Skip to main content

Human Chondrocyte Cultures as Models of Cartilage-Specific Gene Regulation

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 806))

Abstract

The human adult articular chondrocyte is a unique cell type that has reached a fully differentiated state as an end point of development. Within the cartilage matrix, chondrocytes are normally quiescent and maintain the matrix constituents in a low-turnover state of equilibrium. Isolated chondrocytes in culture have provided useful models to study cellular responses to alterations in the environment such as those occurring in different forms of arthritis. However, expansion of primary chondrocytes in monolayer culture results in the loss of phenotype, particularly if high cell density is not maintained. This chapter describes strategies for maintaining or restoring differentiated phenotype by culture in suspension, gels, or scaffolds. Techniques for assessing phenotype involving primarily the analysis of synthesis of cartilage-specific matrix proteins as well as the corresponding mRNAs are also described. Approaches for studying gene regulation, including transfection of promoter-driven reporter genes with expression vectors for transcriptional and signaling regulators, chromatin immunoprecipitation, and DNA methylation are also described.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Goldring, M. B. (2009) Cartilage and Chondrocytes. In Kelley’s Textbook of Rheumatology, 8th Edition (Firestein, G. S., Budd, R. C., Harris, E. D. J., McInnes, I. B., Ruddy, S. and Sergent, J. S., eds.), Saunders an imprint of Elsevier, Inc., Philadelphia, Ch. 3, pp. 37–69.

    Google Scholar 

  2. Maroudas, A., Palla, G. and Gilav, E. (1992) Racemization of aspartic acid in human articular cartilage. Connect Tissue Res 28, 161–169.

    Article  PubMed  CAS  Google Scholar 

  3. Verzijl, N., DeGroot, J., Thorpe, S. R., Bank, R. A., Shaw, J. N., Lyons, T. J., Bijlsma, J. W., Lafeber, F. P., Baynes, J. W. and TeKoppele, J. M. (2000) Effect of collagen turnover on the accumulation of advanced glycation end products. J Biol Chem 275, 39027–39031.

    Article  PubMed  CAS  Google Scholar 

  4. Maroudas, A., Bayliss, M. T., Uchitel-Kaushansky, N., Schneiderman, R. and Gilav, E. (1998) Aggrecan turnover in human articular cartilage: use of aspartic acid racemization as a marker of molecular age. Arch Biochem Biophys 350, 61–71.

    Article  PubMed  CAS  Google Scholar 

  5. Otero, M. and Goldring, M. B. (2007) Cells of the synovium in rheumatoid arthritis. Chondrocytes. Arthritis Res Ther 9, 220.

    Google Scholar 

  6. Goldring, M. B., Otero, M., Tsuchimochi, K., Ijiri, K. and Li, Y. (2008) Defining the roles of inflammatory and anabolic cytokines in cartilage metabolism. Ann Rheum Dis 67 Suppl 3, iii75–82.

    Google Scholar 

  7. Goldring, M. B. and Marcu, K. B. (2009) Cartilage homeostasis in health and rheumatic diseases. Arthritis Res Ther 11, 224.

    Article  PubMed  Google Scholar 

  8. Holtzer, J., Abbott, J., Lash, J. and Holtzer, A. (1960) The loss of phenotypic traits by differentiated cells in vitro. I. Dedifferentiation of cartilage cells. Proc. Natl. Acad. Sci. USA 46, 1533–1542.

    Google Scholar 

  9. Ham, R. G. and Sattler, G. L. (1968) Clonal growth of differentiated rabbit cartilage cells. J. Cell. Physiol. 72, 109–114.

    Article  PubMed  CAS  Google Scholar 

  10. Green, W. T., Jr. (1971) Behavior of articular chondrocytes in cell culture. Clin. Orthopaed. Rel. Res. 75, 248–260.

    Article  Google Scholar 

  11. Goldring, M. B., Sandell, L. J., Stephenson, M. L. and Krane, S. M. (1986) Immune interferon suppresses levels of procollagen mRNA and type II collagen synthesis in cultured human articular and costal chondrocytes. J. Biol. Chem. 261, 9049–9056..

    PubMed  CAS  Google Scholar 

  12. Aulthouse, A. L., Beck, M., Friffey, E., Sanford, J., Arden, K., Machado, M. A. and Horton, W. A. (1989) Expression of the human chondrocyte phenotype in vitro. In Vitro Cell. Devel. Biol. 25, 659–668.

    Article  CAS  Google Scholar 

  13. Kolettas, E., Buluwela, L., Bayliss, M. T. and Muir, H. I. (1995) Expression of cartilage-specific molecules is retained on long-term culture of human articular chondrocytes. J Cell Sci 108 ( Pt 5), 1991–1999.

    PubMed  CAS  Google Scholar 

  14. Goldring, M. B. (1987) Control of collagen synthesis in human chondrocyte cultures by immune interferon and interleukin-1. J Rheumatol 14 Spec No, 64–66.

    Google Scholar 

  15. Goldring, M. B., Birkhead, J., Sandell, L. J., Kimura, T. and Krane, S. M. (1988) Interleukin 1 suppresses expression of cartilage-specific types II and IX collagens and increases types I and III collagens in human chondrocytes. J Clin Invest 82, 2026–2037.

    Article  PubMed  CAS  Google Scholar 

  16. Schnabel, M., Marlovits, S., Eckhoff, G., Fichtel, I., Gotzen, L., Vecsei, V. and Schlegel, J. (2002) Dedifferentiation-associated changes in morphology and gene expression in primary human articular chondrocytes in cell culture. Osteoarthritis Cartilage 10, 62–70.

    Article  PubMed  CAS  Google Scholar 

  17. Barbero, A., Grogan, S. P., Mainil-Varlet, P. and Martin, I. (2006) Expansion on specific substrates regulates the phenotype and differentiation capacity of human articular chondrocytes. J Cell Biochem 98, 1140–1149.

    Article  PubMed  CAS  Google Scholar 

  18. von der Mark, K., Gauss, V., von der Mark, H. and Muller, P. (1977) Relationship between cell shape and type of collagen synthesised as chondrocytes lose their cartilage phenotype in culture. Nature 267, 531–532.

    Article  PubMed  Google Scholar 

  19. Watt, F. M. (1988) Effect of seeding density on stability of the differentiated phenotype of pig articular chondrocytes in culture. J Cell Sci 89 ( Pt 3), 373–378.

    PubMed  Google Scholar 

  20. Kuettner, K. E., Pauli, B. U., Gall, G., Memoli, V. A. and Schenk, R. K. (1982) Synthesis of cartilage matrix by mammalian chondrocytes in vitro. I. Isolation, culture characteristics, and morphology. J. Cell Biol. 93, 743–750.

    Google Scholar 

  21. Bassleer, C., Gysen, P., Foidart, J. M., Bassleer, R. and Franchimont, P. (1986) Human chondrocytes in tridimensional culture. In Vitro Cell. Devel. Biol. 22, 113–119.

    Article  CAS  Google Scholar 

  22. Thonar, E. J., Buckwalter, J. A. and Kuettner, K. E. (1986) Maturation-related differences in the structure and composition of proteoglycans synthesized by chondrocytes from bovine articular cartilage. J Biol Chem 261, 2467–2474.

    PubMed  CAS  Google Scholar 

  23. Norby, D. P., Malemud, C. J. and Sokoloff, L. (1977) Differences in the collagen types synthesized by lapine articular chondrocytes in spinner and monolayer culture. Arthritis Rheum 20, 709–716.

    Article  PubMed  CAS  Google Scholar 

  24. Glowacki, J., Trepman, E. and Folkman, J. (1983) Cell shape and phenotypic expression in chondrocytes. Proc. Soc. Exp. Biol. Med. 172, 93–98.

    PubMed  CAS  Google Scholar 

  25. Castagnola, P., Moro, G., Descalzi-Cancedda, F. and Cancedda, R. (1986) Type X collagen synthesis during in vitro development of chick embryo tibial chondrocytes. J Cell Biol 102, 2310–2317.

    Article  PubMed  CAS  Google Scholar 

  26. Reginato, A. M., Iozzo, R. V. and Jimenez, S. A. (1994) Formation of nodular structures resembling mature articular cartilage in long-term primary cultures of human fetal epiphyseal chondrocytes on hydrogel substrate. Arthritis Rheum. 37, 1338–1349.

    Article  PubMed  CAS  Google Scholar 

  27. Croucher, L. J., Crawford, A., Hatton, P. V., Russell, R. G. and Buttle, D. J. (2000) Extracellular ATP and UTP stimulate cartilage proteoglycan and collagen accumulation in bovine articular chondrocyte pellet cultures. Biochim Biophys Acta 1502, 297–306.

    PubMed  CAS  Google Scholar 

  28. Olivotto, E., Vitellozzi, R., Fernandez, P., Falcieri, E., Battistelli, M., Burattini, S., Facchini, A., Flamigni, F., Santi, S., Facchini, A. and Borzi, R. M. (2007) Chondrocyte hypertrophy and apoptosis induced by GROalpha require three-dimensional interaction with the extracellular matrix and a co-receptor role of chondroitin sulfate and are associated with the mitochondrial splicing variant of cathepsin B. J Cell Physiol. 210, 417–427.

    Article  PubMed  CAS  Google Scholar 

  29. Gibson, G. J., Schor, S. L. and Grant, M. E. (1982) Effects of matrix macromolecules on chondrocyte gene expression: Synthesis of a low molecular weight collagen species by cells cultured within collagen gels. J. Cell Biol. 93, 767–774.

    Article  PubMed  CAS  Google Scholar 

  30. Benya, P. D. and Shaffer, J. D. (1982) Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels. Cell 30, 215–224.

    Article  PubMed  CAS  Google Scholar 

  31. Aydelotte, M. B. and Kuettner, K. E. (1988) Differences between sub-populations of cultured bovine articular chondrocytes. I. Morphology and cartilage matrix production. Conn. Tiss. Res. 18, 205–222.

    Google Scholar 

  32. Guo, J., Jourdian, G. W. and MacCallum, D. K. (1989) Culture and growth characteristics of chondrocytes encapsulated in alginate beads. Conn. Tiss. Res. 19, 277–297.

    Article  CAS  Google Scholar 

  33. Hauselmann, H. J., Aydelotte, M. B., Schumacher, B. L., Kuettner, K. E., Gitelis, S. H. and Thonar, E. J.-M. A. (1992) Synthesis and turnover of proteoglycans by human and bovine adult articular chondrocytes cultured in alginate beads. Matrix 12, 116–129.

    PubMed  CAS  Google Scholar 

  34. Mizuno, S., Allemann, F. and Glowacki, J. (2001) Effects of medium perfusion on matrix production by bovine chondrocytes in three-dimensional collagen sponges. J Biomed Mater Res 56, 368–375.

    Article  PubMed  CAS  Google Scholar 

  35. Xu, C., Oyajobi, B. O., Frazer, A., Kozaci, L. D., Russell, R. G. and Hollander, A. P. (1996) Effects of growth factors and interleukin-1 alpha on proteoglycan and type II collagen turnover in bovine nasal and articular chondrocyte pellet cultures. Endocrinology 137, 3557–3565.

    Article  PubMed  CAS  Google Scholar 

  36. Adolphe, M., Froger, B., Ronot, X., Corvol, M. T. and Forest, N. (1984) Cell multiplication and type II collagen production by rabbit articular chondrocytes cultivated in a defined medium. Exp. Cell Res. 155, 527–536.

    Article  PubMed  CAS  Google Scholar 

  37. Gerstenfeld, L. C., Kelly, C. M., Von Deck, M. and Lian, J. B. (1990) Comparative morphological and biochemical analysis of hypertrophic, non-hypertrophic and 1,25(OH)2D3 treated non-hypertrophic chondrocytes. Connective Tissue Research. 24, 29–39.

    Article  PubMed  CAS  Google Scholar 

  38. Adams, S. L., Pallante, K. M., Niu, Z., Leboy, P. S., Golden, E. B. and Pacifici, M. (1991) Rapid induction of type X collagen gene expression in cultured chick vertebral chondrocytes. Exp. Cell Res. 193, 190–197.

    Article  PubMed  CAS  Google Scholar 

  39. Poole, A. R. (1989) Honor Bridgett Fell, Ph.D., D.Sc. F.R.S., D.B.E., 1900–1986. The scientist and her contributions. In Vitro Cell Dev Biol 25, 450–453.

    Google Scholar 

  40. Benoit, B., Thenet-Gauci, S., Hoffschir, F., Penformis, P., Demignot, S. and Adolphe, M. (1995) SV40 large T antigen immortalization of human articular chondrocytes. In Vitro Cell. Dev. Biol. 31, 174–177.

    Article  CAS  Google Scholar 

  41. Steimberg, N., Viengchareun, S., Biehlmann, F., Guenal, I., Mignotte, B., Adolphe, M. and Thenet, S. (1999) SV40 large T antigen expression driven by col2a1 regulatory sequences immortalizes articular chondrocytes but does not allow stabilization of type II collagen expression. Exp Cell Res 249, 248–259.

    Article  PubMed  CAS  Google Scholar 

  42. Robbins, J. R., Thomas, B., Tan, L., Choy, B., Arbiser, J. L., Berenbaum, F. and Goldring, M. B. (2000) Immortalized human adult articular chondrocytes maintain cartilage-specific phenotype and responses to interleukin-1β. Arthritis Rheum 43, 2189–2201.

    Article  PubMed  CAS  Google Scholar 

  43. Grigolo, B., Roseti, L., Neri, S., Gobbi, P., Jensen, P., Major, E. O. and Facchini, A. (2002) Human articular chondrocytes immortalized by HPV-16 E6 and E7 genes: Maintenance of differentiated phenotype under defined culture conditions. Osteoarthritis Cartilage 10, 879–889.

    Article  PubMed  CAS  Google Scholar 

  44. Piera-Velazquez, S., Jimenez, S. A. and Stokes, D. (2002) Increased life span of human osteoarthritic chondrocytes by exogenous expression of telomerase. Arthritis Rheum 46, 683–693.

    Article  PubMed  CAS  Google Scholar 

  45. Goldring, M. B. (2004) Immortalization of human articular chondrocytes for generation of stable, differentiated cell lines. Methods Mol Med 100, 23–36.

    PubMed  CAS  Google Scholar 

  46. Goldring, M. B., Birkhead, J. R., Suen, L. F., Yamin, R., Mizuno, S., Glowacki, J., Arbiser, J. L. and Apperley, J. F. (1994) Interleukin-1 beta-modulated gene expression in immortalized human chondrocytes. J Clin Invest 94, 2307–2316.

    Article  PubMed  CAS  Google Scholar 

  47. Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.

    Article  PubMed  CAS  Google Scholar 

  48. Olivotto, E., Borzi, R. M., Vitellozzi, R., Pagani, S., Facchini, A., Battistelli, M., Penzo, M., Li, X., Flamigni, F., Li, J., Falcieri, E., Facchini, A. and Marcu, K. B. (2008) Differential requirements for IKKalpha and IKKbeta in the differentiation of primary human osteoarthritic chondrocytes. Arthritis Rheum 58, 227–239.

    Article  PubMed  CAS  Google Scholar 

  49. Vogel, K. G., Sandy, J. D., Pogany, G. and Robbins, J. R. (1994) Aggrecan in bovine tendon. Matrix Biology 14, 171–179.

    Article  PubMed  CAS  Google Scholar 

  50. Robbins, J. R. and Vogel, K. G. (1997) Mechanical loading and TGF-β regulate proteoglycan synthesis in tendon. Arch. Biochem. Biophys. 342, 203–211.

    Article  PubMed  CAS  Google Scholar 

  51. Kokenyesi, R., Tan, L., Robbins, J. R. and Goldring, M. B. (2000) Proteoglycan production by immortalized human chondrocyte cell lines cultured under conditions that promote expression of the differentiated phenotype. Arch. Biochem. Biophys. 383, 79–90..

    Article  PubMed  CAS  Google Scholar 

  52. Dell’Accio, F., De Bari, C. and Luyten, F. P. (2001) Molecular markers predictive of the capacity of expanded human articular chondrocytes to form stable cartilage in vivo. Arthritis Rheum 44, 1608–1619.

    Article  PubMed  Google Scholar 

  53. Bau, B., Gebhard, P. M., Haag, J., Knorr, T., Bartnik, E. and Aigner, T. (2002) Relative messenger RNA expression profiling of collagenases and aggrecanases in human articular chondrocytes in vivo and in vitro. Arthritis Rheum 46, 2648–2657.

    Article  PubMed  CAS  Google Scholar 

  54. Peng, H., Tan, L., Osaki, M., Zhan, Y., Ijiri, K., Tsuchimochi, K., Otero, M., Wang, H., Choy, B. K., Grall, F. T., Gu, X., Libermann, T. A., Oettgen, P. and Goldring, M. B. (2008) ESE-1 is a potent repressor of type II collagen gene (COL2A1) transcription in human chondrocytes. J Cell Physiol 215, 562–573.

    Article  PubMed  CAS  Google Scholar 

  55. Goldring, M. B., Fukuo, K., Birkhead, J. R., Dudek, E. and Sandell, L. J. (1994) Transcriptional suppression by interleukin-1 and interferon-γ of type II collagen gene expression in human chondrocytes. J. Cell. Biochem. 54, 85–99.

    Article  PubMed  CAS  Google Scholar 

  56. Osaki, M., Tan, L., Choy, B. K., Yoshida, Y., Auron, P. E., Cheah, K. S. E. and Goldring, M. B. (2003) The TATA-containing core promoter of the type II collagen gene (COL2A1) is the target of interferon-γ-mediated inhibition in human chondrocytes: requirement for Stat1α, Jak1, and Jak2. Biochem. J. 369, 103–115.

    Article  PubMed  CAS  Google Scholar 

  57. Tan, L., Peng, H., Osaki, M., Choy, B. K., Auron, P. E., Sandell, L. J. and Goldring, M. B. (2003) Egr-1 Mediates Transcriptional Repression of COL2A1 Promoter Activity by Interleukin-1beta. J Biol Chem 278, 17688–17700.

    Article  PubMed  CAS  Google Scholar 

  58. Ijiri, K., Zerbini, L. F., Peng, H., Otu, H. H., Tsuchimochi, K., Otero, M., Dragomir, C., Walsh, N., Bierbaum, B. E., Mattingly, D., van Flandern, G., Komiya, S., Aigner, T., Libermann, T. A. and Goldring, M. B. (2008) Differential expression of GADD45beta in normal and osteoarthritic cartilage: potential role in homeostasis of articular chondrocytes. Arthritis Rheum 58, 2075–2087.

    Article  PubMed  CAS  Google Scholar 

  59. Tsuchimochi, K., Otero, M., Dragomir, C. L., Plumb, D. A., Zerbini, L. F., Libermann, T. A., Marcu, K. B., Komiya, S., Ijiri, K. and Goldring, M. B. (2010) GADD45beta enhances Col10a1 transcription via the MTK1/MKK3/6/p38 axis and activation of C/EBPbeta-TAD4 in terminally differentiating chondrocytes. J Biol Chem 285, 8395–8407.

    Article  PubMed  CAS  Google Scholar 

  60. Hashimoto, K., Oreffo, R. O., Gibson, M. B., Goldring, M. B. and Roach, H. I. (2009) DNA demethylation at specific CpG sites in the IL1B promoter in response to inflammatory cytokines in human articular chondrocytes. Arthritis Rheum 60, 3303–3313.

    Article  PubMed  CAS  Google Scholar 

  61. Wu, Q. Q. and Chen, Q. (2000) Mechanoregulation of chondrocyte proliferation, maturation, and hypertrophy: ion-channel dependent transduction of matrix deformation signals. Exp Cell Res 256, 383–391..

    Article  PubMed  CAS  Google Scholar 

  62. Cotten, M., Baker, A., Saltik, M., Wagner, E. and Buschle, M. (1994) Lipopolysaccharide is a frequent contaminant of plasmid DNA preparations and can be toxic to primary human cells in the presence of adenovirus. Gene Ther 1, 239–246.

    PubMed  CAS  Google Scholar 

  63. Lu Valle, P., Iwamoto, M., Fanning, P., Pacifici, M. and Olsen, B. R. (1993) Multiple negative elements in a gene that codes for an extracellular matrix protein, collagen X, restrict expression to hypertrophic chondrocytes. J Cell Biol 121, 1173–1179.

    Article  PubMed  CAS  Google Scholar 

  64. Viengchareun, S., Thenet-Gauci, S., Steimberg, N., Blancher, C., Crisanti, P. and Adolphe, M. (1997) The transfection of rabbit articular chondrocytes is independent of their differentiation state. In Vitro Cell Dev Biol Anim 33, 15–17.

    Article  PubMed  CAS  Google Scholar 

  65. Madry, H. and Trippel, S. B. (2000) Efficient lipid-mediated gene transfer to articular chondrocytes. Gene Ther 7, 286–291.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Dr. Goldring’s research related to this project was supported in part by grants from the National Institutes of Health, AG022021, AR054887, and AR045378, and the Arthritis Foundation. The authors are grateful to Lujian Tan, Haibing Peng, Lii-Fang Suen, James Birkhead, Merrilee Flannery, James Robbins, Makoto Osaki, and Bob Choy for supplying technical expertise and data, and to Dr. Thomas Sculco at The Hospital for Special Surgery and Dr. Benjamin Bierbaum at the New England Baptist Hospital for supplying cartilage samples. We also wish to acknowledge Dr. Helmtrud (Trudy) I. Roach, recently deceased, for her contributions to our understanding of epigenetics in chondrocytes and for transferring the technology to our laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary B. Goldring .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Otero, M. et al. (2012). Human Chondrocyte Cultures as Models of Cartilage-Specific Gene Regulation. In: Mitry, R., Hughes, R. (eds) Human Cell Culture Protocols. Methods in Molecular Biology, vol 806. Humana Press. https://doi.org/10.1007/978-1-61779-367-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-367-7_21

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-366-0

  • Online ISBN: 978-1-61779-367-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics