Skip to main content

Advertisement

Log in

Associations between HLA-DRB1, RANK, RANKL, OPG, and IL-17 genotypes and disease severity phenotypes in Japanese patients with early rheumatoid arthritis

  • Brief Report
  • Published:
Clinical Rheumatology Aims and scope Submit manuscript

Abstract

We examined associations between human leukocyte antigen DRB1 (HLA-DRB1) shared epitope (SE), receptor activator of nuclear factor-kappaB (RANK), RANK ligand (RANKL), osteoprotegerin (OPG), and interleukin 17 (IL-17) genotypes with age of disease onset and radiographic progression in Japanese patients with early rheumatoid arthritis (RA). HLA-DRB1 genotypes were evaluated in 123 patients with early RA (98 female, 25 male) within 1 year of symptom onset. In 72 patients, radiographic progression over a 2-year period was evaluated using Larsen’s methods, and genotypes of three polymorphic sites in RANK, five sites in RANKL, two sites in OPG, and three sites in IL-17 were determined by direct polymerase chain reaction sequencing. Possession of an SE allele was significantly associated with earlier disease onset in females (median 46.9 vs 51.9 years in SE− patients; P = 0.04). Single nucleotide polymorphisms (SNPs) in RANKL (rs2277438, P = 0.028) and IL-17 (rs3804513, P = 0.049) were significantly associated with radiographic progression at 2 years. RANKL-G−, SE− patients (n = 12) had significantly less joint damage than did RANKL-G+, SE− patients (n = 11; P = 0.0038), RANKL-G−, SE+ patients (n = 21; P = 0.0018) and RANKL-G+, SE+ patients (n = 28; P = 0.0024). In Japanese RA patients, HLA-DRB1 SE alleles are associated with disease onset at an earlier age, as has been observed in Caucasian RA patients. In addition, SNPs in RANKL and IL-17 may be associated with radiographic progression in Japanese patients with early RA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Gregersen PK, Silver J, Winchester RJ (1987) The shared epitope hypothesis. An approach to understanding the molecular genetics of susceptibility to rheumatoid arthritis. Arthritis Rheum 30:1205–1213

    Article  CAS  PubMed  Google Scholar 

  2. Higami K, Hakoda M, Matsuda Y et al (1997) Lack of association of HLA-DRB1 genotype with radiologic progression in Japanese patients with early rheumatoid arthritis. Arthritis Rheum 40:2241–2247

    Article  CAS  PubMed  Google Scholar 

  3. Furuya T, Hakoda M, Ichikawa N et al (2007) Differential association of HLA-DRB1 alleles in Japanese patients with early rheumatoid arthritis in relationship to autoantibodies to cyclic citrullinated peptide. Clin Exp Rheumatol 25:219–224

    CAS  PubMed  Google Scholar 

  4. Fries JF, Wolfe F, Apple R et al (2002) HLA-DRB1 genotype associations in 793 white patients from a rheumatoid arthritis inception cohort: frequency, severity, and treatment bias. Arthritis Rheum 46:2320–2329

    Article  CAS  PubMed  Google Scholar 

  5. Gonzalez-Gay MA, Hajeer AH, Dababneh A et al (2001) Seronegative rheumatoid arthritis in elderly and polymyalgia rheumatica have similar patterns of HLA association. J Rheumatol 28:122–125

    CAS  PubMed  Google Scholar 

  6. MacGregor A, Ollier W, Thomson W et al (1995) HLA-DRB1*0401/0404 genotype and rheumatoid arthritis: increased association in men, young age at onset, and disease severity. J Rheumatol 22:1032–1036

    CAS  PubMed  Google Scholar 

  7. Wu H, Khanna D, Park G et al (2004) Interaction between RANKL and HLA-DRB1 genotypes may contribute to younger age at onset of seropositive rheumatoid arthritis in an inception cohort. Arthritis Rheum 50:3093–3103

    Article  CAS  PubMed  Google Scholar 

  8. Cornelis F, Faure S, Martinez M et al (1998) New susceptibility locus for rheumatoid arthritis suggested by a genome-wide linkage study. Proc Natl Acad Sci USA 95:10746–10750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jawaheer D, Seldin MF, Amos CI et al (2003) Screening the genome for rheumatoid arthritis susceptibility genes: a replication study and combined analysis of 512 multicase families. Arthritis Rheum 48:906–916

    Article  CAS  PubMed  Google Scholar 

  10. Shiozawa S, Hayashi S, Tsukamoto Y et al (1998) Identification of the gene loci that predispose to rheumatoid arthritis. Int Immunol 10:1891–1895

    Article  CAS  PubMed  Google Scholar 

  11. Kotake S, Udagawa N, Hakoda M et al (2001) Activated human T cells directly induce osteoclastogenesis from human monocytes: possible role of T cells in bone destruction in rheumatoid arthritis patients. Arthritis Rheum 44:1003–1012

    Article  CAS  PubMed  Google Scholar 

  12. Kotake S, Udagawa N, Takahashi N et al (1999) IL-17 in synovial fluids from patients with rheumatoid arthritis is a potent stimulator of osteoclastogenesis. J Clin Invest 103:1345–1352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Furuya T, Salstrom JL, McCall-Vining S et al (2000) Genetic dissection of a rat model for rheumatoid arthritis: significant gender influences on autosomal modifier loci. Hum Mol Genet 9:2241–2250

    Article  CAS  PubMed  Google Scholar 

  14. Arnett FC, Edworthy SM, Bloch DA et al (1988) The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum 31:315–324

    Article  CAS  PubMed  Google Scholar 

  15. Larsen A, Dale K, Eek M (1977) Radiographic evaluation of rheumatoid arthritis and related conditions by standard reference films. Acta Radiol Diagn (Stockholm) 18:481–491

    Article  CAS  Google Scholar 

  16. Halleen JM, Alatalo SL, Suominen H et al (2000) Tartrate-resistant acid phosphatase 5b: a novel serum marker of bone resorption. J Bone Miner Res 15:1337–1345

    Article  CAS  PubMed  Google Scholar 

  17. Uryu N, Maeda M, Ota M et al (1990) A simple and rapid method for HLA-DRB and -DQB typing by digestion of PCR-amplified DNA with allele specific restriction endonucleases. Tissue Antigens 35:20–31

    Article  CAS  PubMed  Google Scholar 

  18. Haga H, Yamada R, Ohnishi Y et al (2002) Gene-based SNP discovery as part of the Japanese Millennium Genome Project: identification of 190,562 genetic variations in the human genome. Single-nucleotide polymorphism. J Hum Genet 47:605–610

    Article  CAS  PubMed  Google Scholar 

  19. Hsu YH, Niu T, Terwedow HA et al (2006) Variation in genes involved in the RANKL/RANK/OPG bone remodeling pathway are associated with bone mineral density at different skeletal sites in men. Hum Genet 118:568–577

    Article  CAS  PubMed  Google Scholar 

  20. Yukioka M, Wakitani S, Murata N et al (1998) Elderly-onset rheumatoid arthritis and its association with HLA-DRB1 alleles in Japanese. Br J Rheumatol 37:98–101

    Article  CAS  PubMed  Google Scholar 

  21. Prevoo ML, van’t Hof MA, Kuper HH et al (1995) Modified disease activity scores that include twenty-eight-joint counts. Development and validation in a prospective longitudinal study of patients with rheumatoid arthritis. Arthritis Rheum 38:44–48

    Article  CAS  PubMed  Google Scholar 

  22. Fries JF, Spitz P, Kraines RG, Holman HR (1980) Measurement of patient outcome in arthritis. Arthritis Rheum 23:137–145

    Article  CAS  PubMed  Google Scholar 

  23. Pincus T, Sokka T, Kautiainen H (2005) Patients seen for standard rheumatoid arthritis care have significantly better articular, radiographic, laboratory, and functional status in 2000 than in 1985. Arthritis Rheum 52:1009–1019

    Article  PubMed  Google Scholar 

  24. van der Heijde DM, van Leeuwen MA, van Riel PL et al (1992) Biannual radiographic assessments of hands and feet in a three-year prospective followup of patients with early rheumatoid arthritis. Arthritis Rheum 35:26–34

    Article  PubMed  Google Scholar 

  25. Smolen JS, Van Der Heijde DM, St Clair EW et al (2006) Predictors of joint damage in patients with early rheumatoid arthritis treated with high-dose methotrexate with or without concomitant infliximab: results from the ASPIRE trial. Arthritis Rheum 54:702–710

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. R. L. Wilder for his critical review of the manuscript and Dr. N. Tsuchiya for his useful suggestions. The study was supported by a grant-in-aid from the Ministry of Education, Culture, Science, and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takefumi Furuya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Furuya, T., Hakoda, M., Ichikawa, N. et al. Associations between HLA-DRB1, RANK, RANKL, OPG, and IL-17 genotypes and disease severity phenotypes in Japanese patients with early rheumatoid arthritis. Clin Rheumatol 26, 2137–2141 (2007). https://doi.org/10.1007/s10067-007-0745-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10067-007-0745-4

Keywords

Navigation