Skip to main content
Log in

The relation between cartilage damage and osteophyte size in a murine model for osteoarthritis in the knee

  • Original Article
  • Published:
Rheumatology International Aims and scope Submit manuscript

Abstract

The aim of this study was to investigate the relationship between location and size of osteophytes and cartilage loss in an instability-induced experimental model for osteoarthritis. Osteoarthritis was induced in murine knee joints by injection of highly purified bacterial collagenase, causing joint instability. The size of the osteophytes and the cartilage loss were measured at different locations in the joint using image analysis on histological sections of total kees. Cartilage damage did not occur without osteophytes. Osteophytes were located on both medial and lateral sides, independent of the location of cartilage damage, but the size of the osteophytes was related to the amount of cartilage damage on the corresponding side. Cartilage loss on the lateral tibial plateau correlated well with the size of lateral osteophytes, in particular with the osteophyte at the margin of the lateral tibial plateau. Cartilage loss on the medial tibial plateau appeared to have a good correlation with the size of medial osteophytes, which was most pronounced for the osteophyte on the medial margin of the tibial plateau. This side-specific correlation between cartilage damage and osteophyte formation suggests compartmentalization of the osteoarthritic process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bennett GA, Bauer W (1937) Joint changes resulting from patellar displacement and their relation to degenerative joint disease. J Bone Joint Surg 19:667–682

    Google Scholar 

  2. Chrisman OD, Fessel JM, Southwick WO (1965) Experimental production of synovitis and marginal articular exostoses in the knee joints of dogs. Yale J Biol Med 37:409–412

    PubMed  Google Scholar 

  3. Marshall JL, Olsson S-E (1971) Instability of the knee. A longterm experimental study in dogs. J Bone Joint Surg Am 53:1561–1570

    PubMed  Google Scholar 

  4. Williams JAR, Thonar EJ-MA (1989) Early osteophyte formation after chemically induced articular cartilage injury. Am J Sports Med 17:7–15

    PubMed  Google Scholar 

  5. Hernborg J, Nilsson BE (1973) The relationship between osteophytes in the knee joint, osteoarthritis and aging. Acta Orthop Scand 44:69–74

    PubMed  Google Scholar 

  6. Kallman DA, Wigley FM, Scott WW, Hochberg MC, Tobin JD (1990) The longitudinal course of hand osteoarthritis in a male population. Arthritis Rheum 33:1323–1332

    PubMed  Google Scholar 

  7. Kindynis P, Haller J, Kang HS, Resnick D, Sartoris DJ, Trudell D, Tyson R (1990) Osteophytosis of the knee: anatomic, radiologic, and pathologic investigation. Radiology 174:841–846

    PubMed  Google Scholar 

  8. Pottenger LA, Phillips FM, Draganich LF (1990) The effect of marginal osteophytes on reduction of varus-valgus instability in osteoarthritic knees. Arthritis Rheum 33:853–858

    PubMed  Google Scholar 

  9. Silverstein E, Sokoloff L (1958) Natural history of degenerative joint disease in small laboratory animals. 5. Osteoarthritis in guinea pigs. Arthritis Rheum 1:82–86

    PubMed  Google Scholar 

  10. Danielsson L, Hernborg J (1970) Clinical and roentgenologic study of knee joints with osteophytes. Clin Orthop Rel Res 69:302–312

    Google Scholar 

  11. Van Osch GJVM, van der Kraan PM, Vitters EL, Blankevoort L, van den Berg WB (1993) Induction of osteoarthritis by intraarticular injection of collagenase in mice. Strain and sex related differences. Osteoarth Cartil 1:171–177

    Google Scholar 

  12. Van Valburg AA, van Osch GJVM, van der Kraan PM, van den Berg WB (1996) Quantification of morphometric changes in murine experimental osteoarthritis using image analysis. Rheumatol Int 15:181–187

    PubMed  Google Scholar 

  13. Van Osch GJVM, Blankevoort L, van der Kraan PM, Janssen B, Hekman E (1993) AP-laxity change after collagenase injection in knees of mice correlates with incidence of osteoarthritis. Trans Orthop Res 18:284

    Google Scholar 

  14. Van Osch GJVM, van der Kraan PM, van den Berg WB (1994) Site-specific cartilage changes in murine degenerative knee joint disease induced by iodoacetate and collagenase. J Orthop Res 12:168–175

    PubMed  Google Scholar 

  15. Kannus P, Järvinen M (1988) Osteoarthrosis in a knee joint due to chronic posttraumatic insufficiency of the medial collateral ligament. Nine-year follow-up. Clin Rheumatol 7:200–207

    PubMed  Google Scholar 

  16. Kannus P (1988) Osteoarthrosis in a knee joint due to chronic posttraumatic insufficiency of the lateral ligament compartment. Eight-year follow-up. Clin Rheumatol 7:474–480

    PubMed  Google Scholar 

  17. McDevitt CA, Gilbertson E, Muir H (1977) An experimental model of osteoarthritis; early morphological and biochemical changes. J Bone Joint Surg 59[Br]:24–35

