Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

PTPN22: the archetypal non-HLA autoimmunity gene

This article has been updated

Key Points

  • PTPN22 encodes a protein tyrosine phosphatase that inhibits antigen-receptor signalling in T cells and promotes pattern-recognition receptor-induced type I interferon production by myeloid cells

  • PTPN22 1858C>T is a risk factor for connective tissue autoimmune diseases, including rheumatoid arthritis (RA), juvenile idiopathic arthritis, psoriatic arthritis, systemic lupus erythematosus, systemic sclerosis and some forms of vasculitis

  • In white populations, PTPN22 1858C>T is the most important non-HLA genetic risk factor for RA and the second most important for juvenile idiopathic arthritis

  • Individuals with PTPN22 1858T are more likely to develop RA with seropositivity for anti-citrullinated protein antibodies or rheumatoid factor, and have this disease at an earlier age than those without the variant

  • Interactions between the protein encoded by PTPN22 1858T and tyrosine-protein kinase CSK are impaired, the functional consequences of which are still under investigation

  • Autoimmune pathogenesis promoted by PTPN22 1858C>T probably involves the differentiation of T-cell subsets, the B-cell repertoire and the balance between immunoregulatory and proinflammatory cytokine production

Abstract

PTPN22 encodes a tyrosine phosphatase that is expressed by haematopoietic cells and functions as a key regulator of immune homeostasis by inhibiting T-cell receptor signalling and by selectively promoting type I interferon responses after activation of myeloid-cell pattern-recognition receptors. A single nucleotide polymorphism of PTPN22, 1858C>T (rs2476601), disrupts an interaction motif in the protein, and is the most important non-HLA genetic risk factor for rheumatoid arthritis and the second most important for juvenile idiopathic arthritis. PTPN22 exemplifies a shared autoimmunity gene, affecting the pathogenesis of systemic lupus erythematosus, vasculitis and other autoimmune diseases. In this Review, we explore the role of PTPN22 in autoimmune connective tissue disease, with particular emphasis on candidate-gene and genome-wide association studies and clinical variability of disease. We also propose a number of PTPN22-dependent functional models of the pathogenesis of autoimmune diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Variants of human PTPN22.
Figure 2: PTPN22 regulation of cell signalling.
Figure 3: Models of PTPN22-regulated autoimmune disease.

Similar content being viewed by others

Change history

  • 22 July 2014

    In the original version of this article published online, the text for the section entitled 'Psoriatic arthritis' was missing. This omission has now been corrected in the HTML and PDF versions of the article.

References

  1. Bottini, N. et al. A functional variant of lymphoid tyrosine phosphatase is associated with type I diabetes. Nat. Genet. 36, 337–338 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Begovich, A. B. et al. A missense single-nucleotide polymorphism in a gene encoding a protein tyrosine phosphatase (PTPN22) is associated with rheumatoid arthritis. Am. J. Hum. Genet. 75, 330–337 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kyogoku, C. et al. Genetic association of the R620W polymorphism of protein tyrosine phosphatase PTPN22 with human SLE. Am. J. Hum. Genet. 75, 504–507 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Viatte, S., Plant, D. & Raychaudhuri, S. Genetics and epigenetics of rheumatoid arthritis. Nat. Rev. Rheumatol. 9, 141–153 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hinks, A. et al. Dense genotyping of immune-related disease regions identifies 14 new susceptibility loci for juvenile idiopathic arthritis. Nat. Genet. 45, 664–669 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Burn, G. L., Svensson, L., Sanchez-Blanco, C., Saini, M. & Cope, A. P. Why is PTPN22 a good candidate susceptibility gene for autoimmune disease? FEBS Lett. 585, 3689–3698 (2011).

    Article  CAS  PubMed  Google Scholar 

  7. Bottini, N. & Peterson, E. J. Tyrosine phosphatase PTPN22: multifunctional regulator of immune signaling, development, and disease. Annu. Rev. Immunol. 32, 83–119 (2014).

    Article  CAS  PubMed  Google Scholar 

  8. Zheng, J., Ibrahim, S., Petersen, F. & Yu, X. Meta-analysis reveals an association of PTPN22 C1858T with autoimmune diseases, which depends on the localization of the affected tissue. Genes Immun. 13, 641–652 (2012).

    Article  CAS  PubMed  Google Scholar 

  9. Lins, T. C., Vieira, R. G., Grattapaglia, D. & Pereira, R. W. Allele and haplotype frequency distribution in PTPN22 gene across variable ethnic groups: Implications for genetic association studies for autoimmune diseases. Autoimmunity 43, 308–316 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. Lindenau, J. D. et al. Distribution patterns of variability for 18 immune system genes in Amerindians—relationship with history and epidemiology. Tissue Antigens 82, 177–185 (2013).

    Article  CAS  PubMed  Google Scholar 

  11. Gomez, L. M., Anaya, J. M. & Martin, J. Genetic influence of PTPN22 R620W polymorphism in tuberculosis. Hum. Immunol. 66, 1242–1247 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Lamsyah, H. et al. Association of PTPN22 gene functional variants with development of pulmonary tuberculosis in Moroccan population. Tissue Antigens 74, 228–232 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. Rhee, I. & Veillette, A. Protein tyrosine phosphatases in lymphocyte activation and autoimmunity. Nat. Immunol. 13, 439–447 (2012).

    Article  CAS  PubMed  Google Scholar 

  14. Stanford, S. M., Rapini, N. & Bottini, N. Regulation of TCR signalling by tyrosine phosphatases: from immune homeostasis to autoimmunity. Immunology 137, 1–19 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang, Y. et al. The autoimmunity-associated gene PTPN22 potentiates Toll-like receptor-driven, type 1 interferon-dependent immunity. Immunity 39, 111–122 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. Hasegawa, K. et al. PEST domain-enriched tyrosine phosphatase (PEP) regulation of effector/memory T cells. Science 303, 685–689 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Stanford, S. M. et al. Discovery of a novel series of inhibitors of lymphoid tyrosine phosphatase with activity in human T cells. J. Med Chem. 54, 1640–1654 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Vang, T. et al. LYP inhibits T-cell activation when dissociated from CSK. Nat. Chem. Biol. 8, 437–446 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Brownlie, R. J. et al. Lack of the phosphatase PTPN22 increases adhesion of murine regulatory T cells to improve their immunosuppressive function. Sci. Signal. 5, ra87 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Fiorillo, E. et al. Autoimmune-associated PTPN22 R620W variation reduces phosphorylation of lymphoid phosphatase on an inhibitory tyrosine residue. J. Biol. Chem. 285, 26506–26518 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cloutier, J. F. & Veillette, A. Association of inhibitory tyrosine protein kinase p50csk with protein tyrosine phosphatase PEP in T cells and other hemopoietic cells. EMBO J. 15, 4909–4918 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Maine, C. J., Marquardt, K., Cheung, J. & Sherman, L. A. PTPN22 controls the germinal center by influencing the numbers and activity of T follicular helper cells. J. Immunol. 192, 1415–1424 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Maine, C. J. et al. PTPN22 alters the development of regulatory T cells in the thymus. J. Immunol. 188, 5267–5275 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zikherman, J. et al. PTPN22 deficiency cooperates with the CD45 E613R allele to break tolerance on a non-autoimmune background. J. Immunol. 182, 4093–4106 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dai, X. et al. A disease-associated PTPN22 variant promotes systemic autoimmunity in murine models. J. Clin. Invest. 123, 2024–2036 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Arechiga, A. F. et al. Cutting edge: the PTPN22 allelic variant associated with autoimmunity impairs B cell signaling. J. Immunol. 182, 3343–3347 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Habib, T. et al. Altered B cell homeostasis is associated with type I diabetes and carriers of the PTPN22 allelic variant. J. Immunol. 188, 487–496 (2012).

    Article  CAS  PubMed  Google Scholar 

  28. Rieck, M. et al. Genetic variation in PTPN22 corresponds to altered function of T and B lymphocytes. J. Immunol. 179, 4704–4710 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Menard, L. et al. The PTPN22 allele encoding an R620W variant interferes with the removal of developing autoreactive B cells in humans. J. Clin. Invest. 121, 3635–3644 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhang, J. et al. The autoimmune disease-associated PTPN22 variant promotes calpain-mediated Lyp/Pep degradation associated with lymphocyte and dendritic cell hyperresponsiveness. Nat. Genet. 43, 902–907 (2011).

    Article  CAS  PubMed  Google Scholar 

  31. Orozco, G. et al. Lack of association between ankylosing spondylitis and a functional polymorphism of PTPN22 proposed as a general susceptibility marker for autoimmunity. Ann. Rheum. Dis. 65, 687–688 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. The Australo-Anglo-American Spondyloarthritis Consortium (TASC). Genome-wide association study of ankylosing spondylitis identifies non-MHC susceptibility loci. Nat. Genet. 42, 123–127 (2010).

  33. Castro-Marrero, J., Balada, E., Vilardell-Tarrés, M. & Ordi-Ros, J. The PTPN22*R620W polymorphism does not confer genetic susceptibility to antiphospholipid syndrome in the Spanish population. Int. J. Immunogenet. 38, 529–531 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. Wesoly, J. et al. The 620W allele is the PTPN22 genetic variant conferring susceptibility to RA in a Dutch population. Rheumatology (Oxford) 46, 617–621 (2007).

    Article  CAS  Google Scholar 

  35. Hinks, A., Eyre, S., Barton, A., Thomson, W. & Worthington, J. Investigation of genetic variation across the protein tyrosine phosphatase gene in patients with rheumatoid arthritis in the UK. Ann. Rheum. Dis. 66, 683–686 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Martin, J. E. et al. Evidence for PTPN22 R620W polymorphism as the sole common risk variant for rheumatoid arthritis in the 1p13.2 region. J. Rheumatol. 38, 2290–2296 (2011).

    Article  CAS  PubMed  Google Scholar 

  37. Michou, L. et al. Linkage proof for PTPN22, a rheumatoid arthritis susceptibility gene and a human autoimmunity gene. Proc. Natl Acad. Sci. USA 104, 1649–1654 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Steer, S., Lad, B., Grumley, J. A., Kingsley, G. H. & Fisher, S. A. Association of R602W in a protein tyrosine phosphatase gene with a high risk of rheumatoid arthritis in a British population: evidence for an early onset/disease severity effect. Arthritis Rheum. 52, 358–360 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Hinks, A. et al. Association between the PTPN22 gene and rheumatoid arthritis and juvenile idiopathic arthritis in a UK population: further support that PTPN22 is an autoimmunity gene. Arthritis Rheum. 52, 1694–1699 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Simkins, H. M. et al. Association of the PTPN22 locus with rheumatoid arthritis in a New Zealand Caucasian cohort. Arthritis Rheum. 52, 2222–2225 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. van Oene, M. et al. Association of the lymphoid tyrosine phosphatase R620W variant with rheumatoid arthritis, but not Crohn's disease, in Canadian populations. Arthritis Rheum. 52, 1993–1998 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Lee, A. T. et al. The PTPN22 R620W polymorphism associates with RF positive rheumatoid arthritis in a dose-dependent manner but not with HLA-SE status. Genes Immun. 6, 129–133 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Wesoly, J. et al. Association of the PTPN22 C1858T single-nucleotide polymorphism with rheumatoid arthritis phenotypes in an inception cohort. Arthritis Rheum. 52, 2948–2950 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Plenge, R. M. et al. Replication of putative candidate-gene associations with rheumatoid arthritis in >4,000 samples from North America and Sweden: association of susceptibility with PTPN22, CTLA4, and PADI4. Am. J. Hum. Genet. 77, 1044–1060 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Harrison, P., Pointon, J. J., Farrar, C., Brown, M. A. & Wordsworth, B. P. Effects of PTPN22 C1858T polymorphism on susceptibility and clinical characteristics of British Caucasian rheumatoid arthritis patients. Rheumatology (Oxford) 45, 1009–1011 (2006).

    Article  CAS  Google Scholar 

  46. Johansson, M., Arlestig, L., Hallmans, G. & Rantapää-Dahlqvist, S. PTPN22 polymorphism and anti-cyclic citrullinated peptide antibodies in combination strongly predicts future onset of rheumatoid arthritis and has a specificity of 100% for the disease. Arthritis Res. Ther. 8, R19 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. Marinou, I. et al. Association of interleukin-6 and interleukin-10 genotypes with radiographic damage in rheumatoid arthritis is dependent on autoantibody status. Arthritis Rheum. 56, 2549–2556 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Karlson, E. W. et al. Associations between human leukocyte antigen, PTPN22, CTLA4 genotypes and rheumatoid arthritis phenotypes of autoantibody status, age at diagnosis and erosions in a large cohort study. Ann. Rheum. Dis. 67, 358–363 (2008).

    Article  CAS  PubMed  Google Scholar 

  49. Viatte, S. et al. Genetic markers of rheumatoid arthritis susceptibility in anti-citrullinated peptide antibody negative patients. Ann. Rheum. Dis. 71, 1984–1990 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Padyukov, L. et al. A genome-wide association study suggests contrasting associations in ACPA-positive versus ACPA-negative rheumatoid arthritis. Ann. Rheum. Dis. 70, 259–265 (2011).

    Article  PubMed  Google Scholar 

  51. Feitsma, A. L. et al. Risk of progression from undifferentiated arthritis to rheumatoid arthritis: the effect of the PTPN22 1858T-allele in anti-citrullinated peptide antibody positive patients. Rheumatology (Oxford) 46, 1092–1095 (2007).

    Article  CAS  Google Scholar 

  52. Goeb, V. et al. Contribution of PTPN22 1858T, TNFRII 196R and HLA-shared epitope alleles with rheumatoid factor and anti-citrullinated protein antibodies to very early rheumatoid arthritis diagnosis. Rheumatology (Oxford) 47, 1208–1212 (2008).

    Article  CAS  Google Scholar 

  53. Orozco, G. et al. Auto-antibodies, HLA and PTPN22: susceptibility markers for rheumatoid arthritis. Rheumatology (Oxford) 47, 138–141 (2008).

    Article  CAS  Google Scholar 

  54. Pierer, M. et al. Association of PTPN22 1858 single-nucleotide polymorphism with rheumatoid arthritis in a German cohort: higher frequency of the risk allele in male compared to female patients. Arthritis Res. Ther. 8, R75 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kokkonen, H., Johansson, M., Innala, L., Jidell, E. & Rantapää-Dahlqvist, S. The PTPN22 1858C/T polymorphism is associated with anti-cyclic citrullinated peptide antibody-positive early rheumatoid arthritis in northern Sweden. Arthritis Res. Ther. 9, R56 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Orozco, G. et al. Association of a functional single-nucleotide polymorphism of PTPN22, encoding lymphoid protein phosphatase, with rheumatoid arthritis and systemic lupus erythematosus. Arthritis Rheum. 52, 219–224 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Lie, B. A. et al. Associations between the PTPN22 1858C>T polymorphism and radiographic joint destruction in patients with rheumatoid arthritis: results from a 10-year longitudinal study. Ann. Rheum. Dis. 66, 1604–1609 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Majorczyk, E., Pawlik, A. & Kusnierczyk, P. PTPN22 1858C>T polymorphism is strongly associated with rheumatoid arthritis but not with a response to methotrexate therapy. Int. Immunopharmacol. 10, 1626–1629 (2010).

    Article  CAS  PubMed  Google Scholar 

  59. Taylor, L. H. et al. Metaanalysis of the association of smoking and PTPN22 R620W genotype on autoantibody status and radiological erosions in rheumatoid arthritis. J. Rheumatol. 40, 1048–1053 (2013).

    Article  CAS  PubMed  Google Scholar 

  60. Daien, C. I. et al. TGF β1 polymorphisms are candidate predictors of the clinical response to rituximab in rheumatoid arthritis. Joint Bone Spine 79, 471–475 (2012).

    Article  CAS  PubMed  Google Scholar 

  61. Potter, C. et al. Association of rheumatoid factor and anti-cyclic citrullinated peptide positivity, but not carriage of shared epitope or PTPN22 susceptibility variants, with anti-tumour necrosis factor response in rheumatoid arthritis. Ann. Rheum. Dis. 68, 69–74 (2009).

    Article  CAS  PubMed  Google Scholar 

  62. Plant, D. et al. A genetic marker at the OLIG3/TNFAIP3 locus associates with methotrexate continuation in early inflammatory polyarthritis: results from the Norfolk Arthritis Register. Pharmacogenomics J. 12, 128–133 (2012).

    Article  CAS  PubMed  Google Scholar 

  63. Viken, M. K. et al. Association analysis of the 1858C>T polymorphism in the PTPN22 gene in juvenile idiopathic arthritis and other autoimmune diseases. Genes Immun. 6, 271–273 (2005).

    Article  CAS  PubMed  Google Scholar 

  64. Hinks, A. et al. Overlap of disease susceptibility loci for rheumatoid arthritis and juvenile idiopathic arthritis. Ann. Rheum. Dis. 69, 1049–1053 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ellis, J. A. et al. Independent replication analysis of genetic loci with previous evidence of association with juvenile idiopathic arthritis. Pediatr. Rheumatol. Online J. 11, 12 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Petty, R. E. et al. International League of Associations for Rheumatology classification of juvenile idiopathic arthritis: second revision, Edmonton, 2001. J. Rheumatol. 31, 390–392 (2004).

    PubMed  Google Scholar 

  67. Kaalla, M. J. et al. Meta-analysis confirms association between TNFA-G238A variant and JIA, and between PTPN22-C1858T variant and oligoarticular, RF-polyarticular and RF-positive polyarticular JIA. Pediatr. Rheumatol. Online J. 11, 40 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Butt, C. et al. Association of functional variants of PTPN22 and tp53 in psoriatic arthritis: a case-control study. Arthritis Res. Ther. 8, R27 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Juneblad, K., Johansson, M., Rantapää-Dahlqvist, S. & Alenius, G. M. Association between the PTPN22 +1858 C/T polymorphism and psoriatic arthritis. Arthritis Res. Ther. 13, R45 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lea, W. W. & Lee, Y. H. The association between the PTPN22 C1858T polymorphism and systemic lupus erythematosus: a meta-analysis update. Lupus 20, 51–57 (2011).

    Article  CAS  PubMed  Google Scholar 

  71. Gateva, V. et al. A large-scale replication study identifies TNIP1, PRDM1, JAZF1, UHRF1BP1 and IL10 as risk loci for systemic lupus erythematosus. Nat. Genet. 41, 1228–1233 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Wu, H. et al. Association analysis of the R620W polymorphism of protein tyrosine phosphatase PTPN22 in systemic lupus erythematosus families: increased T allele frequency in systemic lupus erythematosus patients with autoimmune thyroid disease. Arthritis Rheum. 52, 2396–2402 (2005).

    Article  CAS  PubMed  Google Scholar 

  73. Namjou, B. et al. PTPN22 association in systemic lupus erythematosus (SLE) with respect to individual ancestry and clinical sub-phenotypes. PLoS ONE 8, e69404 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Budarf, M. L. et al. A targeted association study in systemic lupus erythematosus identifies multiple susceptibility alleles. Genes Immun. 12, 51–58 (2011).

    Article  CAS  PubMed  Google Scholar 

  75. Ramirez, M. et al. The PTPN22 C1858T variant as a risk factor for rheumatoid arthritis and systemic lupus erythematosus but not for systemic sclerosis in the Colombian population. Clin. Exp. Rheumatol. 30, 520–524 (2012).

    PubMed  Google Scholar 

  76. Sanchez, E. et al. Phenotypic associations of genetic susceptibility loci in systemic lupus erythematosus. Ann. Rheum. Dis. 70, 1752–1757 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Reddy, M. V. et al. The R620W C/T polymorphism of the gene PTPN22 is associated with SLE independently of the association of PDCD1. Genes Immun. 6, 658–662 (2005).

    Article  CAS  PubMed  Google Scholar 

  78. Chung, S. A. et al. Differential genetic associations for systemic lupus erythematosus based on anti-dsDNA autoantibody production. PLoS Genet. 7, e1001323 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Dieudé, P. et al. The PTPN22 620W allele confers susceptibility to systemic sclerosis: findings of a large case-control study of European Caucasians and a meta-analysis. Arthritis Rheum. 58, 2183–2188 (2008).

    Article  CAS  PubMed  Google Scholar 

  80. Diaz-Gallo, L. M. et al. Analysis of the influence of PTPN22 gene polymorphisms in systemic sclerosis. Ann. Rheum. Dis. 70, 454–462 (2011).

    Article  CAS  PubMed  Google Scholar 

  81. Radstake, T. R. et al. Genome-wide association study of systemic sclerosis identifies CD247 as a new susceptibility locus. Nat. Genet. 42, 426–429 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Allanore, Y. et al. Genome-wide scan identifies TNIP1, PSORS1C1, and RHOB as novel risk loci for systemic sclerosis. PLoS Genet. 7, e1002091 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Gorlova, O. et al. Identification of novel genetic markers associated with clinical phenotypes of systemic sclerosis through a genome-wide association strategy. PLoS Genet. 7, e1002178 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Serrano, A. et al. Identification of the PTPN22 functional variant R620W as susceptibility genetic factor for giant cell arteritis. Ann. Rheum. Dis. 72, 1882–1886 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Sahin, N. et al. PTPN22 gene polymorphism in Takayasu's arteritis. Rheumatology (Oxford) 47, 634–635 (2008).

    Article  CAS  PubMed  Google Scholar 

  86. Jagiello, P. et al. The PTPN22 620W allele is a risk factor for Wegener's granulomatosis. Arthritis Rheum. 52, 4039–4043 (2005).

    Article  CAS  PubMed  Google Scholar 

  87. Carr, E. J. et al. Confirmation of the genetic association of CTLA4 and PTPN22 with ANCA-associated vasculitis. BMC Med. Genet. 10, 121 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Martorana, D. et al. PTPN22 R620W polymorphism in the ANCA-associated vasculitides. Rheumatology (Oxford) 51, 805–812 (2012).

    Article  CAS  Google Scholar 

  89. Lyons, P. A. et al. Genetically distinct subsets within ANCA-associated vasculitis. N. Engl. J. Med. 367, 214–223 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Orozco, G., Miranda-Filloy, J. A., Martin, J. & Gonzalez-Gay, M. A. Lack of association of a functional single nucleotide polymorphism of PTPN22, encoding lymphoid protein phosphatase, with susceptibility to Henoch-Schonlein purpura. Clin. Exp. Rheumatol. 25, 750–753 (2007).

    CAS  PubMed  Google Scholar 

  91. Baranathan, V. et al. The association of the PTPN22 620W polymorphism with Behcet's disease. Ann. Rheum. Dis. 66, 1531–1533 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Sahin, N., Bicakcigil, M., Atagunduz, P., Direskeneli, H. & Saruhan-Direskeneli, G. PTPN22 gene polymorphism in Behcet's disease. Tissue Antigens 70, 432–434 (2007).

    Article  CAS  PubMed  Google Scholar 

  93. Chinoy, H. et al. The protein tyrosine phosphatase N22 gene is associated with juvenile and adult idiopathic inflammatory myopathy independent of the HLA 8.1 haplotype in British Caucasian patients. Arthritis Rheum. 58, 3247–3254 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Miller, F. W. et al. Genome-wide association study of dermatomyositis reveals genetic overlap with other autoimmune disorders. Arthritis Rheum. 65, 3239–3247 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Galeazzi, M. et al. Autoinflammatory syndromes. Clin. Exp. Rheumatol. 24, S79–S85 (2006).

    CAS  PubMed  Google Scholar 

  96. Cloutier, J. F. & Veillette, A. Cooperative inhibition of T-cell antigen receptor signaling by a complex between a kinase and a phosphatase. J. Exp. Med. 189, 111–121 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Yeh, L. T. et al. Different modulation of Ptpn22 in effector and regulatory T cells leads to attenuation of autoimmune diabetes in transgenic nonobese diabetic mice. J. Immunol. 191, 594–607 (2013).

    Article  CAS  PubMed  Google Scholar 

  98. Zheng, P. & Kissler, S. PTPN22 silencing in the NOD model indicates the type 1 diabetes-associated allele is not a loss-of-function variant. Diabetes 62, 896–904 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Vang, T. et al. The autoimmune-predisposing variant of lymphoid tyrosine phosphatase favors T helper 1 responses. Hum. Immunol. 74, 574–585 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Cambier, J. C. Autoimmunity risk alleles: hotspots in B cell regulatory signaling pathways. J. Clin. Invest. 123, 1928–1931 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Thompson, W. S. et al. Multi-parametric flow cytometric and genetic investigation of the peripheral B-cell compartment in human type 1 diabetes. Clin. Exp. Immunol. (2014).

  102. Manjarrez-Orduño, N. et al. CSK regulatory polymorphism is associated with systemic lupus erythematosus and influences B-cell signaling and activation. Nat. Genet. 44, 1227–1230 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Hebbring, S. J. et al. Genetic evidence of PTPN22 effects on chronic lymphocytic leukemia. Blood 121, 237–238 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Negro, R. et al. Overexpression of the autoimmunity-associated phosphatase PTPN22 promotes survival of antigen-stimulated CLL cells by selectively activating AKT. Blood 119, 6278–6287 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Corr, M. et al. Interleukin 1 receptor antagonist mediates the beneficial effects of systemic interferon beta in mice: implications for rheumatoid arthritis. Ann. Rheum. Dis. 70, 858–863 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Rodriguez-Rodriguez, L. et al. The PTPN22 R263Q polymorphism is a risk factor for rheumatoid arthritis in Caucasian case-control samples. Arthritis Rheum. 63, 365–372 (2011).

    Article  CAS  PubMed  Google Scholar 

  107. Orru, V. et al. A loss-of-function variant of PTPN22 is associated with reduced risk of systemic lupus erythematosus. Hum. Mol. Genet. 18, 569–579 (2009).

    Article  CAS  PubMed  Google Scholar 

  108. Dieudé, P. et al. Testing for linkage and association with rheumatoid arthritis a Ptpn22 promoter polymorphism reported to be associated and linked with type 1 diabetes in the Caucasian population. Ann. Rheum. Dis. 67, 900–901 (2008).

    Article  PubMed  Google Scholar 

  109. Feng, X. et al. Association of the PTPN22 gene (−1123G>C) polymorphism with rheumatoid arthritis in Chinese patients. Tissue Antigens 76, 297–300 (2010).

    Article  CAS  PubMed  Google Scholar 

  110. Huang, J. J. et al. A PTPN22 promoter polymorphism −1123G>C is associated with RA pathogenesis in Chinese. Rheumatol. Int. 32, 767–771 (2012).

    Article  CAS  PubMed  Google Scholar 

  111. Huang, C. H. et al. Associations of the PTPN22 and CTLA-4 genetic polymorphisms with Taiwanese ankylosing spondylitis. Rheumatol. Int. 34, 683–691 (2013).

    Article  CAS  PubMed  Google Scholar 

  112. Bayley, R. et al. The autoimmune-associated genetic variant PTPN22 R620W enhances neutrophil activation and function in patients with rheumatoid arthritis and healthy individuals. Ann. Rheum. Dis. http://dx.doi.org/10.1136/annrheumdis-2013-204796. (2014).

  113. Spalinger, M. R. et al. Loss of protein tyrosine phosphatase nonreceptor type 22 regulates interferon-γ-induced signaling in human monocytes. Gastroenterology 144, 978–988 (2013).

    Article  CAS  PubMed  Google Scholar 

  114. Ronninger, M. et al. The balance of expression of PTPN22 splice forms is significantly different in rheumatoid arthritis patients compared with controls. Genome Med. 4, 2 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Chang, H. H. et al. PTPN22.6, a dominant negative isoform of PTPN22 and potential biomarker of rheumatoid arthritis. PLoS ONE 7, e33067 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Dai, Y., Zhang, L., Hu, C. & Zhang, Y. Genome-wide analysis of histone H3 lysine 4 trimethylation by ChIP-chip in peripheral blood mononuclear cells of systemic lupus erythematosus patients. Clin. Exp. Rheumatol. 28, 158–168 (2010).

    CAS  PubMed  Google Scholar 

  117. Chang, H. H., Tseng, W., Cui, J., Costenbader, K. & Ho, I. C. Altered expression of protein tyrosine phosphatase, non-receptor type 22 isoforms in systemic lupus erythematosus. Arthritis Res. Ther. 16, R14 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  118. McKinney, E. F. et al. A CD8+ T cell transcription signature predicts prognosis in autoimmune disease. Nat. Med. 16, 586–591, (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Criswell, L. A. et al. Analysis of families in the Multiple Autoimmune Disease Genetics Consortium (MADGC) collection: the PTPN22 620W allele associates with multiple autoimmune phenotypes. Am. J. Hum. Genet. 76, 561–571 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Graf, S. A., Calado, R. T. & Young, N. S. PTPN22 620W allele is not associated with aplastic anemia. Am. J. Hematol. 82, 291–292 (2007).

    Article  CAS  PubMed  Google Scholar 

  121. Brzoza, Z., Grzeszczak, W., Trautsolt, W. & Moczulski, D. Protein tyrosine phosphatase-22 (PTPN-22) polymorphism in the pathogenesis of chronic urticaria. Allergy 66, 1392–1393 (2011).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

N.B. is supported by an NIH grant (NIH R01AI070544). S.M.S. is supported by a postdoctoral fellowship from the Juvenile Diabetes Research Foundation. The authors are grateful to M. Bottini for help with image preparation. This is manuscript #1684 from the La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA.

Author information

Authors and Affiliations

Authors

Contributions

N.B. and S.M.S. contributed equally to researching data for the article, discussing its content, writing the article and to the review and/or editing of the manuscript before submission.

Corresponding author

Correspondence to Nunzio Bottini.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stanford, S., Bottini, N. PTPN22: the archetypal non-HLA autoimmunity gene. Nat Rev Rheumatol 10, 602–611 (2014). https://doi.org/10.1038/nrrheum.2014.109

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2014.109

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing