ORIGINAL RESEARCH

SARS-CoV-2 breakthrough infections among vaccinated individuals with rheumatic disease: results from the COVID-19 Global Rheumatology Alliance provider registry

Jean Liew, Milena Gianfrancesco, Carly Harrison, Zara Izadi, Stephanie Rush, Saskia Lawson-Tovey, Lindsay Jacobsohn, Clairissa Ja, Kimme L Hyrich, Laure Gossec, Anja Strangfeld, Loreto Carmona, Martin Schäfer, Elsa Frázao-Mateus, Inita Bulina, Frances Stafford, Abdurrahman Tufan, Christine Graver, Fatemah Abutiban, Dfiza Dey, Genevieve Katigbak, Lauren Kaufman, Emily Kowalski, Marco Ulises Martinez-Martinez, Naomi J Patel, Greta Reyes-Cordero, Evelyn Salido, Ellison Smith, David Snow, Jeffrey Sparks, Leanna Wise, Suleman Bhana, Monique Gore-Massy, Rebecca Grainger, Jonathan Hausmann, Emily Sirotich, Paul Sufka, Zachary Wallace, Pedro M Machado, Philip C Robinson, Jinoos Yazdany

ABSTRACT

Objective While COVID-19 vaccination prevents severe infections, poor immunogenicity in immunocompromised people threatens vaccine effectiveness. We analysed the clinical characteristics of patients with rheumatic disease who developed breakthrough COVID-19 after vaccination against SARS-CoV-2.

Methods We included people partially or fully vaccinated against SARS-CoV-2 who developed COVID-19 between 5 January and 30 September 2021 and were reported to the Global Rheumatology Alliance registry. Breakthrough infections were defined as occurring ≥14 days after completion of the vaccination series, specifically 14 days after the second dose in a two-dose series or 14 days after a single-dose vaccine. We analysed patients’ demographic and clinical characteristics and COVID-19 symptoms and outcomes.

Results SARS-CoV-2 infection was reported in 197 partially or fully vaccinated people with rheumatic disease (mean age 54 years, 77% female, 56% white). The majority (n=140/197, 71%) received messenger RNA vaccines. Among the fully vaccinated (n=14), infection occurred a mean of 112 (±60) days after the second vaccine dose. Among those fully vaccinated and hospitalised (n=22, age range 36–83 years), nine had used B cell-depleting therapy (BCDT), with six as monotherapy, at the time of vaccination. Three were on mycophenolate. The majority (n=14/22, 64%) were not taking systemic glucocorticoids. Eight patients had pre-existing lung disease and five patients died.

Conclusion More than half of fully vaccinated individuals with breakthrough infections requiring hospitalisation were on BCDT or mycophenolate. Further risk mitigation strategies are likely needed to protect this selected high-risk population.

INTRODUCTION

Despite the established efficacy of COVID-19 vaccines, breakthrough infections still occur in those who are vaccinated.1–3 There is particular concern for people on immunomodulatory and immunosuppressive medications, including those with rheumatic disease. Studies have shown that specific classes of medications (B cell-depleting therapy (BCDT), antimetabolites and glucocorticoids) can severely hamper the humoral response and have some impact on the T cell-mediated response.4–6 Due to accumulating data demonstrating reduced immune responses in some immunosuppressed individuals, several countries have amended vaccination programmes to offer an additional dose after completion of the primary vaccine series in this population.7–12
Despite laboratory data regarding diminished antibody responses to vaccination, clinical data on breakthrough infections in people with rheumatic disease are sparse. Such data are important both to prioritise patient groups for additional vaccine doses and for guidance about use of other strategies, such as monoclonal antibodies or emerging antivirals against SARS-CoV-2, for postexposure prophylaxis or early treatment to prevent progression to severe COVID-19.

Given the need for data to inform public health measures and for counselling and care of immunocompromised patients in the clinical setting, we analysed the characteristics of people with rheumatic disease who developed COVID-19 following vaccination using the COVID-19 Global Rheumatology Alliance (C19-GRA) registry.

METHODS

The C19-GRA registry was launched on 24 March 2020 and allows healthcare providers globally to enter data on people with rheumatic disease diagnosed with COVID-19 via a REDCap survey.\(^{13,14}\) Registry data elements collected include provider name, city, country and clinic, and patient age, sex, race and ethnicity. Data include rheumatic disease medications, physician global assessment of disease activity (remission, low, moderate or high) and comorbidities at the time of COVID-19 diagnosis. We also included information on whether medications were held in online supplemental table 3. Data on COVID-19 include diagnosis date, symptoms, treatments and outcomes, with available laboratory results also collected.

On 5 January 2021, an initial set of vaccine-related questions were added to the registry, including whether patients had received a COVID-19 vaccine, which vaccine was received, how many doses and date of the most recent dose. Additional questions, related to timing of infection and specific rheumatic disease medications at the time of vaccination and whether they were held with each vaccine dose, were added on 8 July 2021. This study reports on people with breakthrough SARS-CoV-2 infection following vaccination who were entered into the registry between 5 January 2021 and 30 September 2021. The current analysis includes previously published cases from Lawson-Tovey et al\(^{15}\) (n=8) and Cook et al\(^{16}\) (n=16).

We analysed SARS-CoV-2 infection following vaccination reported to the registry, with a particular focus on individuals who were fully vaccinated, especially with regard to hospitalisation. We defined ‘partially vaccinated’ as being ≤14 days after the first dose in a two-dose series or within 13 days of a single-dose vaccine.\(^{17}\) Breakthrough infection among fully vaccinated individuals was defined according to the US Centers for Disease Control and Prevention (CDC) as infection occurring ≥14 days after the second dose in a two-dose series or ≥14 days after a single-dose vaccine.\(^{17}\) We excluded people with COVID-19 who were within 14 days of their first dose of a two-dose series (n=25) as the CDC definition considers these individuals to be unvaccinated. Continuous variables are reported as mean (SD). Categorical variables are reported as number and percentage. We used a histogram to visually assess time from vaccination to infection.

Patient and public involvement

As members of the C19-GRA, including its Steering Committee and Patient Board, patients were involved in the design, conduct, reporting or dissemination plans of this research.

RESULTS

We identified 110 partially and 87 fully vaccinated patients with rheumatic disease in the C19-GRA registry. Demographic and clinical characteristics of fully vaccinated individuals are shown in table 1; partially vaccinated individuals are described in online supplemental table 1. Fully vaccinated individuals (n=87) had a mean age of 54 years, and 77% were female and 56% were white. The majority (75%) were from North America. The most common rheumatic diseases were rheumatoid arthritis (39%), psoriatic arthritis (14%) and systemic lupus erythematosus (12%). At the time of infection, 34% were taking conventional synthetic disease-modifying antirheumatic drugs only, 28% biologic/targeted synthetic disease-modifying antirheumatic drugs only and 31% were on both; 7% of patients were not taking any disease-modifying antirheumatic drug. The majority (70%) were not on glucocorticoids; among those taking
Table 1
Demographic and disease characteristics of fully vaccinated* individuals with rheumatic disease diagnosed with SARS-CoV-2 infection after vaccination reported to the C19-GRA registry (n=87)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Frequency (%) or mean (SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean age (years), SD</td>
<td>53.8 (16.3)</td>
</tr>
<tr>
<td>Female</td>
<td>67 (77)</td>
</tr>
<tr>
<td>Race or ethnicity</td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>49 (56.3)</td>
</tr>
<tr>
<td>Black</td>
<td>6 (6.9)</td>
</tr>
<tr>
<td>Latin American</td>
<td>10 (11.5)</td>
</tr>
<tr>
<td>East or South Asian</td>
<td>7 (8.1)</td>
</tr>
<tr>
<td>Other</td>
<td>9 (10.3)</td>
</tr>
<tr>
<td>Unknown</td>
<td>6 (6.9)</td>
</tr>
<tr>
<td>WHO regions</td>
<td></td>
</tr>
<tr>
<td>African region</td>
<td>2 (2.3)</td>
</tr>
<tr>
<td>Region of the Americas - North</td>
<td>65 (74.7)</td>
</tr>
<tr>
<td>Region of the Americas - South</td>
<td>1 (1.2)</td>
</tr>
<tr>
<td>South-East Asian region</td>
<td>0 (0)</td>
</tr>
<tr>
<td>European region</td>
<td>8 (9.2)</td>
</tr>
<tr>
<td>Eastern Mediterranean region</td>
<td>7 (8.1)</td>
</tr>
<tr>
<td>Western Pacific region</td>
<td>4 (4.6)</td>
</tr>
<tr>
<td>Rheumatic disease†</td>
<td></td>
</tr>
<tr>
<td>Rheumatoid arthritis</td>
<td>34 (39.1)</td>
</tr>
<tr>
<td>Systemic lupus erythematosus</td>
<td>10 (11.5)</td>
</tr>
<tr>
<td>Psoriatic arthritis</td>
<td>12 (13.8)</td>
</tr>
<tr>
<td>Vasculitis</td>
<td>10 (11.5)</td>
</tr>
<tr>
<td>Inflammatory myopathy</td>
<td>8 (9.2)</td>
</tr>
<tr>
<td>Spondyloarthritis (axial and other)</td>
<td>3 (3.5)</td>
</tr>
<tr>
<td>Sjogren’s syndrome</td>
<td>4 (4.6)</td>
</tr>
<tr>
<td>Systemic sclerosis</td>
<td>4 (4.6)</td>
</tr>
<tr>
<td>Other‡</td>
<td>8 (9.2)</td>
</tr>
<tr>
<td>Comorbidity count</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>46 (52.9)</td>
</tr>
<tr>
<td>1</td>
<td>26 (29.9)</td>
</tr>
<tr>
<td>≥2</td>
<td>15 (17.2)</td>
</tr>
<tr>
<td>Most common comorbidities</td>
<td></td>
</tr>
<tr>
<td>Hypertension</td>
<td>24 (27.6)</td>
</tr>
<tr>
<td>Obesity</td>
<td>18 (20.7)</td>
</tr>
<tr>
<td>Lung disease</td>
<td>16 (18.4)</td>
</tr>
<tr>
<td>Diabetes</td>
<td>9 (10.3)</td>
</tr>
<tr>
<td>Chronic kidney disease</td>
<td>8 (9.2)</td>
</tr>
<tr>
<td>Medication prior to COVID-19 diagnosis§</td>
<td></td>
</tr>
<tr>
<td>No DMARD</td>
<td>6 (6.9)</td>
</tr>
<tr>
<td>csDMARDs</td>
<td>57 (65.5)</td>
</tr>
<tr>
<td>Methotrexate</td>
<td>21 (24.1)</td>
</tr>
</tbody>
</table>

Continued
glucocorticoids, 21% were taking prednisone 1–9 mg/day and 7% were on ≥10 mg/day. The majority (79%) had physician-reported remission or low disease activity at the time of breakthrough infection; 21% had moderate or high disease activity. The most common comorbidities were hypertension (28%), obesity (21%), lung disease (18%) and diabetes (10%); 47% had one or more comorbidities. The majority received messenger RNA (mRNA) vaccines (Pfizer n=45, 52%; Moderna n=21, 24%). Among the fully vaccinated, infection occurred at a mean of 112 (±60, range 14–300) days after the second dose (figure 1) and 26% were hospitalised. The most common COVID-19 symptoms were cough (69%), fever (58%), malaise (52%), myalgia (39%) and shortness of breath (37%) (table 2). There were relatively few COVID-19 complications reported: three patients experienced acute respiratory distress syndrome (4%), five had a concomitant or secondary infection (three with pneumonia, one secondary sinus infection, one acute kidney injury; 6%); three patients experienced sepsis (4%) and no patients had cytokine storm reported.

Medications at the time of COVID-19 diagnosis are reported in online supplemental table 2 for the full cohort (n=197), for the fully vaccinated (n=87) and for those hospitalised among the fully vaccinated (n=22). Among the fully vaccinated, 24% were on methotrexate, compared with 9% of those who were both fully vaccinated and hospitalised. A similar pattern was seen for tumor necrosis factor (TNF) inhibitors (22% fully vaccinated vs 9% fully vaccinated and hospitalised). In contrast, 18% of those fully vaccinated were on BCDT, compared with 46% of those fully vaccinated and hospitalised. Among the fully vaccinated and among the fully vaccinated and hospitalised, the majority were not taking systemic glucocorticoids at the time of vaccination (72% and 64%, respectively).

Among 79 fully vaccinated individuals with information on medication status at the time of vaccination, all but seven continued their antirheumatic medications before their vaccine doses (online supplemental table 3). Five discontinued medications after their vaccine doses. Otherwise medications were similar to those at the time of COVID-19 diagnosis.

Of those who were considered fully vaccinated, 22 were hospitalised (table 3). At the time of diagnosis, nine were being treated with BCDT, six as monotherapy and three in combination with other immunosuppressive medications. Three were on mycophenolate and three were on azathioprine. Among 17 individuals who had information on holding medications at the time of vaccination, only one individual withheld medications. Eleven received the Pfizer vaccine, five received Moderna, and two each received Janssen/Johnson & Johnson and Oxford/AstraZeneca. The median time from vaccination to COVID-19 diagnosis was 59 days (range 14–180 days). The four patients who required invasive ventilation subsequently died, and one patient who received non-invasive ventilation also died. Among the five deaths, one individual was aged 41–50, three individuals were aged 61–70 and one was over 80 years. Three individuals who died were on BCDT at the time of vaccination.

Table 1

<table>
<thead>
<tr>
<th>Frequency (%) or mean (SD)</th>
</tr>
</thead>
</table>

*Fully vaccinated: infection ≥14 days after second dose of a two-dose vaccine or first if Janssen/Johnson & Johnson.
†Cases could have more than one disease diagnosis.
‡Other rheumatic diseases include mixed connective tissue (n=2), antiphospholipid antibody syndrome (n=1), autoimmune inflammatory syndrome (n=1), IgG4-related disease (n=1), undifferentiated connective tissue disease (n=1), Still’s disease (n=1) and palindromic rheumatism (n=1).
§csDMARD medications included antimalarials (hydroxychloroquine, chloroquine), azathioprine, cyclophosphamide, ciclosporin, leflunomide, methotrexate, mycophenolate mofetil/mycophenolic acid, sulfasalazine and tacrolimus; b/tsDMARD included abatacept, belimumab, CD20 inhibitors, IL-1 inhibitors, IL-6 inhibitors, IL-12/23 inhibitors, IL-17 inhibitors, anti-TNF and Janus kinase inhibitors.
¶Other biologics include abatacept (n=4), IL-6 (n=2), IL-1 (n=2), belimumab (n=1) and ustekinumab (n=1).
**Confirmed COVID-19 diagnosis: diagnosis made via PCR, antigen or antibody test.
††BMI, body mass index; b/tsDMARD, biologic/tar disease-modifying antirheumatic drugs; DMARD, disease-modifying antirheumatic drugs; C19-19, COVID-19 Global Rheumatology Alliance; csDMARD, conventional synthetic disease-modifying antirheumatic drugs; GRA, COVID-19 vaccine doses; mRNA, messenger RNA vaccines; Pfizer n=45, 52%; Moderna n=21, 24%.

DISCUSSION

We found that over half of fully vaccinated individuals with rheumatic disease with breakthrough SARS-CoV-2 infections requiring hospitalisation had been taking either BCDT or mycophenolate at the time of COVID-19 diagnosis. Furthermore, we did not find any meaningful differences by hospitalisation status in glucocorticoid use among those with breakthrough infections. Reassuringly, breakthrough infections leading to hospitalisation were infrequent among those using other immunomodulators, including TNF inhibitors, corroborating findings from multiple registries.18

Despite the demonstrated efficacy of COVID-19 vaccines, particularly mRNA platform vaccines, breakthrough infections occurred in the fully vaccinated even prior to the emergence of more transmissible variants of concern.16,19 Cook et al16 reported a case series of 16 patients with rheumatic disease with breakthrough infections from a single healthcare system in Massachusetts, of whom 6 were hospitalised and 2 died. In the EULAR registries of breakthrough infections in patients with rheumatic disease, 28 individuals were fully vaccinated; 74% fully recovered while 2 died.15 A limitation of both our study and prior studies is the inability to confirm denominators for these populations of interest and thus we cannot estimate the incidence of SARS-CoV-2 infection following vaccination.
The impact on vaccine immunogenicity from medications used for rheumatic disease has been studied using surrogates for protection for humoral and T cell-mediated responses. In the general population, antibody neutralisation titres have correlated well with clinical protection against COVID-19. Overall, antibody titres have been lower among those with rheumatic disease and on immunosuppressive or immunomodulatory medications compared with healthy controls, particularly for those on BCDT such as rituximab or mycophenolate. In addition, several case series and cohort studies of people on rituximab showed that undetectable CD19-positive cells correlate with the lack of seroconversion, although this did not appear to affect the T cell response. The precise clinical implications of these lower antibody responses in conjunction with maintained T cell responses are still unclear.

Clinical data documenting the characteristics of rheumatology patients with breakthrough severe COVID-19 have been limited. In our study, 9 out of 22 fully vaccinated individuals hospitalised for breakthrough infections were treated with BCDT (41%), compared with 11% of individuals with infections after partial or full vaccination overall and 4% of the entire GRA registry as of 30 September 2021. Monotherapy or combination
Table 3 Details of fully vaccinated and hospitalised individuals reported to the C19-GRA registry (n=22)

<table>
<thead>
<tr>
<th>Age and sex</th>
<th>Comorbidities</th>
<th>Rheumatic disease</th>
<th>Medications at the time of vaccination</th>
<th>Medications held for vaccination</th>
<th>Medications at the time of COVID-19 diagnosis</th>
<th>Vaccine received, time from last vaccination to SARS-CoV-2 infection</th>
<th>Outcome of hospitalisation*</th>
</tr>
</thead>
<tbody>
<tr>
<td>31–40, F</td>
<td>None</td>
<td>Sjogren’s</td>
<td>Hydroxychloroquine, methotrexate, BCDT</td>
<td>Unknown, B cell depletion unknown</td>
<td>Hydroxychloroquine, methotrexate, BCDT</td>
<td>Pfizer-BioNTech, 61 days</td>
<td>No supplemental oxygen</td>
</tr>
<tr>
<td>31–40, F</td>
<td>Lung disease, diabetes, chronic neurological/neuromuscular disease</td>
<td>SLE</td>
<td>Belimumab, mycophenolate</td>
<td>No</td>
<td>Belimumab, mycophenolate</td>
<td>Moderna, 23 days</td>
<td>No supplemental oxygen</td>
</tr>
<tr>
<td>31–40, F</td>
<td>Hypertension, BMI ≥30</td>
<td>Inflammatory myopathy</td>
<td>Leflunomide, BCDT, glucocorticoid</td>
<td>No, not B cell-depleted</td>
<td>Leflunomide, BCDT, glucocorticoid</td>
<td>Unknown, 30 days</td>
<td>Supplemental oxygen</td>
</tr>
<tr>
<td>31–40, F</td>
<td>None</td>
<td>Psoriatic arthritis</td>
<td>None</td>
<td>–</td>
<td>TNFi</td>
<td>Pfizer-BioNTech, 170 days</td>
<td>No supplemental oxygen</td>
</tr>
<tr>
<td>41–50, M</td>
<td>Hypertension</td>
<td>Psoriatic arthritis</td>
<td>None</td>
<td>–</td>
<td>None</td>
<td>Janssen/Johnson & Johnson, 24 days</td>
<td>Supplemental oxygen</td>
</tr>
<tr>
<td>41–50, F</td>
<td>Lung disease</td>
<td>RA</td>
<td>Azathioprine</td>
<td>Unknown</td>
<td>Azathioprine</td>
<td>Pfizer-BioNTech, 55 days</td>
<td>Supplemental oxygen</td>
</tr>
<tr>
<td>41–50, F</td>
<td>Lung disease, BMI ≥30, kidney disease</td>
<td>RA</td>
<td>Hydroxychloroquine, glucocorticoid</td>
<td>No</td>
<td>TNFi, hydroxychloroquine, glucocorticoid</td>
<td>Unknown, 120 days</td>
<td>Invasive ventilation/ECMO, death</td>
</tr>
<tr>
<td>41–50, F</td>
<td>Hypertension, kidney disease, organ transplant recipient, immunodeficiency, BMI >30</td>
<td>SLE</td>
<td>Mycophenolate, glucocorticoid</td>
<td>No</td>
<td>Mycophenolate, glucocorticoid</td>
<td>Pfizer-BioNTech, 14 days</td>
<td>Supplemental oxygen</td>
</tr>
<tr>
<td>51–60, F</td>
<td>Hypertension</td>
<td>RA</td>
<td>IL-6 inhibitor</td>
<td>Unknown</td>
<td>IL-6 inhibitor</td>
<td>AstraZeneca/Oxford, 30 days</td>
<td>Supplemental oxygen</td>
</tr>
<tr>
<td>61–70, M</td>
<td>Diabetes</td>
<td>Inflammatory myopathy</td>
<td>Glucocorticoid</td>
<td>No</td>
<td>BCDT, glucocorticoid</td>
<td>Pfizer-BioNTech, 180 days</td>
<td>Invasive ventilation/ECMO, death</td>
</tr>
<tr>
<td>61–70, M</td>
<td>Lung disease, hypertension, cardiovascular disease</td>
<td>Axial spondyloarthritis</td>
<td>BCDT</td>
<td>B cell-depleted</td>
<td>BCDT</td>
<td>Pfizer-BioNTech, 57 days</td>
<td>Non-invasive ventilation or high-flow oxygen devices, death</td>
</tr>
</tbody>
</table>

Continued
<table>
<thead>
<tr>
<th>Age and sex</th>
<th>Comorbidities</th>
<th>Rheumatic disease</th>
<th>Medications at the time of vaccination</th>
<th>Medications held for vaccination</th>
<th>Medications at the time of COVID-19 diagnosis</th>
<th>Vaccine received, time from last vaccination to SARS-CoV-2 infection</th>
<th>Outcome of hospitalisation*</th>
</tr>
</thead>
<tbody>
<tr>
<td>61–70, M</td>
<td>Lung disease, hypertension, cardiovascular disease, kidney disease</td>
<td>ANCA-associated vasculitis</td>
<td>B cell-depleted</td>
<td>BCDT</td>
<td>Moderna, 14 days</td>
<td>Supplemental oxygen</td>
<td></td>
</tr>
<tr>
<td>61–70, F</td>
<td>Lung disease</td>
<td>RA</td>
<td>BCDT, glucocorticoid</td>
<td>GC: no, B cell-depleted</td>
<td>BCDT, glucocorticoid</td>
<td>Moderna, 78 days</td>
<td></td>
</tr>
<tr>
<td>61–70, F</td>
<td>None</td>
<td>RA</td>
<td>Abatacept</td>
<td>No</td>
<td>Abatacept</td>
<td>AstraZeneca/Oxford, 65 days</td>
<td>Discharged from hospital (no ventilation reported)</td>
</tr>
<tr>
<td>61–70, F</td>
<td>Diabetes, BMI ≥30, hypertension, cardiovascular disease, kidney disease</td>
<td>Vasculitis</td>
<td>Glucocorticoid</td>
<td>No</td>
<td>Glucocorticoid</td>
<td>Pfizer-BioNTech, 150 days</td>
<td>Supplemental oxygen</td>
</tr>
<tr>
<td>61–70, F</td>
<td>None</td>
<td>RA</td>
<td>None</td>
<td>–</td>
<td>Methotrexate, JAKi</td>
<td>Pfizer-BioNTech, 54 days</td>
<td>Supplemental oxygen</td>
</tr>
<tr>
<td>61–70, F</td>
<td>None</td>
<td>Systemic sclerosis, inflammatory myopathy</td>
<td>Azathioprine/6-MP, BCDT</td>
<td>B cell depletion unknown</td>
<td>Azathioprine/6-MP, BCDT</td>
<td>Moderna, 16 days</td>
<td>Discharged from hospital (no ventilation reported)</td>
</tr>
<tr>
<td>71–80, M</td>
<td>Hypertension, cardiovascular disease, kidney disease</td>
<td>Inflammatory myopathy</td>
<td>Mycophenolate</td>
<td>Unknown</td>
<td>Mycophenolate</td>
<td>Pfizer-BioNTech, 173 days</td>
<td>Supplemental oxygen</td>
</tr>
<tr>
<td>71–80, F</td>
<td>Lung disease</td>
<td>RA</td>
<td>BCDT</td>
<td>B cell-depleted</td>
<td>BCDT</td>
<td>Janssen/Johnson & Johnson, 38 days</td>
<td>Supplemental oxygen</td>
</tr>
<tr>
<td>>80, M</td>
<td>Lung disease, hypertension, cardiovascular disease</td>
<td>Vasculitis</td>
<td>BCDT, glucocorticoid</td>
<td>No, B cell depletion unknown</td>
<td>BCDT, glucocorticoid</td>
<td>Pfizer-BioNTech, 100 days</td>
<td>Invasive ventilation/ECMO, death</td>
</tr>
<tr>
<td>>80, M</td>
<td>Cardiovascular disease, cancer</td>
<td>Psoriatic arthritis</td>
<td>Glucocorticoid</td>
<td>Yes</td>
<td>Ustekinumab, glucocorticoid</td>
<td>Pfizer-BioNTech, 140 days</td>
<td>Non-invasive ventilation or high-flow oxygen devices</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
therapy with mycophenolate was also over-represented among those hospitalised for breakthrough infections, although less frequently than BCDT. Reassuringly, cases of hospitalisation were infrequent in patients taking commonly prescribed medications like methotrexate and TNF inhibitors. Thus our findings, with real-world clinical outcomes, support the inferences drawn from prior studies that have used surrogates for protection. There is a lack of data regarding comparative effectiveness between vaccine types in this population. In a cohort study of responses to Janssen/Johnson & Johnson versus mRNA vaccines among individuals with rheumatic disease, there were lower odds of seroconversion with the former. Due to the nature of our study design and small numbers, we were unable to directly compare the efficacy of specific vaccines in the rheumatic disease population. Despite concerns of lower efficacy of vaccination among the immunocompromised, additional doses of vaccine (typically third doses of an mRNA vaccine) have been studied among organ transplant recipients and haemodialysis patients and found to be safe and effective in increasing antibody levels. Improved humoral responses following a third vaccine dose have also been reported in people with rheumatoid arthritis and in a case series of 18 individuals with rheumatic disease. Multiple countries approved additional vaccine doses in the immunocompromised, including the UK in July and the USA in August 2021, before these were approved for the general population. While our study does not include data on breakthrough infection after an additional or third dose, the overall evidence has suggested that an additional or third dose is especially efficacious in high-risk populations. Further studies reporting breakthrough infections in these with a third or fourth vaccine dose will help inform the effectiveness of this strategy. Understanding the factors that contribute to breakthrough infections among vaccine recipients is crucial for improving vaccination strategies in this vulnerable population.

The strengths of this study include using a large global registry to collect data on breakthrough infections among people with rheumatic disease who have been vaccinated. However, limitations of our study must be acknowledged. First, there is potential for selection bias in this voluntary registry, particularly over-representation of those at highest risk of poor vaccine responses for this population. Second, this study was cross-sectional, and although we assessed the timing of infection and medication holding with respect to the timing of vaccination, incidence rates, including mortality rates, cannot be reliably estimated using these data due to the lack of clear denominators for this population. Finally, the current totality of evidence supports the need to improve monoclonal antibody access for the most vulnerable patients who may not mount an adequate response following vaccination. In addition, further studies are needed to evaluate the role of passive immunity or pre-exposure prophylaxis in people with rheumatic diseases or immunosuppressed populations. Further studies about passive immunity or pre-exposure prophylaxis may be potential options for administration in an outpatient setting, but more research on efficacy in people with rheumatic diseases or immunosuppressed populations is needed.

Table 3

<table>
<thead>
<tr>
<th>Age and sex</th>
<th>Comorbidities</th>
<th>Rheumatic disease</th>
<th>Medications at the time of vaccination</th>
<th>Medications held for vaccination</th>
<th>Medications at the time of COVID-19 diagnosis</th>
<th>Vaccine received, time from last vaccination to SARS-CoV-2 infection</th>
<th>Outcome of hospitalisation*</th>
</tr>
</thead>
<tbody>
<tr>
<td>>80, M</td>
<td>Hypertension, kidney disease</td>
<td>Vasculitis</td>
<td>BCDT</td>
<td>B cell depletion unknown</td>
<td>BCDT</td>
<td>Moderna, 180 days</td>
<td>Non-invasive ventilation or high-flow oxygen devices</td>
</tr>
</tbody>
</table>

*Highest level of hospital treatment; if no discharge status, they were alive at discharge.

Table 3 Continued
collection to measure antibody titres or other surrogate measures of protection. Finally, although this case series is relatively large, the study design and small numbers within categories preclude assessing differences between rheumatic diseases, medication classes and vaccine types. We intentionally present descriptive data due to the lack of clear denominators and comparator group; as outlined in a recent paper, descriptive work is often harmed by inappropriate statistical adjustment or other statistical testing. Given the descriptive nature of this work and the potential sources of bias, results should be interpreted with caution and studies with appropriate denominators (eg, prospective cohort studies) are necessary to confirm our results.

CONCLUSION

We present the largest series to date of breakthrough COVID-19 among people with rheumatic disease. Our data support prior findings of reduced vaccine immunogenicity based on the use of certain classes of anti-rheumatic medications. Given the high frequency of people with rheumatic disease on medications such as BCDT and mycophenolate who required hospitalisation, these patients should be prioritised and strongly recommended for other risk mitigation measures beyond additional doses of vaccine. Moreover, the current evidence supports the use of strategies that compensate for a reduced or absent humoral immune response to vaccination in high-risk individuals with rheumatic diseases, such as additional vaccine doses or pre-exposure or postexposure prophylaxis with monoclonal antibodies.

Author affiliations

1Medicine, Section of Rheumatology, Boston University, Boston, Massachusetts, USA
2Department of Medicine, Division of Rheumatology, University of California, San Francisco, San Francisco, California, USA
3LupusChat, New York, New York, USA
4Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California, USA
5Division of Rheumatology, Department of Medicine, University of California, San Francisco, San Francisco, California, USA
6Centre for Genetics and Genomics Versus Arthritis, The University of Manchester, Manchester, UK
7National Institute for Health Research Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester, UK
8Division of Rheumatology, Department of Medicine, University of California, San Francisco, California, USA
9University of Manchester, Manchester, UK
10INSERM, Institut Pierre Louis d’Épidémiologie et de Santé Publique, INSERM, Sorbonne Universités, Paris, France
11APHP, Rheumatology Department, Hospital Universitaire Pitie Salpetriere, Paris, France
12Forschungsbereich Epidemiologie, Deutsches Rheuma-Forschungszentrum Berlin, Berlin, Germany
13Instituto de Salud Musculoesquelética (INMUSC), Madrid, Spain
14Epidemiology and Health Services Research, German Rheumatism Research Center Berlin, Berlin, Germany
15Portuguese League Against Rheumatic Diseases (LPCDR), Lisbon, Portugal
16Paul Stradins Clinical University Hospital, Riga, Latvia
17Blackrock Clinic, Blackrock, Ireland
18Gazi University, Ankara, Turkey
19Royal Hampshire County Hospital, Winchester, UK
20Department of Internal Medicine, Hacettepe University, Ankara, Turkey
21Hacettepe University, Ankara, Turkey
22Hamad Medical Corporation, Doha, Qatar
23Rheumatology, Massachusetts General Hospital, Boston, Massachusetts, USA
24Jaber Al Ahmad Al Jaber Al Sabah Hospital, Surra, Kuwait
25University of Ghana Medical School, Accra, Ghana
26Korle Bu Teaching Hospital, Accra, Ghana
27Makati Medical Center, Makati City, Philippines
28Rheumatology Associates Louisville, Louisville, Kentucky, USA
29Inflammation and Immunity, Brigham and Women’s Hospital, Boston, Massachusetts, USA
30Rheumatology, Hospital Central “Dr Ignacio Morones Prieto”, San Luis Potosi, Mexico
31Faculty of Medicine, Universidad Autónoma de San Luis Potosi, San Luis, Mexico
32Massachusetts General Hospital, Boston, Massachusetts, USA
33Autonomous University of Chihuahua, Chihuahua, Mexico
34University of the Philippines Manila, Manila, Philippines
35University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
36Asheville Arthritis & Osteoporosis Center, Asheville, North Carolina, USA
37Cape Fear Arthritis Care, Leland, North Carolina, USA
38Department of Medicine, Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital, Boston, Massachusetts, USA
39Department of Internal Medicine, Division of Rheumatology, University of Southern California, Los Angeles, California, USA
40Crystal Run Healthcare, Middletown, New York, USA
41Lupus Foundation of America, Washington, DC, USA
42Department of Medicine, University of Otago, Wellington, Wellington, New Zealand
43University Of Otago, Wellington, New Zealand
44Rheumatology, Boston Children’s Hospital, Boston, Massachusetts, USA
45Division of Rheumatology and Clinical Immunology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
46Medicine, McMaster University, Hamilton, Ontario, Canada
47Healthpartners, St Paul, Minnesota, USA
48Harvard Medical School, Boston, Massachusetts, USA
49MRC Centre for Neuromuscular Diseases, University College London, London, UK
50Rheumatology, University College London Centre for Rheumatology, London, UK
51Faculty of Medicine, The University of Queensland, Herston, Queensland, Australia
52Metro North Hospital and Health Service, Royal Brisbane and Women’s Hospital Health Service District, Herston, Queensland, Australia
53Medicine/Rheumatology, University of California, San Francisco, California, USA

Twitter Jean Liew @rheum_cat, Loreto Carmona @carmona_loreto, Pedro Machado @pedromcmachado and Philip C Robinson @philiprobinson

Contributors All authors contributed to the study design, data collection, interpretation of results and review/approval of the final submitted manuscript. JL and MG are guarantors for this manuscript.

Funding MG reports grants from the National Institutes of Health, NIAMS, outside the submitted work. KHL is supported by the NIHR Manchester Biomedical Research Centre. JS is supported by the National Institute of Arthritis and Musculoskeletal and Skin Diseases (grant numbers: R01 AR077607, P30 AR072523 and P30 AR072577), and the R Bruce and Joan M Mickey Research Scholar Fund. JH is supported by grants from the Rheumatology Research Foundation. ZW is supported by grants from the National Institutes of Health. PMM is supported by the National Institute for Health Research (NIHR) University College London Hospitals (UCLH) Biomedical Research Centre (BRC). JY is supported by grants from the National Institutes of Health (K24 AR074534 and P30 AR070155).

Disclaimer The views expressed here are those of the authors and participating members of the COVID-19 Global Rheumatology Alliance and do not necessarily represent the views of the American College of Rheumatology (ACR), EULAR, the UK National Health Service (NHS), the National Institute for Health Research (NIHR), the UK Department of Health or any other organisation.

Competing interests KHL reports she has received non-personal speaker’s fees from AbbVie and grant income from BMS, UCB and Pfizer, all unrelated to this manuscript; KHL is supported by the NIHR Manchester Biomedical Research Centre. LG reports personal consultant fees from AbbVie, Amgen, BMS, Biogen, Celgene, Gilead, Janssen, Lilly, Novartis, Pfizer, Samsung Bioepis, Sanofi-Aventis and UCB, and grants from Amgen, Lilly, Janssen, Pfizer, Sandoz, Sanofi and Galapagos, all unrelated to this manuscript. AS reports research grants from a consortium of 14 companies (among them AbbVie, BMS, Celltrion, Fresenius...
Kabi, Gilead/Galapagos, Lilly, Mylan/Viatris, Hexal, MSD, Pfizer, Roche, Samsung, Sanofi-Aventis and UCSB) supporting the German RABBIT register and personal fees from lectures for AbbVie, MSD, Roche, BMS, Lilly and Pfizer, all unrelated to this manuscript. LC has not received fees or personal grants from any laboratory, but her institute works by contract for laboratories among other institutions, such as AbbVie Spain, Essai, Gebro Pharma, Merck Sharp & Dohme España, Novartis Farmaceutica, Pfizer, Roche Farma, Sanofi-Aventis, Astellas Pharma, Actelion Pharmaceuticals España, Grünenthal and UCB Pharma. EF-M reports personal consultant fees from Boehringer Ingelheim Portugal and that LPCDR received support for specific activities: grants from AbbVie, Novartis, Janssen-Cilag, Lilly Portugal, Sanofi, Grünenthal, MSD, Celgene, Medac, Pharmakern and GAfPA; grants and non-financial support from Pfizer; and non-financial support from Grünenthal, outside the submitted work. IB reports personal consultant fees from AbbVie, Novartis, Pfizer and Janssen, all unrelated to this manuscript. JZ reports speaker fees from AbbVie, Novartis and Janssen/Johnson & Johnson, all unrelated to this manuscript. GR-C reports personal consultant fees from Eli Lilly and Novartis, all unrelated to this manuscript. JS is supported by the National Institute of Arthritis and Musculoskeletal and Skin Diseases (grant numbers: R01 AR077607, P30 AR070253 and P30 AR072577), and the B Bruce and Joan M Mickey Research Scholar Fund. JS has received research support from Amgen and Bristol Myers Squibb and performed consultancy for Bristol Myers Squibb, Gilead, Inova, Janssen and Optum, unrelated to this work. LW receives speaker’s bureau fees from Aurinia Pharma, unrelated to this manuscript. SB reports no competing interests related to this work. He reports non-compensated consulting fees for AbbVie, Horizon and Novartis (all < $10 000). MGM has no competing interests related to this work. She serves as a patient consultant for BMS, BI JNJ and Aurinia (all < $10 000), RG reports no competing interests related to this work. He is supported by grants from the Rheumatology Research Foundation and has salt support from the Rheumatoid Arthritis and Rheumatology Research Alliance. He has performed consulting for Novartis, Sobi and Biogen, all unrelated to this work (< $10 000). ESI reports non-financial support from Canadian Arthritis Patient Alliance, outside the submitted work. PS reports personal fees from the American College of Rheumatology/Wiley Publishing, outside the submitted work. ZW reports grant support from Bristol Myers Squibb and Pfizer/Sanofi and performed consulting for Vela Bio and Medpace, outside the submitted work. His work is supported by grants from the National Institutes of Health. PMM has received consulting/speaker’s fees from AbbVie, BMS, Celgene, Eli Lilly, Galapagos, Janssen, MSD, Novartis, OrthoVaxx, Pfizer, Roche and UCSB, all unrelated to this study. PMM is supported by the National Institute for Health Research (NIHR) University College London Hospitals (UCLH) Biomedical Research Centre (BRC). PCR reports no competing interests related to this work. Outside of this work PCR reports personal fees from AbbVie, Atom Biosciences, Eli Lilly, Gilead, GlaxoSmithKline, Janssen, Kadokung, Novartis, UCB, Roche and Pfizer; meeting attendance support from BMS, Pfizer and UCSB; and grant funding from Janssen, Novartis, Pfizer and UCB Pharma (all < $10 000). JY reports no competing interests related to this work. Her work is supported by grants from the National Institutes of Health (K24 AR077607 and P30 AR070155). Outside of this work, she has received research grants or performed consulting for Gilead, BMS Foundation, Pfizer, Aurinia and AstraZeneca.

Patient consent for publication Not required.

Ethics approval The C19-GRA physician registry was determined to be ‘not human subjects research’ under US federal guidelines as assessed by the University of California, San Francisco, and patient consent was therefore not required.

Provenance and peer review Not commissioned; externally peer reviewed.

Data availability statement Data are available upon reasonable request. Researchers interested in performing additional analyses from survey data are invited to submit proposals through the COVID-19 Global Rheumatology Alliance at rheum-covid.org. For approved projects, we will be able to provide summary tables and data analyses as requested. We do not currently have IRB approval to make the raw data available to other researchers.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

ORCID iDs
Jean Liew http://orcid.org/0000-0002-8104-2490
Zara Izadi http://orcid.org/0000-0002-1867-9095
Saskia Lawson-Toye http://orcid.org/0000-0002-8611-162X
Laure Gosses http://orcid.org/0000-0002-4528-310X
Anja Strangfeld http://orcid.org/0000-0002-6233-022X

Loreto Carmona http://orcid.org/0000-0002-4401-2551
Martin Schäfer http://orcid.org/0000-0001-6487-3634
Gözde Kübra Yarícı http://orcid.org/0000-0001-9543-4685
Jeffrey Spurs http://orcid.org/0000-0002-5556-4618
Jonathan Hausmann http://orcid.org/0000-0003-0786-8788
Emily Ward http://orcid.org/0000-0002-7087-8543
Pedro M Machado http://orcid.org/0000-0002-8411-7972
Philip C Robinson http://orcid.org/0000-0002-3156-3418

REFERENCES