    Google Scholar 

  18. Moskowitz RW, Goldberg VM (1987) Studies of osteophyte pathogenesis in experimentally induced osteoarthritis. J Rheumatol 14:311–320

    PubMed  Google Scholar 

  19. Gillquist J (1990) Knee stability: its effect on articular cartilage. In: Ewing JW (ed) Articular cartilage and knee joint function: basic science and arthroscopy. Raven Press, New York, pp 267–271

    Google Scholar 

  20. Kannus P, Järvinen M (1989) Posttraumatic anterior cruciate ligament insufficiency as a cause of osteoarthritis in a knee joint. Clin Rheumatol 8:251–260

    PubMed  Google Scholar 

  21. Brandt KD, Myers SL, Burr D, Albrecht M (1991) Osteoarthritic changes in canine articular cartilage, subchondral (bone, and synovium fifty-four months after transection of the anterior cruciate ligament. Arthritis Rheum 34:1560–1570

    PubMed  Google Scholar 

  22. Colombo C, Butler M, O'Byrne E, Hickman L, Swartzendruber D, Selwyn M, Steinetz B (1983) A new model of osteoarthritis in rabbits. I. Development of knee joint pathology following lat eral meniscetomy and section of the fibular collateral and sesamoid ligaments. Arthritis Rheum 26:875–886

    PubMed  Google Scholar 

  23. Hede A, Svalastoga E, Reimann I (1991) Articular cartilage changes following meniscal lesions. Repair and meniscectomy studied in the rabbit knee. Acta Orthop Scand 62:319–322

    PubMed  Google Scholar 

  24. Johnson RG, Poole AR (1990) The early response of articular cartilage to ACL transection in a canine model. Exp Pathol 38:37–52

    PubMed  Google Scholar 

  25. Lane JM, Chisena E, Black J (1979) Experimental knee instability: early mechanical property changes in articular cartilage in a rabbit model. Clin Orthop Rel Res 140:262–265

    Google Scholar 

  26. Sandy JD, Adams ME, Billingham MEJ, Plaas A, Muir H (1984) In vivo and in vitro stimulation of chondrocyte biosynthetic activity in early experimental osteoarthritis. Arthritis Rheum 27:388–397

    PubMed  Google Scholar 

  27. Fairclough JAR, Graham GP, Dent CM (1990) Radiological sign of chronic anterior cruciate ligament deficiency. Injury 21:401–402

    PubMed  Google Scholar 

  28. Marshall JL (1969) Periarticular osteophytes. Initiation and formation in the knee of the dog. Clin Orthop Rel Res 62:37–47

    Google Scholar 

  29. Yu LP, Smith GN, Brandt KD, O'Connor B, Myers SL (1993) Therapeutic administration of doxycycline (doxy) slows the progression of cartilage destruction in canine osteoarthritis (OA). Trans Orthop Res 39:724

    Google Scholar 

  30. de Vries BJ, van den Berg WB (1989) Impact of NSAIDS on murine antigen induced arthritis. I. An investigation of antiinflammatory and cbondroprotective effects. J Rheumatol [Suppl 18] 16:10–18

    Google Scholar 

  31. de Vries BJ, van den Berg WB (1990) Impact of NSAIDS on murine antigen induced arthritis. II. A light microscopic investigation of antiinflammatory and bone protective effects. J Rheumatol 17:295–303

    PubMed  Google Scholar 

  32. Giori NJ, Beaupré GS, Carter DR (1993) Cellular shape and pressure may mediate mechanical control of tissue composition in tendons. J Orthop Res 11:581–591

    PubMed  Google Scholar 

  33. Horn CA, Bradley JD, Brandt KD, Kreipke DL, Slowman SD, Kalasinski LA (1992) Impairment of osteophyte formation in hyperglycemic patients with type II diabetes mellitus and knee osteoarthritis. Arthritis Rheum 35:336–342

    PubMed  Google Scholar 

  34. Schouten JSAG, van den Ouweland FA, Valkenburg HA, Lamberts SWJ (1993) Insulin-like growth factor—I: aprognostic factor of knee osteoarthritis. Br J Rheumatol 32:274–280

    PubMed  Google Scholar 

  35. Van Beuningen HM, van der Kraan PM, Arntz OJ, van den Berg WB (1994) TGFOI stimulates articular chondrocyte proteoglycan synthesis and induces osteophyte formation in the murine knee joint. Lab Invest 71:279–290

    PubMed  Google Scholar 

  36. Frost HM (1994) Perspectives: a biomechanical model of the pathogenesis of arthroses. Anat Rec 240:11–31

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Osch, G.J.V.M., van der Kraan, P.M., van Valburg, A.A. et al. The relation between cartilage damage and osteophyte size in a murine model for osteoarthritis in the knee. Rheumatol Int 16, 115–119 (1996). https://doi.org/10.1007/BF01409983

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01409983

Key words

Navigation