Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The role of the cartilage matrix in osteoarthritis

Abstract

Osteoarthritis (OA) involves all the structures of the joint. How the disease is initiated and what factors trigger the disease process remain unclear, although the mechanical environment seems to have a role. Our understanding of the biology of the disease has been hampered by the lack of access to tissue samples from patients with early stage disease, because clinically recognizable symptoms appear late in the osteoarthritic process. However, new data about the early processes in articular cartilage and new tools to identify the early stages of OA are providing fresh insights into the pathological sequence of events. The progressive destruction of cartilage involves degradation of matrix constituents, and rather active, yet inefficient, repair attempts. The release of fragmented molecules provides opportunities to monitor the disease process in patients, and to investigate whether these fragments are involved in propagating OA, for example, by inducing inflammation. The role of bone has not been fully elucidated, but changes in bone seem to be secondary to alterations in articular cartilage, which change the mechanical environment of the bone cells and induce them, in turn, to modulate tissue structure.

Key Points

  • Mechanical factors have a central role in the development of osteoarthritis and in cartilage breakdown; these processes can be modulated by variable load

  • Inflammation is an early and persistent event that might impair the ability of joint tissues to handle mechanical loads

  • Cartilage changes are early events that are coupled, via mechanical or soluble factors, to bone alterations

  • Involvement of tissues in osteoarthritis can be monitored by quantifying levels of released fragments of tissue matrix molecules and inflammation can be assessed by markers such as activated complement factors or cytokines

  • The results of tissue-destructive processes can be visualized by direct joint inspection in arthroscopy, as well as by imaging technology, particularly MRI, ultrasonography and radiography

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Properties of normal and osteoarthritic joints.
Figure 2: The molecular organization of normal articular cartilage.

Similar content being viewed by others

References

  1. Day, J. S. et al. Adaptation of subchondral bone in osteoarthritis. Biorheology 41, 359–368 (2004).

    CAS  PubMed  Google Scholar 

  2. Hunter, D. J., Le Graverand, M. P. & Eckstein, F. Radiologic markers of osteoarthritis progression. Curr. Opin. Rheumatol. 21, 110–117 (2009).

    Article  PubMed  Google Scholar 

  3. Schneider, E. et al. Magnetic resonance imaging evaluation of weight-bearing subchondral trabecular bone in the knee. Skeletal Radiol. doi:10.1007/s00256-010-0943-z.

  4. Kawcak, C. E., Frisbie, D. D., Werpy, N. M., Park, R. D. & McIlwraith, C. W. Effects of exercise vs experimental osteoarthritis on imaging outcomes. Osteoarthritis Cartilage 16, 1519–1525 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Englund, M. et al. Meniscal pathology on MRI increases the risk for both incident and enlarging subchondral bone marrow lesions of the knee: the MOST Study. Ann. Rheum. Dis. 69, 1796–1802 (2010).

    Article  PubMed  Google Scholar 

  6. Saxne, T., Lindell, M., Månsson, B., Petersson, I. F. & Heinegård, D. Inflammation is a feature of the disease process in early knee joint osteoarthritis. Rheumatology (Oxford) 42, 903–904 (2003).

    Article  CAS  Google Scholar 

  7. Lotz, M. K. New developments in osteoarthritis. Posttraumatic osteoarthritis: pathogenesis and pharmacological treatment options. Arthritis Res. Ther. 12, 211 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Metsäranta, M. et al. Chondrodysplasia in transgenic mice harboring a 15-amino acid deletion in the triple helical domain of proα1(II) collagen chain 895. J. Cell Biol. 118, 203–212 (1992).

    Article  PubMed  Google Scholar 

  9. Jakkula, E. et al. The role of sequence variations within the genes encoding collagen II, IX and XI in non-syndromic, early-onset osteoarthritis. Osteoarthritis Cartilage 13, 497–507 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Kuivaniemi, H., Tromp, G. & Prockop, D. J. Mutations in fibrillar collagens (types I, II, III, and XI), fibril-associated collagen (type IX), and network-forming collagen (type X) cause a spectrum of diseases of bone, cartilage, and blood vessels. Hum. Mutat. 9, 300–315 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Dreier, R., Opolka, A., Grifka, J., Bruckner, P. & Grassel, S. Collagen IX-deficiency seriously compromises growth cartilage development in mice. Matrix Biol. 27, 319–329 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Fässler, R. et al. Mice lacking α1(IX) collagen develop noninflammatory degenerative joint disease. Proc. Natl Acad. Sci. USA 91, 5070–5074 (1994).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kennedy, J. et al. Novel and recurrent mutations in the C-terminal domain of COMP cluster in two distinct regions and result in a spectrum of phenotypes within the pseudoachondroplasia--multiple epiphyseal dysplasia disease group. Hum. Mutat. 25, 593–594 (2005).

    Article  PubMed  Google Scholar 

  14. Deere, M., Sanford, T., Francomano, C. A., Daniels, K. & Hecht, J. T. Identification of nine novel mutations in cartilage oligomeric matrix protein in patients with pseudoachondroplasia and multiple epiphyseal dysplasia. Am. J. Med. Genet. 85, 486–490 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Otten, C., Wagener, R., Paulsson, M. & Zaucke, F. Matrilin-3 mutations that cause chondrodysplasias interfere with protein trafficking while a mutation associated with hand osteoarthritis does not. J. Med. Genet. 42, 774–779 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Basser, P. J., Schneiderman, R., Bank, R. A., Wachtel, E. & Maroudas, A. Mechanical properties of the collagen network in human articular cartilage as measured by osmotic stress technique. Arch. Biochem. Biophys. 351, 207–219 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Muir, H., Bullough, P. & Maroudas, A. The distribution of collagen in human articular cartilage with some of its physiological implications. J. Bone Joint Surg. [Br.] 52, 554–563 (1970).

    Article  CAS  Google Scholar 

  18. Bennell, K. L. et al. Bone marrow lesions are related to dynamic knee loading in medial knee osteoarthritis. Ann. Rheum. Dis. 69, 1151–1154 (2010).

    Article  PubMed  Google Scholar 

  19. Kerin, A., Patwari, P., Kuettner, K., Cole, A. & Grodzinsky, A. Molecular basis of osteoarthritis: biomechanical aspects. Cell. Mol. Life Sci. 59, 27–35 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Englund, M. et al. Meniscal tear in knees without surgery and the development of radiographic osteoarthritis among middle-aged and elderly persons: The Multicenter Osteoarthritis Study. Arthritis Rheum. 60, 831–839 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Neuman, P. et al. Patellofemoral osteoarthritis 15 years after anterior cruciate ligament injury-—a prospective cohort study. Osteoarthritis Cartilage 17, 284–290 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. Burr, D. B. & Radin, E. L. Microfractures and microcracks in subchondral bone: are they relevant to osteoarthrosis? Rheum. Dis. Clin. North Am. 29, 675–685 (2003).

    Article  PubMed  Google Scholar 

  23. Radin, E. L. et al. Mechanical determinants of osteoarthrosis. Semin. Arthritis Rheum. 21, 12–21 (1991).

    Article  CAS  PubMed  Google Scholar 

  24. Inerot, S., Heinegård, D., Olsson, S. E., Telhag, H. & Audell, L. Proteoglycan alterations during developing experimental osteoarthritis in a novel hip joint model. J. Orthop. Res. 9, 658–673 (1991).

    Article  CAS  PubMed  Google Scholar 

  25. Palmoski, M. J. & Brandt, K. D. Immobilization of the knee prevents osteoarthritis after anterior cruciate ligament transection. Arthritis Rheum. 25, 1201–1208 (1982).

    Article  CAS  PubMed  Google Scholar 

  26. Segal, R. et al. The impact of hemiparalysis on the expression of osteoarthritis. Arthritis Rheum. 41, 2249–2256 (1998).

    Article  CAS  PubMed  Google Scholar 

  27. Spector, T. D. et al. Low-level increases in serum C-reactive protein are present in early osteoarthritis of the knee and predict progressive disease. Arthritis Rheum. 40, 723–727 (1997).

    Article  CAS  PubMed  Google Scholar 

  28. Sellam, J. & Berenbaum, F. The role of synovitis in pathophysiology and clinical symptoms of osteoarthritis. Nat. Rev. Rheumatol. 6, 625–635 (2010).

    Article  CAS  PubMed  Google Scholar 

  29. Saklatvala, J. Characterization of catabolin, the major product of pig synovial tissue that induces resorption of cartilage proteoglycan in vitro. Biochem. J. 199, 705–714 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gruber, J. et al. Induction of interleukin-1 in articular cartilage by explantation and cutting. Arthritis Rheum. 50, 2539–2546 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Saklatvala, J. Interleukin 1: purification and biochemical aspects of its action on cartilage. J. Rheumatol. 14, 52–54 (1987).

    CAS  PubMed  Google Scholar 

  32. Pratta, M. A., Di Meo, T. M., Ruhl, D. M. & Arner, E. C. Effect of interleukin-1-β and tumor necrosis factor-α on cartilage proteoglycan metabolism in vitro. Agents Actions 27, 250–253 (1989).

    Article  CAS  PubMed  Google Scholar 

  33. Sjöberg, A., Önnerfjord, P., Mörgelin, M., Heinegård, D. & Blom, A. M. The extracellular matrix and inflammation: fibromodulin activates the classical pathway of complement by directly binding C1q. J. Biol. Chem. 280, 32301–32308 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Sjöberg, A. P. et al. Short leucine-rich glycoproteins of the extracellular matrix display diverse patterns of complement interaction and activation. Mol. Immunol. 46, 830–839 (2009).

    Article  CAS  PubMed  Google Scholar 

  35. Groeneveld, T. W. et al. Interactions of the extracellular matrix proteoglycans decorin and biglycan with C1q and collectins. J. Immunol. 175, 4715–4723 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Krumdieck, R., Hook, M., Rosenberg, L. C. & Volanakis, J. E. The proteoglycan decorin binds C1q and inhibits the activity of the C1 complex. J. Immunol. 149, 3695–3701 (1992).

    CAS  PubMed  Google Scholar 

  37. Happonen, K. E. et al. Regulation of complement by COMP allows for a novel molecular diagnostic principle in rheumatoid arthritis. Arthritis Rheum. doi: 10.1002/art.27720.

  38. Verrouil, E. & Mazieres, B. Etiologic factors in finger osteoarthritis. Rev. Rhum. Engl. Ed. 62, 9S–13S (1995).

    CAS  PubMed  Google Scholar 

  39. Janusz, M. J. et al. Induction of osteoarthritis in the rat by surgical tear of the meniscus: Inhibition of joint damage by a matrix metalloproteinase inhibitor. Osteoarthritis Cartilage 10, 785–791 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Libicher, M., Ivancic, M., Hoffmann, M. & Wenz, W. Early changes in experimental osteoarthritis using the Pond-Nuki dog model: technical procedure and initial results of in vivo MR imaging. Eur. Radiol. 15, 390–394 (2005).

    Article  PubMed  Google Scholar 

  41. Lorenzo, P., Bayliss, M. T. & Heinegård, D. Altered patterns and synthesis of extracellular matrix macromolecules in early osteoarthritis. Matrix Biol. 23, 381–391 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Kshirsagar, A. A., Watson, P. J., Tyler, J. A. & Hall, L. D. Measurement of localized cartilage volume and thickness of human knee joints by computer analysis of three-dimensional magnetic resonance images. Invest. Radiol. 33, 289–299 (1998).

    Article  CAS  PubMed  Google Scholar 

  43. Glasson, S. S. et al. Deletion of active ADAMTS5 prevents cartilage degradation in a murine model of osteoarthritis. Nature 434, 644–648 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Lark, M. W. et al. Aggrecan degradation in human cartilage. Evidence for both matrix metalloproteinase and aggrecanase activity in normal, osteoarthritic, and rheumatoid joints. J. Clin. Invest. 100, 93–106 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lohmander, L. S., Neame, P. J. & Sandy, J. D. The structure of aggrecan fragments in human synovial fluid. Evidence that aggrecanase mediates cartilage degradation in inflammatory joint disease, joint injury, and osteoarthritis. Arthritis Rheum. 36, 1214–1222 (1993).

    Article  CAS  PubMed  Google Scholar 

  46. Pratta, M. A. et al. Development and characterization of a highly specific and sensitive sandwich ELISA for detection of aggrecanase-generated aggrecan fragments. Osteoarthritis Cartilage 14, 702–713 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. Sandy, J. D. & Verscharen, C. Analysis of aggrecan in human knee cartilage and synovial fluid indicates that aggrecanase (ADAMTS) activity is responsible for the catabolic turnover and loss of whole aggrecan whereas other protease activity is required for C-terminal processing in vivo. Biochem. J. 358, 615–626 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lorenzo, P., Bayliss, M. T. & Heinegård, D. A novel cartilage protein (CILP) present in the mid-zone of human articular cartilage increases with age. J. Biol. Chem. 273, 23463–23468 (1998).

    Article  CAS  PubMed  Google Scholar 

  49. Lorenzo, P. et al. Identification and characterization of asporin. A novel member of the leucine rich repeat protein family closely related to decorin and biglycan. J. Biol. Chem. 276, 12201–12211 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Stanton, H. et al. ADAMTS5 is the major aggrecanase in mouse cartilage in vivo and in vitro. Nature 434, 648–652 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Glasson, S. S. et al. Characterization of and osteoarthritis susceptibility in ADAMTS-4-knockout mice. Arthritis Rheum. 50, 2547–2558 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Sandy, J. D., Thompson, V., Doege, K. & Verscharen, C. The intermediates of aggrecanase-dependent cleavage of aggrecan in rat chondrosarcoma cells treated with interleukin-1. Biochem. J. 351, 161–166 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bank, R. A., Soudry, M., Maroudas, A., Mizrahi, J. & Tekoppele, J. M. The increased swelling and instantaneous deformation of osteoarthritic cartilage is highly correlated with collagen degradation. Arthritis Rheum. 43, 2202–2210 (2000).

    Article  CAS  PubMed  Google Scholar 

  54. Arokoski, J., Kiviranta, I., Jurvelin, J., Tammi, M. & Helminen, H. J. Long-distance running causes site-dependent decrease of cartilage glycosaminoglycan content in the knee joints of beagle dogs. Arthritis Rheum. 36, 1451–1459 (1993).

    Article  CAS  PubMed  Google Scholar 

  55. Fang, C. et al. Tissue distribution and measurement of cartilage oligomeric matrix protein in patients with magnetic resonance imaging-detected bone bruises after acute anterior cruciate ligament tears. J. Orthop. Res. 19, 634–641 (2001).

    Article  CAS  PubMed  Google Scholar 

  56. Arokoski, J. P. et al. Decreased birefringence of the superficial zone collagen network in the canine knee (stifle) articular cartilage after long distance running training, detected by quantitative polarised light microscopy. Ann. Rheum. Dis. 55, 253–264 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hardingham, T. & Bayliss, M. Proteoglycans of articular cartilage: changes in aging and in joint disease. Semin. Arthritis Rheum. 20, 12–33 (1990).

    Article  CAS  PubMed  Google Scholar 

  58. Maroudas, A., Bayliss, M. T., Uchitel-Kaushansky, N., Schneiderman, R. & Gilav, E. Aggrecan turnover in human articular cartilage: use of aspartic acid racemization as a marker of molecular age. Arch. Biochem. Biophys. 350, 61–71 (1998).

    Article  CAS  PubMed  Google Scholar 

  59. Saxne, T. & Heinegård, D. Synovial fluid analysis of two groups of proteoglycan epitopes distinguishes early and late cartilage lesions. Arthritis Rheum. 35, 385–390 (1992).

    Article  CAS  PubMed  Google Scholar 

  60. Heathfield, T. F., Önnerfjord, P., Dahlberg, L. & Heinegård, D. Cleavage of fibromodulin in cartilage explants involves removal of the N-terminal tyrosine sulfate-rich region by proteolysis at a site that is sensitive to matrix metalloproteinase-13. J. Biol. Chem. 279, 6286–6295 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. Cs-Szabo, G., Roughley, P. J., Plaas, A. H. & Glant, T. T. Large and small proteoglycans of osteoarthritic and rheumatoid articular cartilage. Arthritis Rheum. 38, 660–668 (1995).

    Article  CAS  PubMed  Google Scholar 

  62. Melrose, J. et al. Fragmentation of decorin, biglycan, lumican and keratocan is elevated in degenerate human meniscus, knee and hip articular cartilages compared with age-matched macroscopically normal and control tissues. Arthritis Res. Ther. 10, R79 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Dickinson, S. C. et al. Cleavage of cartilage oligomeric matrix protein (thrombospondin-5) by matrix metalloproteinases and a disintegrin and metalloproteinase with thrombospondin motifs. Matrix Biol. 22, 267–278 (2003).

    Article  CAS  PubMed  Google Scholar 

  64. Arai, K. et al. Analysis of cartilage oligomeric matrix protein (COMP) degradation and synthesis in equine joint disease. Equine Vet. J. 37, 31–36 (2005).

    Article  CAS  PubMed  Google Scholar 

  65. Kojima, T. et al. Early degradation of type IX and type II collagen with the onset of experimental inflammatory arthritis. Arthritis Rheum. 44, 120–127 (2001).

    Article  CAS  PubMed  Google Scholar 

  66. Danfelter, M., Önnerfjord, P. & Heinegård, D. Fragmentation of proteins in cartilage treated with interleukin-1: specific cleavage of type IX collagen by matrix metalloproteinase 13 releases the NC4 domain. J. Biol. Chem. 282, 36933–36941 (2007).

    Article  CAS  PubMed  Google Scholar 

  67. Budde, B. et al. Altered integration of matrilin-3 into cartilage extracellular matrix in the absence of collagen IX. Mol. Cell. Biol. 25, 10465–10478 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Tillgren, V., Önnerfjord, P., Haglund, L. & Heinegård, D. The tyrosine sulfate-rich domains of the LRR proteins fibromodulin and osteoadherin bind motifs of basic clusters in a variety of heparin-binding proteins, including bioactive factors. J. Biol. Chem. 284, 28543–28553 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Vaughan, L. et al. D-periodic distribution of collagen type IX along cartilage fibrils. J. Cell Biol. 106, 991–997 (1988).

    Article  CAS  PubMed  Google Scholar 

  70. Eyre, D. R., Pietka, T., Weis, M. A. & Wu, J. J. Covalent cross-linking of the NC1 domain of collagen type IX to collagen type II in cartilage. J. Biol. Chem. 279, 2568–2574 (2004).

    Article  CAS  PubMed  Google Scholar 

  71. Little, C. B. et al. Matrix metalloproteinase 13-deficient mice are resistant to osteoarthritic cartilage erosion but not chondrocyte hypertrophy or osteophyte development. Arthritis Rheum. 60, 3723–3733 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Goldberg, R. et al. Time dependent release of matrix components from bovine cartilage after IL-1 treatment and the relative inhibition by matrix metalloproteinase inhibitors. Trans. Orthop. Res. Soc. USA 20, 125 (1995).

    Google Scholar 

  73. Halasz, K., Kassner, A., Mörgelin, M. & Heinegård, D. COMP acts as a catalyst in collagen fibrillogenesis. J. Biol. Chem. 282, 31166–31173 (2007).

    Article  CAS  PubMed  Google Scholar 

  74. Thur, J. et al. Mutations in cartilage oligomeric matrix protein causing pseudoachondroplasia and multiple epiphyseal dysplasia affect binding of calcium and collagen I, II, and IX. J. Biol. Chem. 276, 6083–6092 (2001).

    Article  CAS  PubMed  Google Scholar 

  75. Shen, Z., Heinegård, D. & Sommarin, Y. Distribution and expression of cartilage oligomeric matrix protein and bone sialoprotein show marked changes during rat femoral head development. Matrix Biol. 14, 773–781 (1995).

    Article  CAS  PubMed  Google Scholar 

  76. Heinegård, D. Proteoglycans and more—from molecules to biology. Int. J. Exp. Pathol. 90, 575–586 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Burstein, D., Gray, M., Mosher, T. & Dardzinski, B. Measures of molecular composition and structure in osteoarthritis. Radiol. Clin. North Am. 47, 675–686 (2009).

    Article  PubMed  Google Scholar 

  78. Gray, M. L. Toward imaging biomarkers for glycosaminoglycans. J. Bone Joint Surg. Am. 91, 44–49 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Owman, H., Tiderius, C. J., Neuman, P., Nyquist, F. & Dahlberg, L. E. Association between findings on delayed gadolinium-enhanced magnetic resonance imaging of cartilage and future knee osteoarthritis. Arthritis Rheum. 58, 1727–1730 (2008).

    Article  PubMed  Google Scholar 

  80. Welsch, G. H. et al. In vivo biochemical 7.0 Tesla magnetic resonance: preliminary results of dGEMRIC, zonal T2, and T2* mapping of articular cartilage. Invest. Radiol. 43, 619–626 (2008).

    Article  PubMed  Google Scholar 

  81. Di Cesare, P. E. et al. Increased degradation and altered tissue distribution of cartilage oligomeric matrix protein in human rheumatoid and osteoarthritic cartilage. J. Orthop. Res. 14, 946–955 (1996).

    Article  CAS  PubMed  Google Scholar 

  82. Poole, A. R. et al. Contents and distributions of the proteoglycans decorin and biglycan in normal and osteoarthritic human articular cartilage. J. Orthop. Res. 14, 681–689 (1996).

    Article  CAS  PubMed  Google Scholar 

  83. Rolauffs, B. et al. Vulnerability of the superficial zone of immature articular cartilage to compressive injury. Arthritis Rheum. 62, 3016–3027 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Mizrahi, J., Maroudas, A., Lanir, Y., Ziv, I. & Webber, T. J. The “instantaneous” deformation of cartilage: effects of collagen fiber orientation and osmotic stress. Biorheology 23, 311–330 (1986).

    Article  CAS  PubMed  Google Scholar 

  85. Arkill, K. P. & Winlove, C. P. Solute transport in the deep and calcified zones of articular cartilage. Osteoarthritis Cartilage 16, 708–714 (2008).

    Article  CAS  PubMed  Google Scholar 

  86. von Steyern, F. V. et al. Giant-cell tumour of the knee: the condition of the cartilage after treatment by curettage and cementing. J. Bone Joint Surg. Br. 89, 361–365 (2007).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge grant support from the National Institute of Arthritis and Musculoskeletal and Skin Disorders (NIAMS), the National Institutes of Health of the USA (NIH) and the Swedish Research Council. The immunostained images of COMP distribution were prepared by Karen King.

Author information

Authors and Affiliations

Authors

Contributions

D. Heinegård and T. Saxne contributed equally to all aspects of the preparation of this manuscript.

Corresponding author

Correspondence to Dick Heinegård.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heinegård, D., Saxne, T. The role of the cartilage matrix in osteoarthritis. Nat Rev Rheumatol 7, 50–56 (2011). https://doi.org/10.1038/nrrheum.2010.198

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2010.198

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing