Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The regulation of IgA class switching

Key Points

  • IgA is the most abundant isotype antibody in the intestinal mucosa, where it provides a first line of immune protection against commensal, ingested and sexually transmitted agents. IgA uses a high-affinity binding system to neutralize toxins and pathogens and a low-affinity binding system to confine commensal bacteria to the intestinal lumen.

  • B cells acquire the capability to produce IgA by undergoing class-switch recombination (CSR), a process that requires germline transcription of the heavy chain constant α gene (Cα) and expression of activation-induced cytidine deaminase (AID), an essential component of the CSR machinery. Together with post-IgA CSR modifications, IgA CSR generates multiple molecular forms of IgA proteins, each endowed with distinct topography and functions.

  • In vivo and in vitro studies show that B cells undergo IgA class switching through both T-cell-dependent and T-cell-independent pathways, which generate high- and low-affinity IgA antibodies, respectively. T-cell-dependent IgA class switching requires T-cell help to B cells via CD40 ligand (CD40L) and the cytokine transforming growth factor-β1 (TGFβ1), whereas T-cell-independent IgA class switching involves innate signals provided by microbial Toll-like receptor (TLR) ligands and CD40L-related dendritic cell (DC) mediators, including B-cell-activating factor (BAFF) and a proliferation-inducing ligand (APRIL).

  • TGFβ1 induces germline Cα gene transcription through SMAD (mothers against decapentaplegic) proteins, whereas CD40L triggers AID expression through nuclear factor-κB (NF-κB). BAFF and APRIL activate B cells by engaging transmembrane activator and calcium-modulating cyclophilin-ligand interactor (TACI), a receptor that triggers AID expression via NF-κB and germline Cα gene transcription through a signalling pathway that remains poorly understood.

  • In the gut, T-cell-dependent IgA class switching takes place in the germinal centres of organized lymphoid structures, including Peyer's patches, whereas T-cell-independent IgA class switching occurs in the non-organized lymphoid tissue of the lamina propria. Nitric oxide from a subset of mucosal DCs enhances T-cell-dependent IgA class switching by upregulating the expression of TGFβ1 receptor on B cells, and T-cell-independent IgA class switching by augmenting the production of BAFF and APRIL by DCs.

  • Intestinal epithelial cells produce APRIL and thymic stromal lymphopoietin (TSLP), a DC-activating cytokine with APRIL-inducing activity, after sensing bacteria through TLRs. APRIL triggers sequential class switching to IgA2 in human IgA1-expressing B cells arriving from Peyer's patches, thereby enriching the distal intestinal tract in IgA2, which is more resistant to bacterial degradation than IgA1.

Abstract

IgA class switching is the process whereby B cells acquire the expression of IgA, the most abundant antibody isotype in mucosal secretions. IgA class switching occurs via both T-cell-dependent and T-cell-independent pathways, and the antibody targets both pathogenic and commensal microorganisms. This Review describes recent advances indicating that innate immune recognition of microbial signatures at the epithelial-cell barrier is central to the selective induction of mucosal IgA class switching. In addition, the mechanisms of IgA class switching at follicular and extrafollicular sites within the mucosal environment are summarized. A better understanding of these mechanisms may help in the development of more effective mucosal vaccines.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Recombinatorial and transcriptional events underlying IgA class switching.
Figure 2: Signalling events leading to T-cell-dependent IgA class switching.
Figure 3: Signalling events leading to T-cell-independent IgA class switching.
Figure 4: Map of IgA class switching in the gut.
Figure 5: Cellular interactions causing IgA class switching in the gut.

Similar content being viewed by others

References

  1. Macpherson, A. J., McKoy, K. D., Johansen, F. E. & Brandtzaeg, P. The immune geography of IgA induction and function. Mucosal Immunol. 1, 11–22 (2008). An overview of the function and topography of IgA responses and the mechanisms of their induction.

    Article  CAS  PubMed  Google Scholar 

  2. Fagarasan, S. & Honjo, T. Intestinal IgA synthesis: regulation of front-line body defences. Nature Rev. Immunol. 3, 63–72 (2003).

    Article  CAS  Google Scholar 

  3. Macpherson, A. J. & Harris, N. L. Interactions between commensal intestinal bacteria and the immune system. Nature Rev. Immunol. 4, 478–485 (2004).

    Article  CAS  Google Scholar 

  4. Schlissel, M. S. Regulating antigen-receptor gene assembly. Nature Rev. Immunol. 3, 890–899 (2003).

    Article  CAS  Google Scholar 

  5. Odegard, V. H. & Schatz, D. G. Targeting of somatic hypermutation. Nature Rev. Immunol. 6, 573–583 (2006).

    Article  CAS  Google Scholar 

  6. Stavnezer, J., Guikema, J. E. & Schrader, C. E. Mechanism and regulation of class switch recombination. Annu. Rev. Immunol. 26, 261–292 (2008). An updated overview of the molecular pathways of CSR.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. MacLennan, I. C. Germinal centers. Annu. Rev. Immunol. 12, 117–139 (1994).

    CAS  PubMed  Google Scholar 

  8. Muramatsu, M., Nagaoka, H., Shinkura, R., Begum, N. A. & Honjo, T. Discovery of activation-induced cytidine deaminase, the engraver of antibody memory. Adv. Immunol. 94, 1–36 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Chaudhuri, J. & Alt, F. W. Class-switch recombination: interplay of transcription, DNA deamination and DNA repair. Nature Rev. Immunol. 4, 541–552 (2004).

    Article  CAS  Google Scholar 

  10. Stavnezer, J. Antibody class switching. Adv. Immunol. 61, 79–146 (1996).

    Article  CAS  PubMed  Google Scholar 

  11. Mestecky, J., Zikan, J. & Butler, W. T. Immunoglobulin M and secretory immunoglobulin A: presence of a common polypeptide chain different from light chains. Science 171, 1163–1165 (1971).

    Article  CAS  PubMed  Google Scholar 

  12. Mostov, K. E. & Deitcher, D. L. Polymeric immunoglobulin receptor expressed in MDCK cells transcytoses IgA. Cell 46, 613–621 (1986).

    Article  CAS  PubMed  Google Scholar 

  13. Brandtzaeg, P. Mucosal and glandular distribution of immunoglobulin components: differential localization of free and bound SC in secretory epithelial cells. J. Immunol. 112, 1553–1559 (1974).

    CAS  PubMed  Google Scholar 

  14. Phalipon, A. et al. Secretory component: a new role in secretory IgA-mediated immune exclusion in vivo. Immunity 17, 107–115 (2002). An elegant study showing that the secretory component facilitates the exclusion of commensal bacteria from the mucosal surface by increasing the mucophilic properties of class-switched IgA antibodies.

    Article  CAS  PubMed  Google Scholar 

  15. Peterson, D. A., McNulty, N. P., Guruge, J. L. & Gordon, J. I. IgA response to symbiotic bacteria as a mediator of gut homeostasis. Cell Host Microbe 2, 328–339 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Fernandez, M. I. et al. Anti-inflammatory role for intracellular dimeric immunoglobulin A by neutralization of lipopolysaccharide in epithelial cells. Immunity 18, 739–749 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Bollinger, R. R. et al. Secretory IgA and mucin-mediated biofilm formation by environmental strains of Escherichia coli: role of type 1 pili. Mol. Immunol. 43, 378–387 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Favre, L., Spertini, F. & Corthesy, B. Secretory IgA possesses intrinsic modulatory properties stimulating mucosal and systemic immune responses. J. Immunol. 175, 2793–2800 (2005). References 15–18 describe some of the mechanisms through which sIgA antibodies promote gut homeostasis and immune protection.

    Article  CAS  PubMed  Google Scholar 

  19. Neutra, M. R. & Kozlowski, P. A. Mucosal vaccines: the promise and the challenge. Nature Rev. Immunol. 6, 148–158 (2006).

    Article  CAS  Google Scholar 

  20. Monteiro, R. C. & Van De Winkel, J. G. IgA Fc receptors. Annu. Rev. Immunol. 21, 177–204 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. van Egmond, M. et al. FcαRI-positive liver Kupffer cells: reappraisal of the function of immunoglobulin A in immunity. Nature Med. 6, 680–685 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Pasquier, B. et al. Identification of FcαRI as an inhibitory receptor that controls inflammation: dual role of FcRγ ITAM. Immunity 22, 31–42 (2005). References 21 and 22 show that systemic IgA proteins provide a second line of defence against intestinal bacteria by binding to the FcαRI on phagocytes.

    CAS  PubMed  Google Scholar 

  23. Woof, J. M. & Mestecky, J. Mucosal immunoglobulins. Immunol Rev. 206, 64–82 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Kett, K., Brandtzaeg, P., Radl, J. & Haaijman, J. J. Different subclass distribution of IgA-producing cells in human lymphoid organs and various secretory tissues. J. Immunol. 136, 3631–3635 (1986).

    CAS  PubMed  Google Scholar 

  25. Kett, K. et al. Intestinal B-cell isotype response in relation to local bacterial load: evidence for immunoglobulin A subclass adaptation. Gastroenterology 109, 819–825 (1995).

    Article  CAS  PubMed  Google Scholar 

  26. He, B. et al. Intestinal bacteria trigger T cell-independent immunoglobulin A2 class switching by inducing epithelial-cell secretion of the cytokine APRIL. Immunity 26, 812–826 (2007). This study links intestinal IgA2 class switching with epithelial-cell and DC production of APRIL in response to commensal bacteria.

    Article  CAS  PubMed  Google Scholar 

  27. Flanagan, J. G., Lefranc, M. P. & Rabbitts, T. H. Mechanisms of divergence and convergence of the human immunoglobulin α1 and α2 constant region gene sequences. Cell 36, 681–688 (1984).

    Article  CAS  PubMed  Google Scholar 

  28. Plaut, A. G., Wistar, R., Jr. & Capra, J. D. Differential susceptibility of human IgA immunoglobulins to streptococcal IgA protease. J. Clin. Invest. 54, 1295–1300 (1974).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Muramatsu, M. et al. Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 102, 553–563 (2000). The first demonstration that AID is essential for the induction of CSR in mouse and human B cells.

    Article  CAS  PubMed  Google Scholar 

  30. Revy, P. et al. Activation-induced cytidine deaminase (AID) deficiency causes the autosomal recessive form of the Hyper-IgM syndrome (HIGM2). Cell 102, 565–575 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Fagarasan, S., Kinoshita, K., Muramatsu, M., Ikuta, K. & Honjo, T. In situ class switching and differentiation to IgA-producing cells in the gut lamina propria. Nature 413, 639–643 (2001). The first paper showing that IgA class switching is not restricted to canonical intestinal inductive sites, such as the Peyer's patches, but can also occur in the lamina propria.

    Article  CAS  PubMed  Google Scholar 

  32. Reaban, M. E. & Griffin, J. A. Induction of RNA-stabilized DNA conformers by transcription of an immunoglobulin switch region. Nature 348, 342–344 (1990).

    Article  CAS  PubMed  Google Scholar 

  33. Yu, K., Chedin, F., Hsieh, C. L., Wilson, T. E. & Lieber, M. R. R-loops at immunoglobulin class switch regions in the chromosomes of stimulated B cells. Nature Immunol. 4, 442–451 (2003).

    Article  CAS  Google Scholar 

  34. Kinoshita, K., Harigai, M., Fagarasan, S., Muramatsu, M. & Honjo, T. A hallmark of active class switch recombination: transcripts directed by I promoters on looped-out circular DNAs. Proc. Natl Acad. Sci. USA 98, 12620–12623 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cerutti, A. et al. Ongoing in vivo immunoglobulin class switch DNA recombination in chronic lymphocytic leukemia B cells. J. Immunol. 169, 6594–6603 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Quezada, S. A., Jarvinen, L. Z., Lind, E. F. & Noelle, R. J. CD40/CD154 interactions at the interface of tolerance and immunity. Annu. Rev. Immunol. 22, 307–328 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. McHeyzer-Williams, M. G. & Ahmed, R. B cell memory and the long-lived plasma cell. Curr. Opin. Immunol. 11, 172–179 (1999).

    Article  CAS  PubMed  Google Scholar 

  38. Stavnezer-Nordgren, J. & Sirlin, S. Specificity of immunoglobulin heavy chain switch correlates with activity of germline heavy chain genes prior to switching. EMBO J. 5, 95–102 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Islam, K. B., Nilsson, L., Sideras, P., Hammarstrom, L. & Smith, C. I. TGF-β1 induces germ-line transcripts of both IgA subclasses in human B lymphocytes. Int. Immunol. 3, 1099–1106 (1991).

    Article  CAS  PubMed  Google Scholar 

  40. Nilsson, L. et al. Structure of TGF-β1-induced human immunoglobulin Cα1 and Cα2 germ-line transcripts. Int. Immunol. 3, 1107–1115 (1991).

    Article  CAS  PubMed  Google Scholar 

  41. Shockett, P. & Stavnezer, J. Effect of cytokines on switching to IgA and α germline transcripts in the B lymphoma I.29μ. Transforming growth factor-β activates transcription of the unrearranged Cα gene. J. Immunol. 147, 4374–4383 (1991). References 38–41 demonstrate that germline transcription confers specificity to CSR and show that TGFβ1 is required for the transcriptional activation of the C α gene.

    CAS  PubMed  Google Scholar 

  42. Rubtsov, Y. P. & Rudensky, A. Y. TGFβ signalling in control of T-cell-mediated self-reactivity. Nature Rev. Immunol. 7, 443–453 (2007).

    Article  CAS  Google Scholar 

  43. Dahan, S., Roth-Walter, F., Arnaboldi, P., Agarwal, S. & Mayer, L. Epithelia: lymphocyte interactions in the gut. Immunol. Rev. 215, 243–253 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Stavnezer, J. Regulation of antibody production and class switching by TGF-β. J. Immunol. 155, 1647–1651 (1995).

    CAS  PubMed  Google Scholar 

  45. Pardali, E. et al. Smad and AML proteins synergistically confer transforming growth factor β1 responsiveness to human germ-line IgA genes. J. Biol. Chem. 275, 3552–3560 (2000).

    Article  CAS  PubMed  Google Scholar 

  46. Zhang, Y. & Derynck, R. Transcriptional regulation of the transforming growth factor-β-inducible mouse germ line Igα constant region gene by functional cooperation of Smad, CREB, and AML family members. J. Biol. Chem. 275, 16979–16785 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Park, S. R., Lee, J. H. & Kim, P. H. Smad3 and Smad4 mediate transforming growth factor-β1-induced IgA expression in murine B lymphocytes. Eur. J. Immunol. 31, 1706–1517 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Shi, M. J. & Stavnezer, J. CBFα3 (AML2) is induced by TGF-β1 to bind and activate the mouse germline Igα promoter. J. Immunol. 161, 6751–6760 (1998).

    CAS  PubMed  Google Scholar 

  49. Miyazono, K., Maeda, S. & Imamura, T. Coordinate regulation of cell growth and differentiation by TGF-β superfamily and Runx proteins. Oncogene 23, 4232–4237 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. Lin, Y. C. & Stavnezer, J. Regulation of transcription of the germ-line Igα constant region gene by an ATF element and by novel transforming growth factor-β1-responsive elements. J. Immunol. 149, 2914–2925 (1992).

    CAS  PubMed  Google Scholar 

  51. Yang, X. et al. Targeted disruption of SMAD3 results in impaired mucosal immunity and diminished T cell responsiveness to TGF-β. EMBO J. 18, 1280–1291 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Cazac, B. B. & Roes, J. TGF-β receptor controls B cell responsiveness and induction of IgA in vivo. Immunity 13, 443–451 (2000). The first in vivo demonstration that signals emanating from TGFβ1 are essential for the induction of IgA class switching and production in B cells.

    Article  CAS  PubMed  Google Scholar 

  53. Klein, J. et al. B cell-specific deficiency for Smad2 in vivo leads to defects in TGF-β-directed IgA switching and changes in B cell fate. J. Immunol. 176, 2389–2396 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. Li, R. et al. Deletion of exon I of SMAD7 in mice results in altered B cell responses. J. Immunol. 176, 6777–6784 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. Shi, M. J., Park, S. R., Kim, P. H. & Stavnezer, J. Roles of Ets proteins, NF-κB and nocodazole in regulating induction of transcription of mouse germline Igα RNA by transforming growth factor-β1. Int. Immunol. 13, 733–746 (2001).

    Article  CAS  PubMed  Google Scholar 

  56. Qiu, G. & Stavnezer, J. Overexpression of BSAP/Pax-5 inhibits switching to IgA and enhances switching to IgE in the I.29μ B cell line. J. Immunol. 161, 2906–2918 (1998).

    CAS  PubMed  Google Scholar 

  57. Defrance, T. et al. Interleukin 10 and transforming growth factor β cooperate to induce anti-CD40-activated naive human B cells to secrete immunoglobulin A. J. Exp. Med. 175, 671–682 (1992).

    Article  CAS  PubMed  Google Scholar 

  58. McIntyre, T. M., Kehry, M. R. & Snapper, C. M. Novel in vitro model for high-rate IgA class switching. J. Immunol. 154, 3156–3161 (1995).

    CAS  PubMed  Google Scholar 

  59. Nakamura, M. et al. High frequency class switching of an IgM+ B lymphoma clone CH12F3 to IgA+ cells. Int. Immunol. 8, 193–201 (1996).

    Article  CAS  PubMed  Google Scholar 

  60. Cerutti, A. et al. CD40 ligand and appropriate cytokines induce switching to IgG, IgA, and IgE and coordinated germinal center-like phenotype differentiation in a human monoclonal IgM+IgD+ B cell line. J. Immunol. 160, 2145–2157 (1998).

    CAS  PubMed  Google Scholar 

  61. Zan, H., Cerutti, A., Dramitinos, P., Schaffer, A. & Casali, P. CD40 engagement triggers switching to IgA1 and IgA2 in human B cells through induction of endogenous TGF-β. Evidence for TGF-β-dependent but not IL-10-dependent direct Sμ-Sα and sequential Sμ-Sγ, Sγ-Sα DNA recombination. J. Immunol. 161, 5217–5225 (1998).

    CAS  PubMed  Google Scholar 

  62. Kawabe, T. et al. The immune responses in CD40-deficient mice: impaired immunoglobulin class switching and germinal center formation. Immunity 1, 167–178 (1994).

    Article  CAS  PubMed  Google Scholar 

  63. Bergqvist, P., Gardby, E., Stensson, A., Bemark, M. & Lycke, N. Y. Gut IgA class switch recombination in the absence of CD40 does not occur in the lamina propria and is independent of germinal centers. J. Immunol. 177, 7772–7783 (2006).

    Article  CAS  PubMed  Google Scholar 

  64. Allen, R. C. et al. CD40 ligand gene defects responsible for X-linked hyper-IgM syndrome. Science 259, 990–993 (1993).

    Article  CAS  PubMed  Google Scholar 

  65. Ferrari, S. et al. Mutations of CD40 gene cause an autosomal recessive form of immunodeficiency with hyper IgM. Proc. Natl Acad. Sci. USA 98, 12614–12619 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Siebenlist, U., Brown, K. & Claudio, E. Control of lymphocyte development by nuclear factor-κB. Nature Rev. Immunol. 5, 435–445 (2005).

    Article  CAS  Google Scholar 

  67. Snapper, C. M. et al. B cells from p50/NF-κB knockout mice have selective defects in proliferation, differentiation, germ-line CH transcription, and Ig class switching. J. Immunol. 156, 183–191 (1996).

    CAS  PubMed  Google Scholar 

  68. Dedeoglu, F., Horwitz, B., Chaudhuri, J., Alt, F. W. & Geha, R. S. Induction of activation-induced cytidine deaminase gene expression by IL-4 and CD40 ligation is dependent on STAT6 and NFκB. Int. Immunol. 16, 395–404 (2004).

    Article  CAS  PubMed  Google Scholar 

  69. Zhang, K., Mills, F. C. & Saxon, A. Switch circles from IL-4-directed ε class switching from human B lymphocytes. Evidence for direct, sequential, and multiple step sequential switch from μ to ε Ig heavy chain gene. J. Immunol. 152, 3427–3435 (1994).

    CAS  PubMed  Google Scholar 

  70. Fujieda, S., Waschek, J. A., Zhang, K. & Saxon, A. Vasoactive intestinal peptide induces Sα/Sμ switch circular DNA in human B cells. J. Clin. Invest. 98, 1527–1532 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Fagarasan, S. & Honjo, T. T-Independent immune response: new aspects of B cell biology. Science 290, 89–92 (2000).

    Article  CAS  PubMed  Google Scholar 

  72. Hayakawa, K. & Hardy, R. R. Normal, autoimmune, and malignant CD5+ B cells: the Ly-1 B lineage? Annu. Rev. Immunol. 6, 197–218 (1988).

    Article  CAS  PubMed  Google Scholar 

  73. Kroese, F. G. et al. Many of the IgA producing plasma cells in murine gut are derived from self-replenishing precursors in the peritoneal cavity. Int. Immunol. 1, 75–84 (1989).

    Article  CAS  PubMed  Google Scholar 

  74. Macpherson, A. J. et al. A primitive T cell-independent mechanism of intestinal mucosal IgA responses to commensal bacteria. Science 288, 2222–2226 (2000). The authors demonstrate that B-1 cells produce antibodies to commensal bacteria through a mechanism that does not require follicular structures and CD4+ T-cell help to B cells.

    Article  CAS  PubMed  Google Scholar 

  75. Franco, M. A. & Greenberg, H. B. Immunity to rotavirus in T cell deficient mice. Virology 238, 169–179 (1997).

    Article  CAS  PubMed  Google Scholar 

  76. Macpherson, A. J. & Uhr, T. Induction of protective IgA by intestinal dendritic cells carrying commensal bacteria. Science 303, 1662–1665 (2004). Evidence that T-cell-independent IgA responses to commensal bacteria require DCs and are confined to the intestinal mucosa.

    Article  CAS  PubMed  Google Scholar 

  77. Wijburg, O. L. et al. Innate secretory antibodies protect against natural Salmonella typhimurium infection. J. Exp. Med. 203, 21–26 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kaminski, D. A. & Stavnezer, J. Enhanced IgA class switching in marginal zone and B1 B cells relative to follicular/B2 B cells. J. Immunol. 177, 6025–6029 (2006).

    Article  CAS  PubMed  Google Scholar 

  79. Weller, S. et al. Human blood IgM 'memory' B cells are circulating splenic marginal zone B cells harboring a prediversified immunoglobulin repertoire. Blood 104, 3647–3654 (2004).

    Article  CAS  PubMed  Google Scholar 

  80. Weller, S. et al. CD40-CD40L independent Ig gene hypermutation suggests a second B cell diversification pathway in humans. Proc. Natl Acad. Sci. USA 98, 1166–1170 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Wardemann, H. et al. Predominant autoantibody production by early human B cell precursors. Science 301, 1374–1377 (2003).

    Article  CAS  PubMed  Google Scholar 

  82. Sims, G. P. et al. Identification and characterization of circulating human transitional B cells. Blood 105, 4390–4398 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Capolunghi, F. et al. CpG drives human transitional B cells to terminal differentiation and production of natural antibodies. J. Immunol. 180, 800–808 (2008). References 79–83 describe natural IgM memory B cells and transitional B cells in humans and their possible involvement in T-cell-independent antibody responses.

    Article  CAS  PubMed  Google Scholar 

  84. Peng, S. L. Signaling in B cells via Toll-like receptors. Curr. Opin. Immunol. 17, 230–236 (2005).

    Article  CAS  PubMed  Google Scholar 

  85. Mond, J. J., Vos, Q., Lees, A. & Snapper, C. M. T cell independent antigens. Curr. Opin. Immunol. 7, 349–354 (1995).

    Article  CAS  PubMed  Google Scholar 

  86. Bergtold, A., Desai, D. D., Gavhane, A. & Clynes, R. Cell surface recycling of internalized antigen permits dendritic cell priming of B cells. Immunity 23, 503–514 (2005).

    Article  CAS  PubMed  Google Scholar 

  87. Kushnir, N., Liu, L. & MacPherson, G. G. Dendritic cells and resting B cells form clusters in vitro and in vivo: T cell independence, partial LFA-1 dependence, and regulation by cross-linking surface molecules. J. Immunol. 160, 1774–1781 (1998).

    CAS  PubMed  Google Scholar 

  88. Batista, F. D., Iber, D. & Neuberger, M. S. B cells acquire antigen from target cells after synapse formation. Nature 411, 489–494 (2001).

    Article  CAS  PubMed  Google Scholar 

  89. Balazs, M., Martin, F., Zhou, T. & Kearney, J. Blood dendritic cells interact with splenic marginal zone B cells to initiate T-independent-immune responses. Immunity 17, 341–352 (2002). The first in vivo demonstration that DCs initiate T-cell independent antibody responses by activating B cells through BAFF and APRIL.

    Article  CAS  PubMed  Google Scholar 

  90. Qi, H., Egen, J. G., Huang, A. Y. & Germain, R. N. Extrafollicular activation of lymph node B cells by antigen-bearing dendritic cells. Science 312, 1672–1676 (2006).

    Article  CAS  PubMed  Google Scholar 

  91. Litinskiy, M. B. et al. DCs induce CD40-independent immunoglobulin class switching through BLyS and APRIL. Nature Immunol. 3, 822–829 (2002). The first in vitro demonstration that B cells can undergo CD40-independent CSR in response to BAFF and APRIL provided by DCs.

    Article  CAS  Google Scholar 

  92. Schneider, P. The role of APRIL and BAFF in lymphocyte activation. Curr. Opin. Immunol. 17, 282–289 (2005).

    Article  CAS  PubMed  Google Scholar 

  93. Dillon, S. R., Gross, J. A., Ansell, S. M. & Novak, A. J. An APRIL to remember: novel TNF ligands as therapeutic targets. Nature Rev. Drug Discov. 5, 235–246 (2006).

    Article  CAS  Google Scholar 

  94. Coffman, R. L., Lebman, D. A. & Shrader, B. Transforming growth factor β specifically enhances IgA production by lipopolysaccharide-stimulated murine B lymphocytes. J. Exp. Med. 170, 1039–1044 (1989).

    Article  CAS  PubMed  Google Scholar 

  95. Takeda, K., Kaisho, T. & Akira, S. Toll-like receptors. Annu. Rev. Immunol. 21, 335–376 (2003).

    Article  CAS  PubMed  Google Scholar 

  96. O'Neill, L. A. & Bowie, A. G. The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nature Rev. Immunol. 7, 353–364 (2007).

    Article  CAS  Google Scholar 

  97. Xie, X. Q., Pardali, E., Holm, M., Sideras, P. & Grundstrom, T. AML and Ets proteins regulate the Iα1 germ-line promoter. Eur. J. Immunol. 29, 488–498 (1999).

    Article  CAS  PubMed  Google Scholar 

  98. He, B., Qiao, X. & Cerutti, A. CpG DNA induces IgG class switch DNA recombination by activating human B cells through an innate pathway that requires TLR9 and cooperates with IL-10. J. Immunol. 173, 4479–4491 (2004).

    Article  CAS  PubMed  Google Scholar 

  99. Xu, W. et al. Epithelial cells trigger frontline immunoglobulin class switching through a pathway regulated by the inhibitor SLPI. Nature Immunol. 8, 294–303 (2007). The first demonstration that epithelial cells can initiate T-cell-independent IgG and IgA class switching after sensing microorganisms through TLRs.

    Article  CAS  Google Scholar 

  100. Kaminski, D. A. & Stavnezer, J. Stimuli that enhance IgA class switching increase histone 3 acetylation at Sα, but poorly stimulate sequential switching from IgG2b. Eur. J. Immunol. 37, 240–251 (2007).

    Article  CAS  PubMed  Google Scholar 

  101. Bradley, S. P., Kaminski, D. A., Peters, A. H., Jenuwein, T. & Stavnezer, J. The histone methyltransferase Suv39h1 increases class switch recombination specifically to IgA. J. Immunol. 177, 1179–1188 (2006).

    Article  CAS  PubMed  Google Scholar 

  102. Drouin, E. E., Schrader, C. E., Stavnezer, J. & Hansen, U. The ubiquitously expressed DNA-binding protein late SV40 factor binds Ig switch regions and represses class switching to IgA. J. Immunol. 168, 2847–2856 (2002).

    Article  CAS  PubMed  Google Scholar 

  103. Bendelac, A., Bonneville, M. & Kearney, J. F. Autoreactivity by design: innate B and T lymphocytes. Nature Rev. Immunol. 1, 177–186 (2001).

    Article  CAS  Google Scholar 

  104. Bernasconi, N. L., Traggiai, E. & Lanzavecchia, A. Maintenance of serological memory by polyclonal activation of human memory B cells. Science 298, 2199–2202 (2002).

    Article  CAS  PubMed  Google Scholar 

  105. Castigli, E. et al. TACI and BAFF-R mediate isotype switching in B cells. J. Exp. Med. 201, 35–39 (2005). Identification of TACI as the major IgA class-switch-inducing receptor in B cells exposed to BAFF or APRIL.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. von Bulow, G. U., van Deursen, J. M. & Bram, R. J. Regulation of the T-independent humoral response by TACI. Immunity 14, 573–582 (2001).

    Article  CAS  PubMed  Google Scholar 

  107. Ng, L. G. et al. BAFF costimulation of Toll-like receptor-activated B-1 cells. Eur. J. Immunol. 36, 1837–1846 (2006).

    Article  CAS  PubMed  Google Scholar 

  108. Castigli, E. et al. TACI is mutant in common variable immunodeficiency and IgA deficiency. Nature Genet. 37, 829–834 (2005).

    Article  CAS  PubMed  Google Scholar 

  109. Salzer, U. et al. Mutations in TNFRSF13B encoding TACI are associated with common variable immunodeficiency in humans. Nature Genet. 37, 820–828 (2005). References 108 and 109 describe IgA deficiency in humans with TACI signalling defects.

    Article  CAS  PubMed  Google Scholar 

  110. Sakurai, D. et al. TACI regulates IgA production by APRIL in collaboration with HSPG. Blood 109, 2961–2967 (2007).

    CAS  PubMed  Google Scholar 

  111. Castigli, E. et al. Transmembrane activator and calcium modulator and cyclophilin ligand interactor enhances CD40-driven plasma cell differentiation. J. Allergy Clin. Immunol. 120, 885–891 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Thompson, J. S. et al. BAFF-R, a newly identified TNF receptor that specifically interacts with BAFF. Science 293, 2108–2111 (2001).

    Article  CAS  PubMed  Google Scholar 

  113. O'Connor, B. P. et al. BCMA is essential for the survival of long-lived bone marrow plasma cells. J. Exp. Med. 199, 91–98 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Xia, X. Z. et al. TACI is a TRAF-interacting receptor for TALL-1, a tumor necrosis factor family member involved in B cell regulation. J. Exp. Med. 192, 137–143 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Fayette, J. et al. Human dendritic cells skew isotype switching of CD40-activated naive B cells towards IgA1 and IgA2. J. Exp. Med. 185, 1909–1918 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Craig, S. W. & Cebra, J. J. Peyer's patches: an enriched source of precursors for IgA-producing immunocytes in the rabbit. J. Exp. Med. 134, 188–200 (1971).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Martinoli, C., Chiavelli, A. & Rescigno, M. Entry route of Salmonella typhimurium directs the type of induced immune response. Immunity 27, 975–984 (2007). This study shows that the IgA response to invasive bacteria takes place in Peyer's patches.

    Article  CAS  PubMed  Google Scholar 

  118. Iwasaki, A. & Kelsall, B. L. Freshly isolated Peyer's patch, but not spleen, dendritic cells produce interleukin 10 and induce the differentiation of T helper type 2 cells. J. Exp. Med. 190, 229–239 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Rimoldi, M. et al. Intestinal immune homeostasis is regulated by the crosstalk between epithelial cells and dendritic cells. Nature Immunol. 6, 507–514 (2005).

    Article  CAS  Google Scholar 

  120. Ziegler, S. F. & Liu, Y. J. Thymic stromal lymphopoietin in normal and pathogenic T cell development and function. Nature Immunol. 7, 709–714 (2006).

    Article  CAS  Google Scholar 

  121. Mora, J. R. et al. Generation of gut-homing IgA-secreting B cells by intestinal dendritic cells. Science 314, 1157–1160 (2006). This study shows that DCs confer gut-homing properties to IgA class-switched B cells through a process involving retinoic acid, a metabolite of vitamin A.

    Article  CAS  PubMed  Google Scholar 

  122. Sato, A. et al. CD11b+ Peyer's patch dendritic cells secrete IL-6 and induce IgA secretion from naive B cells. J. Immunol. 171, 3684–3690 (2003).

    Article  CAS  PubMed  Google Scholar 

  123. Tezuka, H. et al. Regulation of IgA production by naturally occurring TNF/iNOS-producing dendritic cells. Nature 448, 929–933 (2007). Recent evidence showing the involvement of bacteria-induced iNOS+TNF+ DCs in the initiation of intestinal IgA responses, including IgA class switching.

    Article  CAS  PubMed  Google Scholar 

  124. Casola, S. et al. B cell receptor signal strength determines B cell fate. Nature Immunol. 5, 317–327 (2004). This paper reports that Peyer's patch B cells can undergo T-cell-dependent IgA class switching and production in the absence of canonical cognate T-cell–B-cell interactions.

    Article  CAS  Google Scholar 

  125. Stoel, M. et al. Restricted IgA repertoire in both B-1 and B-2 cell-derived gut plasmablasts. J. Immunol. 174, 1046–1054 (2005).

    Article  CAS  PubMed  Google Scholar 

  126. Fagarasan, S. et al. Critical roles of activation-induced cytidine deaminase in the homeostasis of gut flora. Science 298, 1424–1427 (2002).

    Article  CAS  PubMed  Google Scholar 

  127. Hayakawa, K., Hardy, R. R., Stall, A. M., Herzenberg, L. A. & Herzenberg, L. A. Immunoglobulin-bearing B cells reconstitute and maintain the murine Ly-1 B cell lineage. Eur. J. Immunol. 16, 1313–1316 (1986).

    Article  CAS  PubMed  Google Scholar 

  128. Thurnheer, M. C., Zuercher, A. W., Cebra, J. J. & Bos, N. A. B1 cells contribute to serum IgM, but not to intestinal IgA, production in gnotobiotic Ig allotype chimeric mice. J. Immunol. 170, 4564–4571 (2003).

    Article  CAS  PubMed  Google Scholar 

  129. Crouch, E. E. et al. Regulation of AID expression in the immune response. J. Exp. Med. 204, 1145–1156 (2007). Elegant work recapitulating AID expression during immune responses at different sites, including the intestinal lamina propria, in an AID reporter mouse.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Cerutti, A. Location, location, location: B-cell differentiation in the gut lamina propria. Mucosal Immunol. 1, 8–10 (2008).

    Article  CAS  PubMed  Google Scholar 

  131. MacLennan, I. C. et al. Extrafollicular antibody responses. Immunol. Rev. 194, 8–18 (2003).

    Article  CAS  PubMed  Google Scholar 

  132. Suzuki, K., Meek, B., Doi, Y., Honjo, T. & Fagarasan, S. Two distinctive pathways for recruitment of naive and primed IgM+ B cells to the gut lamina propria. Proc. Natl Acad. Sci. USA 102, 2482–2486 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Rescigno, M. et al. Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nature Immunol. 2, 361–367 (2001).

    Article  CAS  Google Scholar 

  134. Chieppa, M., Rescigno, M., Huang, A. Y. & Germain, R. N. Dynamic imaging of dendritic cell extension into the small bowel lumen in response to epithelial cell TLR engagement. J. Exp. Med. 203, 2841–2852 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Hebel, K. et al. Plasma cell differentiation in T-independent type 2 immune responses is independent of CD11chigh dendritic cells. Eur. J. Immunol. 36, 2912–2919 (2006).

    Article  CAS  PubMed  Google Scholar 

  136. Kato, A., Truong-Tran, A. Q., Scott, A. L., Matsumoto, K. & Schleimer, R. P. Airway epithelial cells produce B cell-activating factor of TNF family by an IFN-γ-dependent mechanism. J. Immunol. 177, 7164–7172 (2006).

    Article  CAS  PubMed  Google Scholar 

  137. Cunningham-Rundles, C. & Knight, A. K. Common variable immune deficiency: reviews, continued puzzles, and a new registry. Immunol. Res. 38, 78–86 (2007).

    Article  CAS  PubMed  Google Scholar 

  138. Holmgren, J. & Czerkinsky, C. Mucosal immunity and vaccines. Nature Med. 11, S45–S53 (2005).

    Article  CAS  PubMed  Google Scholar 

  139. Burton, D. R. Antibodies, viruses and vaccines. Nature Rev. Immunol. 2, 706–713 (2002).

    Article  CAS  Google Scholar 

  140. Mazzoli, S. et al. HIV-specific mucosal and cellular immunity in HIV-seronegative partners of HIV-seropositive individuals. Nature Med. 3, 1250–1257 (1997).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author is supported by US National Institutes of Health (NIH) research grants AI057653, AI057653-S1 and AI074378, and by an Irma T. Hirschl Career Scientist Award.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Andrea Cerutti's homepage

Glossary

Non-homologous end-joining

The process that joins broken DNA ends independently of extended homology. Components of this pathway include the proteins Ku70, Ku80, ARTEMIS, X-ray repair cross-complementing protein 4 (XRCC4), DNA ligase IV and the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs).

Membrane-bound IgA

IgA protein expressed on the surface of B cells that have undergone IgA class switching. Membrane IgA works as a transmembrane antigen receptor in that it delivers activating signals to effector memory B cells on secondary exposure to antigen.

Secreted IgA

(sIgA). IgA protein secreted by early plasmacytoid B cells (or plasmablasts) and terminally differentiated plasma cells. sIgA exists in monomeric, dimeric or oligomeric forms that target local or distant antigens.

Biofilm

A population of aggregated microorganisms, typically concentrated at an interface (usually solid–liquid), that is held together by a protective self-produced extracellular polymeric substance matrix.

M cells

(Microfold or membrane cells). Specialized epithelial cells that deliver antigens by transepithelial vesicular transport from the gut lumen to intraepithelial dendritic cells and lymphocytes.

Peyer's patches

Large lymphoid follicles positioned in the antimesenteric wall of the small intestine and containing a large germinal centre. Each follicle is capped by a dome area and is flanked by a T-cell-rich perifollicular area.

Follicular DCs

Specialized non-haematopoietic stromal cells that reside in the follicles and germinal centres. These cells have long dendrites, but are not related to dendritic cells, and carry intact antigen on their surface.

Kupffer cells

Large, stellate- or pyramidal-shaped, specialized macrophages that line the sinusoidal vessels of the liver. They regulate local immune responses, and remove microbial particles, endotoxin and other noxious substances that penetrate the portal venous system.

Asialoglycoprotein receptor

A C-type lectin receptor that mediates endocytosis of desialylated glycoproteins and clearance of circulating IgA2 by hepatocytes.

Transferrin receptor

Also known as CD71, this receptor regulates the cellular import of iron by binding the iron-carrier protein transferrin. In addition, it mediates clearance of circulating IgA1 by renal mesangial cells.

Portal venous system

The venous system responsible for directing blood from parts of the gastrointestinal tract to the liver.

APOBEC

(Apolipoprotein B RNA-editing, catalytic component). A cytidine deaminase enzyme family including APOBEC1, an RNA editor involved in lipid metabolism, APOBEC3G and APOBEC3F, two DNA editors with antiretroviral activity, and activation-induced cytidine deaminase, a DNA editor mediating immunoglobulin gene diversification.

Hyper-IgM syndrome

(HIGM). Congenital immunodeficiency with defective immunoglobulin heavy chain class switching and increased IgM production. The underlying molecular defect involves CD40 ligand (HIGM1), activation-induced cytidine deaminase (HIGM2), CD40 (HIGM3), uracil DNA glycosylase (HIGM4) or other unknown B-cell proteins (HIGM5).

Isolated lymphoid follicles

Small lymphoid aggregates located in the antimesenteric wall of the small intestine and containing B cells, dendritic cells, stromal cells and some T cells. They may contain germinal centres.

VIP

(Vasoactive intestinal peptide). A peptide hormone released by mucosal postsynaptic parasympathetic nerve fibres and intrinsic neurons of the intestinal lamina propria. In addition to stimulating water and electrolyte secretion and intestinal wall motility, VIP activates lymphocytes via a constitutive VIPR1 receptor and an inducible VIPR2 receptor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cerutti, A. The regulation of IgA class switching. Nat Rev Immunol 8, 421–434 (2008). https://doi.org/10.1038/nri2322

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri2322

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing