Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Clocking in: chronobiology in rheumatoid arthritis

Key Points

  • Circadian rhythms of biological processes are genetically encoded and of crucial importance for cellular and physiological functions of the brain and body

  • Chronobiology has a prominent function in rheumatoid arthritis (RA), with major symptoms such as joint pain and stiffness usually being most pronounced in the morning

  • Therapy that recognizes the underlying chronobiology of RA might improve the benefit-to-risk balance

  • Timing the administration of NSAIDs or methotrexate according to biological rhythm determinants might help to optimize treatment outcomes in RA

  • New data on successful chronotherapy with glucocorticoids show that coordination of glucocorticoid administration with the nocturnal increase in IL-6 levels improves morning symptoms of RA

  • Chronotherapy might have the additional benefit of increasing sleep quality or quantity and relieving depressive and other affective symptoms that are comorbid with RA

Abstract

Circadian rhythms are of crucial importance for cellular and physiological functions of the brain and body. Chronobiology has a prominent role in rheumatoid arthritis (RA), with major symptoms such as joint pain and stiffness being most pronounced in the morning, possibly mediated by circadian rhythms of cytokine and hormone levels. Chronobiological principles imply that tailoring the timing of treatments to the circadian rhythm of individual patients (chronotherapy) could optimize results. Trials of NSAID or methotrexate chronotherapy for patients with RA suggest such an approach can improve outcomes and reduce adverse effects. The most compelling evidence for RA chronotherapy, however, is that coordinating the timing of glucocorticoid therapy to coincide with the nocturnal increase in blood IL-6 levels results in reduced morning stiffness and pain compared with the same glucocorticoid dose taken in the morning. Aside from optimizing relief of the core symptoms of RA, chronotherapy might also relieve important comorbid conditions such as depression and sleep disturbances. Surprisingly, chronobiology is not mentioned in official guidelines for conducting RA drug registration trials. Given the imperative to achieve the best value with approved drugs and health budgets, the time is ripe to translate the 'circadian concept' in rheumatology from bench to bedside.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Internal circadian clocks and external Zeitgebers.
Figure 2: Molecular circadian clock mechanisms in a mammalian cell.
Figure 3: Responses to conventional prednisone versus chronotherapy for RA.
Figure 4: Effect of RA chronotherapy on associated depression.

Similar content being viewed by others

References

  1. Dallmann, R., Brown, S. A. & Gachon, F. Chronopharmacology: new insights and therapeutic implications. Annu. Rev. Pharmacol. Toxicol. 54, 339–361 (2014).

    CAS  PubMed  Google Scholar 

  2. Gillette, M. U. (Ed.) Chronobiology: Biological Timing in Health and Disease (Academic, 2013).

    Google Scholar 

  3. Hatcher, N. G. et al. Mass spectrometry-based discovery of circadian peptides. Proc. Natl Acad. Sci. USA 105, 12527–12532 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Evans, J. A. & Davidson, A. J. Health consequences of circadian disruption in humans and animal models. Prog. Mol. Biol. Transl. Sci. 119, 283–323 (2013).

    PubMed  Google Scholar 

  5. Daan, S. The Colin S. Pittendrigh Lecture. Colin Pittendrigh, Jürgen Aschoff, and the natural entrainment of circadian systems. J. Biol. Rhythms 15, 195–207 (2000).

    CAS  PubMed  Google Scholar 

  6. Berson, D. M. Strange vision: ganglion cells as circadian photoreceptors. Trends Neurosci. 26, 314–320 (2003).

    CAS  PubMed  Google Scholar 

  7. Meijer, J. H., Michel, S. & Vansteensel, M. J. Processing of daily and seasonal light information in the mammalian circadian clock. Gen. Comp. Endocrinol. 152, 159–164 (2007).

    CAS  PubMed  Google Scholar 

  8. Cajochen, C., Kräuchi, K. & Wirz-Justice, A. Role of melatonin in the regulation of human circadian rhythms and sleep. J. Neuroendocrinol. 15, 432–437 (2003).

    CAS  PubMed  Google Scholar 

  9. Radogna, F., Diederich, M. & Ghibelli, L. Melatonin: a pleiotropic molecule regulating inflammation. Biochem. Pharmacol. 80, 1844–1852 (2010).

    CAS  PubMed  Google Scholar 

  10. Chung, S., Son, G. H. & Kim, K. Circadian rhythm of adrenal glucocorticoid: its regulation and clinical implications. Biochim. Biophys. Acta 1812, 581–591 (2011).

    CAS  PubMed  Google Scholar 

  11. Bollinger, T. & Schibler, U. Circadian rhythms—from genes to physiology and disease. Swiss Med. Wkly 144, w13984 (2014).

    PubMed  Google Scholar 

  12. Albrecht, U. Timing to perfection: the biology of central and peripheral circadian clocks. Neuron 74, 246–260 (2012).

    CAS  PubMed  Google Scholar 

  13. Buhr, E. D. & Takahashi, J. S. Molecular components of the mammalian circadian clock. Handb. Exp. Pharmacol. 2013, 3–27 (2013).

    Google Scholar 

  14. Koike, N. et al. Transcriptional architecture and chromatin landscape of the core circadian clock in mammals. Science 338, 349–354 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhang, R., Lahens, N. F., Ballance, H. I., Hughes, M. E. & Hogenesch, J. B. A circadian gene expression atlas in mammals: implications for biology and medicine. Proc. Natl Acad. Sci. USA 111, 16219–16224 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Cho, H. et al. Regulation of circadian behaviour and metabolism by REV-ERB-α and REV-ERB-β. Nature 485, 123–127 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Chung, S. et al. Impact of circadian nuclear receptor REV-ERBα on midbrain dopamine production and mood regulation. Cell 157, 858–868 (2014).

    CAS  PubMed  Google Scholar 

  18. Gerhart-Hines, Z. et al. The nuclear receptor Reverbα controls circadian thermogenic plasticity. Nature 503, 410–413 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Foster, R. G., & Wulff, K. The rhythm of rest and excess. Nat. Rev. Neurosci. 6, 407–414 (2005).

    CAS  PubMed  Google Scholar 

  20. Karatsoreos, I. N. Links between circadian rhythms and psychiatric disease. Front. Behav. Neurosci. 8, 162 (2014).

    PubMed  PubMed Central  Google Scholar 

  21. Li, J. Z. et al. Circadian patterns of gene expression in the human brain and disruption in major depressive disorder. Proc. Natl Acad. Sci. USA 110, 9950–9955 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Wu, J. C. et al. Rapid and sustained antidepressant response with sleep deprivation and chronotherapy in bipolar disorder. Biol. Psychiatry 66, 298–301 (2009).

    CAS  PubMed  Google Scholar 

  23. Benedetti, F. et al. Phase advance is an actimetric correlate of antidepressant response to sleep deprivation and light therapy in bipolar depression. Chronobiol. Int. 24, 921–937 (2007).

    CAS  PubMed  Google Scholar 

  24. Benedetti, F. et al. Rapid treatment response of suicidal symptoms to lithium, sleep deprivation, and light therapy (chronotherapeutics) in drug-resistant bipolar depression. J. Clin. Psychiatry 75, 133–140 (2014).

    CAS  PubMed  Google Scholar 

  25. Lewy, A. J., Lefler, B. J., Emens, J. S. & Bauer, V. K. The circadian basis of winter depression. Proc. Natl Acad. Sci. USA 103, 7414–7419 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Gibbs, J. E. & Ray, D. W. The role of the circadian clock in rheumatoid arthritis. Arthritis Res. Ther. 15, 205 (2013).

    PubMed  PubMed Central  Google Scholar 

  27. De Cata, A., D'Agruma, L., Tarquini, R. & Mazzoccoli, G. Rheumatoid arthritis and the biological clock. Expert Rev. Clin. Immunol. 10, 687–695 (2014).

    CAS  PubMed  Google Scholar 

  28. Puttonen, S. et al. Is shift work a risk factor for rheumatoid arthritis? The Finnish Public Sector study. Ann. Rheum. Dis. 69, 779–780 (2010).

    PubMed  Google Scholar 

  29. Puttonen, S., Viitasalo, K. & Härmä, M. Effect of shiftwork on systemic markers of inflammation. Chronobiol. Int. 28, 528–535 (2011).

    PubMed  Google Scholar 

  30. Pan, A., Schernhammer, E. S., Sun, Q. & Hu, F. B. Rotating night shift work and risk of type 2 diabetes: two prospective cohort studies in women. PLoS Med. 8, e1001141 (2011).

    PubMed  PubMed Central  Google Scholar 

  31. Scott, D. L., Wolfe, F. & Huizinga, T. W. Rheumatoid arthritis. Lancet 376, 1094–1108 (2010).

    PubMed  Google Scholar 

  32. McInnes, I. B. & Schett, G. The pathogenesis of rheumatoid arthritis. N. Engl. J. Med. 365, 2205–2219 (2011).

    CAS  PubMed  Google Scholar 

  33. Buttgereit, F., Burmester, G. R., Straub, R. H., Seibel, M. J. & Zhou, H. Exogenous and endogenous glucocorticoids in rheumatic diseases. Arthritis Rheum. 63, 1–9 (2011).

    CAS  PubMed  Google Scholar 

  34. Bellamy, N., Sothern, R. B., Campbell, J. & Buchanan, W. W. Circadian rhythm in pain, stiffness, and manual dexterity in rheumatoid arthritis: relation between discomfort and disability. Ann. Rheum. Dis. 50, 243–248 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Kouri, V. P. et al. Circadian timekeeping is disturbed in rheumatoid arthritis at molecular level. PLoS ONE 8, e54049 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Perry, M. G., Kirwan, J. R., Jessop, D. S. & Hunt, L. P. Overnight variations in cortisol, interleukin 6, tumour necrosis factor α and other cytokines in people with rheumatoid arthritis. Ann. Rheum. Dis. 68, 63–68 (2009).

    CAS  PubMed  Google Scholar 

  37. Crofford, L. J. et al. Circadian relationships between interleukin (IL)6 and hypothalamic–pituitary–adrenal axis hormones: failure of IL-6 to cause sustained hypercortisolism in patients with early untreated rheumatoid arthritis. J. Clin. Endocrinol. Metab. 82, 1279–1283 (1997).

    CAS  PubMed  Google Scholar 

  38. Arvidson, N. G. et al. Circadian rhythm of serum interleukin6 in rheumatoid arthritis. Ann. Rheum. Dis. 53, 521–524 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Sulli, A. et al. Melatonin serum levels in rheumatoid arthritis. Ann. NY Acad. Sci. 966, 276–283 (2002).

    CAS  PubMed  Google Scholar 

  40. Hansson, I., Holmdahl, R. & Mattsson, R. The pineal hormone melatonin exaggerates development of collagen-induced arthritis in mice. J. Neuroimmunol. 39, 23–30 (1992).

    CAS  PubMed  Google Scholar 

  41. Forrest, C. M., Mackay, G. M., Stoy, N., Stone, T. W. & Darlington, L. G. Inflammatory status and kynurenine metabolism in rheumatoid arthritis treated with melatonin. Br. J. Clin. Pharmacol. 64, 517–526 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Narasimamurthy, R. et al. Circadian clock protein cryptochrome regulates the expression of proinflammatory cytokines. Proc. Natl Acad. Sci. USA 109, 12662–12667 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Hashiramoto, A. et al. Mammalian clock gene cryptochrome regulates arthritis via proinflammatory cytokine TNF-α. J. Immunol. 184, 1560–1565 (2010).

    CAS  PubMed  Google Scholar 

  44. Gibbs, J. E. et al. The nuclear receptor REV-ERBα mediates circadian regulation of innate immunity through selective regulation of inflammatory cytokines. Proc. Natl Acad. Sci. USA 109, 582–587 (2012).

    CAS  PubMed  Google Scholar 

  45. Spengler, M. L. et al. Core circadian protein CLOCK is a positive regulator of NFκB-mediated transcription. Proc. Natl Acad. Sci. USA 109, E2457–E2465 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Gibbs, J. et al. An epithelial circadian clock controls pulmonary inflammation and glucocorticoid action. Nat. Med. 20, 919–926 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Castanon-Cervantes, O. et al. Dysregulation of inflammatory responses by chronic circadian disruption. J. Immunol. 185, 5796–5805 (2010).

    CAS  PubMed  Google Scholar 

  48. Bollinger, T. et al. Circadian clocks in mouse and human CD4+ T cells. PLoS ONE 6, e29801 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Nguyen, K. D. et al. Circadian gene Bmal1 regulates diurnal oscillations of Ly6Chi inflammatory monocytes. Science 341, 1483–1488 (2013).

    CAS  PubMed  Google Scholar 

  50. Smolen, J. S. et al. Treating rheumatoid arthritis to target: recommendations of an international task force. Ann. Rheum. Dis. 69, 631–637 (2010).

    PubMed  Google Scholar 

  51. Smolen, J. S. et al. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2013 update. Ann. Rheum. Dis. 73, 492–509 (2014).

    CAS  PubMed  Google Scholar 

  52. Huskisson, E. C. in Inflammatory Arthropathies (Eds Huskisson, E. C. & Velo, G. P.) 99–105 (Excepta Medica. 1976).

    Google Scholar 

  53. Kowanko, I. C., Pownall, R., Knapp, M. S., Swannell, A. J. & Mahoney, P. G. Circadian variations in the signs and symptoms of rheumatoid arthritis and in the therapeutic effectiveness of flurbiprofen at different times of day. Br. J. Clin. Pharmacol. 11, 477–484 (1981).

    CAS  Google Scholar 

  54. Levi, F., Le Louarn, C. & Reinberg, A. Timing optimizes sustained-release indomethacin treatment of osteoarthritis. Clin. Pharmacol. Ther. 37, 77–84 (1985).

    CAS  PubMed  Google Scholar 

  55. Haus, E., Sackett-Lundeen, L. & Smolensky, M. H. Rheumatoid arthritis: circadian rhythms in disease activity, signs and symptoms, and rationale for chronotherapy with corticosteroids and other medications. Bull. NYU Hosp. Jt Dis. 70 (Suppl. 1), 3–10 (2012).

    PubMed  Google Scholar 

  56. To, H. et al. Methotrexate chronotherapy is effective against rheumatoid arthritis. Chronobiol. Int. 28, 267–274 (2011).

    CAS  PubMed  Google Scholar 

  57. Arvidson, N. G., Gudbjornsson, B., Larsson, A. & Hallgren, R. The timing of glucocorticoid administration in rheumatoid arthritis. Ann. Rheum. Dis. 56, 27–31 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Cutolo, M., Straub, R. H. & Buttgereit, F. Circadian rhythms of nocturnal hormones in rheumatoid arthritis: translation from bench to bedside. Ann. Rheum. Dis. 67, 905–908 (2008).

    CAS  PubMed  Google Scholar 

  59. Buttgereit, F. et al. Efficacy of modified-release versus standard prednisone to reduce duration of morning stiffness of the joints in rheumatoid arthritis (CAPRA1): a double-blind, randomised controlled trial. Lancet 371, 205–214 (2008).

    CAS  PubMed  Google Scholar 

  60. Buttgereit, F. et al. Targeting pathophysiological rhythms: prednisone chronotherapy shows sustained efficacy in rheumatoid arthritis. Ann. Rheum. Dis. 69, 1275–1280 (2010).

    CAS  PubMed  Google Scholar 

  61. Buttgereit, F. et al. Low-dose prednisone chronotherapy for rheumatoid arthritis: a randomised clinical trial (CAPRA2). Ann. Rheum. Dis. 72, 204–210 (2013).

    CAS  PubMed  Google Scholar 

  62. Franke, L. C., Ament, A. J., van de Laar, M. A., Boonen, A. & Severens, J. L. Costofillness of rheumatoid arthritis and ankylosing spondylitis. Clin. Exp. Rheumatol. 27, S118–S123 (2009).

    CAS  PubMed  Google Scholar 

  63. Dunlop, W., Iqbal, I., Khan, I., Ouwens, M. & Heron, L. Cost-effectiveness of modified-release prednisone in the treatment of moderate to severe rheumatoid arthritis with morning stiffness based on directly elicited public preference values. Clinicoecon. Outcomes Res. 5, 555–564 (2013).

    PubMed  PubMed Central  Google Scholar 

  64. Boers, M. & Buttgereit, F. A simple model that suggests possible cost savings when modified-release prednisone 5 mg/day is added to current treatment in patients with active rheumatoid arthritis. Rheumatology (Oxford) 52, 1435–1437 (2013).

    CAS  Google Scholar 

  65. Cutolo, M. et al. Efficacy of the switch to modified-release prednisone in rheumatoid arthritis patients treated with standard glucocorticoids. Clin. Exp. Rheumatol. 31, 498–505 (2013).

    PubMed  Google Scholar 

  66. Matcham, F., Rayner, L., Steer, S. & Hotopf, M. The prevalence of depression in rheumatoid arthritis: a systematic review and meta-analysis. Rheumatology (Oxford) 52, 2136–2148 (2013).

    Google Scholar 

  67. Jyrkkä, J. et al. Antidepressant use among persons with recent-onset rheumatoid arthritis: a nationwide register-based study in Finland. Scand. J. Rheumatol. 43, 364–370 (2014).

    PubMed  Google Scholar 

  68. Rathbun, A. M., Reed, G. W. & Harrold, L. R. The temporal relationship between depression and rheumatoid arthritis disease activity, treatment persistence and response: a systematic review. Rheumatology (Oxford) 52, 1785–1794 (2013).

    Google Scholar 

  69. Rathbun, A. M., Harrold, L. R. & Reed, G. W. A description of patient- and rheumatologist-reported depression symptoms in an American rheumatoid arthritis registry population. Clin. Exp. Rheumatol. 32, 523–532 (2014).

    PubMed  Google Scholar 

  70. Lempp, H. et al. Comparative quality of life in patients with depression and rheumatoid arthritis. Int. Rev. Psychiatry 23, 118–124 (2011).

    PubMed  Google Scholar 

  71. Dantzer, R. Depression and inflammation: an intricate relationship. Biol. Psychiatry 71, 4–5 (2012).

    PubMed  Google Scholar 

  72. Anderson, S. T., Commins, S., Moynagh, P. N. & Coogan, A. N. Lipopolysaccharide-induced sepsis induces long-lasting affective changes in the mouse. Brain Behav. Immun. 43, 98–109 (2014).

    PubMed  Google Scholar 

  73. Maciel, I. S., Silva, R. B., Morrone, F. B., Calixto, J. B. & Campos, M. M. Synergistic effects of celecoxib and bupropion in a model of chronic inflammation-related depression in mice. PLoS ONE 8, e77227 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Fineberg, A. M. & Ellman, L. M. Inflammatory cytokines and neurological and neurocognitive alterations in the course of schizophrenia. Biol. Psychiatry 73, 951–966 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Eyre, H. A., Stuart, M. J. & Baune, B. T. A phase-specific neuroimmune model of clinical depression. Prog. Neuropsychopharmacol. Biol. Psychiatry 54, 265–274 (2014).

    CAS  PubMed  Google Scholar 

  76. Walker, A. K., Kavelaars, A., Heijnen, C. J. & Dantzer, R. Neuroinflammation and comorbidity of pain and depression. Pharmacol. Rev. 66, 80–101 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Uguz, F., Akman, C., Kucuksarac, S. & Tufekci, O. Anti-tumor necrosis factor-α therapy is associated with less frequent mood and anxiety disorders in patients with rheumatoid arthritis. Psychiatry Clin. Neurosci. 63, 50–55 (2009).

    CAS  PubMed  Google Scholar 

  78. Abad, V. C., Sarinas, P. S. & Guilleminault, C. Sleep and rheumatologic disorders. Sleep Med. Rev. 12, 211–228 (2008).

    PubMed  Google Scholar 

  79. Westhovens, R., Van der Elst, K., Matthys, A., Tran, M. & Gilloteau, I. Sleep problems in patients with rheumatoid arthritis. J. Rheumatol. 41, 31–40 (2014).

    PubMed  Google Scholar 

  80. Walker, M. P. Sleep, memory and emotion. Prog. Brain Res. 185, 49–68 (2010).

    PubMed  Google Scholar 

  81. Nicassio, P. M. et al. The contribution of pain and depression to self-reported sleep disturbance in patients with rheumatoid arthritis. Pain 153, 107–112 (2012).

    PubMed  Google Scholar 

  82. Lavie, P. et al. Actigraphic measurements of sleep in rheumatoid arthritis: comparison of patients with low back pain and healthy controls. J. Rheumatol. 19, 362–365 (1992).

    CAS  PubMed  Google Scholar 

  83. Faraut, B., Boudjeltia, K. Z., Vanhamme, L. & Kerkhofs, M. Immune, inflammatory and cardiovascular consequences of sleep restriction and recovery. Sleep Med. Rev. 16, 137–149 (2012).

    PubMed  Google Scholar 

  84. Spies, C. M. et al. Circadian rhythms of cellular immunity in rheumatoid arthritis: a hypothesis generating study. Clin. Exp. Rheumatol. (in press).

  85. Haspel, J. A. et al. Circadian rhythm reprogramming during lung inflammation. Nat. Commun. 5, 4753 (2014).

    CAS  PubMed  Google Scholar 

  86. Eckel-Mahan, K. L. et al. Reprogramming of the circadian clock by nutritional challenge. Cell 155, 1464–1478 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Chun, S. K. et al. Identification and validation of cryptochrome inhibitors that modulate the molecular circadian clock. ACS Chem. Biol. 9, 703–710 (2014).

    CAS  PubMed  Google Scholar 

  88. Solt, L. A. et al. Regulation of circadian behaviour and metabolism by synthetic REV-ERB agonists. Nature 485, 62–68 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Sox, H. C. & Greenfield, S. Comparative effectiveness research: a report from the Institute of Medicine. Ann. Intern. Med. 151, 203–205 (2009).

    PubMed  Google Scholar 

  90. Ortiz-Tudela, E., Mteyrek, A., Ballesta, A., Innominato, P. F. & Lévi, F. Cancer chronotherapeutics: experimental, theoretical, and clinical aspects. Handb. Exp. Pharmacol. 2013, 261–288 (2013).

    Google Scholar 

  91. Bunney, B. G. et al. Circadian dysregulation of clock genes: clues to rapid treatments in major depressive disorder. Mol. Psychiatry http://dx.doi.org/10.1038/mp.2014.138.

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors researched the data for the article, provided a substantial contribution to discussions of the content and contributed to writing the article and to review and/or editing of the manuscript before submission.

Corresponding author

Correspondence to Frank Buttgereit.

Ethics declarations

Competing interests

F.B. declares that he has received consultancy fees, honoraria and travel expenses from Horizon Pharma (formerly Nitec Pharma) and Mundipharma International, and grant support from Horizon Pharma. C.C. declares that he has received honoraria for educational talks from Servier and Takeda and consultancy fees from Theva Pharma. J.S. and A.C. declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buttgereit, F., Smolen, J., Coogan, A. et al. Clocking in: chronobiology in rheumatoid arthritis. Nat Rev Rheumatol 11, 349–356 (2015). https://doi.org/10.1038/nrrheum.2015.31

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2015.31

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing