Skip to main content

Advertisement

Log in

Mycobacterium tuberculosis promotes arthritis development through toll-like receptor 2

  • Original Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Rheumatoid arthritis (RA) is a multifactorial disease caused by genetic and environmental factors: however, precise molecular mechanisms underlying its pathogenesis remain largely unknown. Treatment of RA patients with disease-modifying biological agents occasionally promotes Mycobacterium tuberculosis infection or recurrence of M. tuberculosis, although how infection promotes arthritis has not been characterized. Here, we found that arthritis phenotypes in a collagen-induced mouse model were evident only when killed M. tuberculosis was co-administered. Treatment of cultured macrophages with killed M. tuberculosis promoted production of IL-6, a major inflammatory cytokine in RA patients, while similar treatment of TLR2-deficient macrophages failed to induce IL-6 expression. Arthritis scores, joint destruction, and serum IL-6 levels were all significantly ameliorated in TLR2-deficient compared with wild-type mice, even in animals treated with killed M. tuberculosis. These results suggest that M. tuberculosis infection enhances arthritis development and that TLR2 could serve as a therapeutic target for some forms of the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

RA:

Rheumatoid arthritis

TLRs:

Toll-like receptors

CIA:

Collagen-induced arthritis

References

  1. Symmons DP (2002) Epidemiology of rheumatoid arthritis: determinants of onset, persistence and outcome. Best Pract Res Clin Rheumatol 16:707–722

    Article  PubMed  Google Scholar 

  2. Louie GH, Ward MM (2010) Changes in the rates of joint surgery among patients with rheumatoid arthritis in California, 1983–2007. Ann Rheum Dis 69:868–871

    Article  PubMed Central  PubMed  Google Scholar 

  3. da Silva E, Doran MF, Crowson CS, O’Fallon WM, Matteson EL (2003) Declining use of orthopedic surgery in patients with rheumatoid arthritis? Results of a long-term, population-based assessment. Arthritis Care Res 49:216–220

    Article  Google Scholar 

  4. Tanaka E, Saito A, Kamitsuji S, Yamada T, Nakajima A, Taniguchi A, Hara M, Tomatsu T, Yamanaka H (2005) Impact of shoulder, elbow, and knee joint involvement on assessment of rheumatoid arthritis using the American College of Rheumatology Core Data Set. Arthritis Care Res 53:864–871

    Article  Google Scholar 

  5. Kochi Y, Suzuki A, Yamada R, Yamamoto K (2010) Ethnogenetic heterogeneity of rheumatoid arthritis—implications for pathogenesis. Nat Rev Rheumatol 6:290–295

    Article  CAS  PubMed  Google Scholar 

  6. Vereecke L, Beyaert R, van Loo G (2011) Genetic relationships between A20/TNFAIP3, chronic inflammation and autoimmune disease. Biochem Soc Trans 39:1086–1091

    Article  CAS  PubMed  Google Scholar 

  7. Sugiyama D, Nishimura K, Tamaki K, Tsuji G, Nakazawa T, Morinobu A, Kumagai S (2010) Impact of smoking as a risk factor for developing rheumatoid arthritis: a meta-analysis of observational studies. Ann Rheum Dis 69:70–81

    Article  CAS  PubMed  Google Scholar 

  8. Alamanos Y, Drosos AA (2005) Epidemiology of adult rheumatoid arthritis. Autoimmun Rev 4:130–136

    Article  PubMed  Google Scholar 

  9. Smolen JS, Landewé R, Breedveld FC, Dougados M, Emery P et al (2010) EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs. Ann Rheum Dis 69:964–975

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Saag KG, Teng GG, Patkar NM, Anuntiyo J, Finney C et al (2008) American College of Rheumatology 2008 recommendations for the use of non-biologic and biologic disease-modifying antirheumatic drugs in rheumatoid arthritis. Arthritis Rheum 59:762–784

    Article  CAS  PubMed  Google Scholar 

  11. Nam JL, Winthrop KL, van Vollenhoven RF, Pavelka K, Valesini G, Hensor EM, Worthy G, Landewé R, Smolen JS, Emery P, Buch MH (2010) Current evidence for the management of rheumatoid arthritis with biological disease-modifying antirheumatic drugs: a systematic literature review informing the EULAR recommendations for the management of RA. Ann Rheum Dis 69:976–986

    Article  CAS  PubMed  Google Scholar 

  12. Smolen JS, Aletaha D, Bijlsma JW, Breedveld FC, Boumpas D et al (2010) Treating rheumatoid arthritis to target: recommendations of an international task force. Ann Rheum Dis 69:631–637

    Article  PubMed Central  PubMed  Google Scholar 

  13. Keane J, Gershon S, Wise RP, Mirabile-Levens E, Kasznica J, Schwieterman WD, Siegel JN, Braun MM (2001) Tuberculosis associated with infliximab, a tumor necrosis factor α-neutralizing agent. N Engl J Med 345:1098–1104

    Article  CAS  PubMed  Google Scholar 

  14. Takeuchi T, Tatsuki Y, Nogami Y, Ishiguro N, Tanaka Y, Yamanaka H, Kamatani N, Harigai M, Ryu J, Inoue K, Kondo H, Inokuma S, Ochi T, Koike T (2008) Postmarketing surveillance of the safety profile of infliximab in 5000 Japanese patients with rheumatoid arthritis. Ann Rheum Dis 67:189–194

    Article  CAS  PubMed  Google Scholar 

  15. Koike T, Harigai M, Inokuma S, Inoue K, Ishiguro N, Ryu J, Takeuchi T, Tanaka Y, Yamanaka H, Fujii K, Freundlich B, Suzukawa M (2009) Postmarketing surveillance of the safety and effectiveness of etanercept in Japan. J Rheumatol 36:898–906

    Article  CAS  PubMed  Google Scholar 

  16. Koike T, Harigai M, Inokuma S, Ishiguro N, Ryu J, Takeuchi T, Takei S, Tanaka Y, Ito K, Yamanaka H (2011) Postmarketing surveillance of tocilizumab for rheumatoid arthritis in Japan: interim analysis of 3881 patients. Ann Rheum Dis 70:2148–2151

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Akira S, Uematsu S, Takeuchi O (2006) Pathogen recognition and innate immunity. Cell 124:783–801

    Article  CAS  PubMed  Google Scholar 

  18. Pierer M, Wagner U, Rossol M, Ibrahim S (2011) Toll-like receptor 4 is involved in inflammatory and joint destructive pathways in collagen-induced arthritis in DBA1J mice. PLoS One 6:e23539

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Alzabin S, Kong P, Medghalchi M, Palfreeman A, Williams R, Sacre S (2012) Investigation of the role of endosomal Toll-like receptors in murine collagen-induced arthritis reveals a potential role for TLR7 in disease maintenance. Arthritis Res Ther 14:R142

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Joosten LA, Koenders MI, Smeets RL, Heuvelmans-Jacobs M, Helsen MM, Takeda K, Akira S, Lubberts E, van de Loo FA, van den Berg WB (2003) Toll-like receptor 2 pathway drives streptococcal cell wall-induced joint inflammation: critical role of myeloid differentiation factor 88. J Immunol 171:6145–6153

    Article  CAS  PubMed  Google Scholar 

  21. Wang G, Ma Y, Buyuk A, McClain S, Weis JJ, Schwartz I (2004) Impaired host defense to infection and Toll-like receptor 2-independent killing of Borrelia burgdorferi clinical isolates in TLR2-deficient C3H/HeJ mice. FEMS Microbiol Lett 231:219–225

    Article  CAS  PubMed  Google Scholar 

  22. Frasnelli ME, Tarussio D, Chobaz-Péclat V, Busso N, So A (2005) TLR2 modulates inflammation in zymosan-induced arthritis in mice. Arthritis Res Ther 7:R370–R379

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Rosenzweig HL, Jann MJ, Vance EE, Planck SR, Rosenbaum JT, Davey MP (2010) Nucleotide-binding oligomerization domain 2 and Toll-like receptor 2 function independently in a murine model of arthritis triggered by intraarticular peptidoglycan. Arthritis Rheum 62:1051–1059

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Abdollahi-Roodsaz S, Joosten LA, Koenders MI, Devesa I, Roelofs MF, Radstake TR, Heuvelmans-Jacobs M, Akira S, Nicklin MJ, Ribeiro-Dias F, van den Berg WB (2008) Stimulation of TLR2 and TLR4 differentially skews the balance of T cells in a mouse model of arthritis. J Clin Invest 118:205–216

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Abdollahi-Roodsaz S, Koenders MI, Walgreen B, Bolscher J, Helsen MM, van den Bersselaar LA, van Lent PL, van de Loo FA, van den Berg WB (2013) Toll-like receptor 2 controls acute immune complex-driven arthritis in mice by regulating the inhibitory Fcγ receptor IIB. Arthritis Rheum 65:2583–2593

    Article  CAS  PubMed  Google Scholar 

  26. Takeuchi O, Hoshino K, Kawai T, Sanjo H, Takada H, Ogawa T, Takeda K, Akira S (1999) Differential roles of TLR2 and TLR4 in recognition of Gram-negative and Gram-positive bacterial cell wall components. Immunity 11:443–451

    Article  CAS  PubMed  Google Scholar 

  27. Pettit AR, Ji H, von Stechow D, Müller R, Goldring SR, Choi Y, Benoist C, Gravallese EM (2001) TRANCE/RANKL knockout mice are protected from bone erosion in a serum transfer model of arthritis. Am J Pathol 159:1689–1699

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Redlich K, Hayer S, Ricci R, David JP, Tohidast-Akrad M, Kollias G, Steiner G, Smolen JS, Wagner EF, Schett G (2002) Osteoclasts are essential for TNF-alpha-mediated joint destruction. J Clin Invest 110:1419–1427

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Mori T, Miyamoto T, Yoshida H, Asakawa M, Kawasumi M, Kobayashi T, Morioka H, Chiba K, Toyama Y, Yoshimura A (2011) IL-1β and TNFα-initiated IL-6-STAT3 pathway is critical in mediating inflammatory cytokines and RANKL expression in inflammatory arthritis. Int Immunol 23:701–712

    Article  CAS  PubMed  Google Scholar 

  30. Jo EK, Yang CS, Choi CH, Harding CV (2007) Intracellular signalling cascades regulating innate immune responses to Mycobacteria: branching out from Toll-like receptors. Cell Microbiol 9:1087–1098

    Article  CAS  PubMed  Google Scholar 

  31. Stenger S, Modlin RL (2002) Control of Mycobacterium tuberculosis through mammalian toll-like receptors. Curr Opin Immunol 14:452–457

    Article  CAS  PubMed  Google Scholar 

  32. Zhang Y, Jiang T, Yang X, Xue Y, Wang C, Liu J, Zhang X, Chen Z, Zhao M, Li JC (2013) Toll-like receptor -1, -2, and -6 polymorphisms and pulmonary tuberculosis susceptibility: a systematic review and meta-analysis. PLoS One 14:e63357

    Article  Google Scholar 

  33. Norbis L, Miotto P, Alagna R, Cirillo DM (2013) Tuberculosis: lights and shadows in the current diagnostic landscape. New Microbiol 36:111–120

    PubMed  Google Scholar 

Download references

Acknowledgments

T. Miyamoto was supported by a Grant-in-Aid for Scientific Research, from the Takeda Science Foundation, Japan.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeshi Miyamoto.

Additional information

H. Kanagawa and Y. Niki contributed equally to this work.

About this article

Cite this article

Kanagawa, H., Niki, Y., Kobayashi, T. et al. Mycobacterium tuberculosis promotes arthritis development through toll-like receptor 2. J Bone Miner Metab 33, 135–141 (2015). https://doi.org/10.1007/s00774-014-0575-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-014-0575-9

Keywords

Navigation