

protein 1 (DKK-1) regulate bone formation. Loading decreases

osteocyte-derived sclerostin and DKK-1, which results in

activation of the Wnt/β-catenin signaling in osteoblasts and

increased bone formation.
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from repetitive mechanical loading. The term ‘targeted
remodelling’ has been used to identify the process of
remodelling of bone that has undergone microdam-
age.2 3 Studies by Schaffler et al have provided insights
into the mechanisms of targeted remodelling.13 21 35 36

They showed that the remodelling process at sites of
microdamage is initiated by apoptosis of osteocytes at
the sites of bone damage, and that osteocytes adjacent
to the dying cells release products, including RANKL,
VEGF, ATP, sphingosine-1-phosphate and chemokines
that activate endothelial cells and recruit bone cell pre-
cursors, including osteoclasts and osteoblasts, to the site
of injury where they can repair the damage through
BMU-mediated remodelling. Targeted remodelling of
subchondral bone at sites of excessive mechanical
loading play a contributory role in the adaptive bone
changes in osteoarthritis (OA).
Several recent reports have provided insights into the

potential contributory role of osteocyte-derived scleros-
tin and the Wnt/βcatenin pathway in the development
of OA bone pathology.37–40 For example, Chan et al38

examined the expression of sclerostin in osteochondral
samples from human subjects with OA and sheep and
mice with surgically induced OA. They found decreased
expression of sclerostin in osteocytes in regions corre-
sponding to sites of increased mechanical loading and
associated increased bone formation. Appel et al37 also
observed evidence of decreased sclerostin expression in
regions of subchondral bone pathology in samples from
patients with OA. In other studies Funck-Brentano et al39

used the TOPGAL reporter mice to assess activation of
Wnt/β-catenin signaling in joint tissues. This system
permits detection of the specific cellular localisation of
activation of the Wnt/β-catenin signaling pathway using
X-gal staining of the tissue sections. They found that
X-gal staining was increased in osteocytes in subchondral
bone at sites of increased subchondral bone formation.
They also showed increased VEGF in osteoblasts and
osteocytes in the subchondral bone in menisectomised
mice with OA.
In summary, recent studies have identified osteocytes

as the key regulators of bone remodelling in both
physiological as well as pathological states. Osteocytes
are widely distributed throughout the bone matrix and
are optimally positioned to sense and respond to
changes in mechanical loading and to local bone
damage. They also have the capacity to regulate bone
remodelling in response to systemic hormones.
Osteocytes exert their effects on bone remodelling via
direct cell–cell contacts and by the release of soluble
mediators that control the recruitment, differentiation
and activity of osteoclasts and osteoblasts. Targeting
osteocytes and their products represents a novel
approach to treating skeletal disorders associated with
de-regulated bone remodelling.
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