Supplement

List of Supplement Tables and Figures

Table S1 Data sources for each cost component

Table S2 Inclusion criteria for EULAR list of comorbidities

Table S3 Regression results for the CCI grouping: coefficients of the GLM model estimating direct costs

Table S4 Regression results for the CCI grouping: coefficients of the two-part model estimating indirect costs

 Table S5 Regression results for the EULAR grouping in the sensitivity analysis: coefficients

of the GLM model estimating direct costs

Table S6 Regression results for the EULAR grouping in the sensitivity analysis: coefficients of the two-part model estimating indirect costs

Table S7 Number of participants with EULAR list of comorbidities from multiple data sources

Figure S1 Data preparation for identifying EULAR list of comorbidities

Figure S2A Average annualised direct costs by age and LTC group (EULAR grouping)

Figure S2B Average annualised indirect costs by age and LTC group (EULAR grouping)

Figure S3A Average annualised direct costs by gender and LTC group (EULAR grouping)

Figure S3B Average annualised indirect costs by gender and LTC group (EULAR grouping)

Cost domain	Data source
Direct costs	
Prescription	PIS dataset
	PHS: Scottish Drug Tariff,
	NHSBSA: BNF SNOMED Mapping dataset
Hospitalisation	SMR01 dataset
	PHS: Specialty Costs R040X, R042X
Examinations	SERA: "BloodAndXray" dataset
	PHS: Specialty Costs R120, R130
Indirect costs	
Productivity loss, including paid	SERA: "Employ" dataset
and unpaid work	SMR01 dataset
-	ONS: Weekly pay rate, gross (\pounds) for all employee
	jobs in the United Kingdom at 2020 prices

Table S1 Data sources for each cost component

Abbreviations: BNF = British National Formulary, NHSBSA = National Health Service Business Service Authority, ONS = Office for National Statistics, PHS = Public Health Scotland, PIS = Prescription Information System, SERA = Scottish Early Rheumatoid Arthritis cohort, SMR01 = Scottish Morbidity Records-general/acute inpatient daycase, SNOMED = Systematised Nomenclature Of Medicine.

. .

Disease of interest	Diagnostic and drug codes
Cardiovascular diseases	ICD-10: I00 – I99
	BNF: 0202, 0205, 0206, 0209, 0210, 0212
Gastrointestinal diseases	ICD-10: K20 – K95
	BNF: 01
Infections	ICD-10: A00 – A99, B00 – B99
	BNF: 05
Depression	ICD-10: F30 – F39
	BNF: 0403
Malignancy	ICD-10: C00 – C99, D00 – D49
	BNF: 08
	SMR06: any type of cancer
Osteoporosis	ICD-10: M80 – M85
	BNF: 0606, 090604, 090501

Table S2 Inclusion criteria for EULAR list of comorbidities

Abbreviations: BNF = British National Formulary, ICD: International Classification of Diseases.

Covariates	Coefficient (95%CI)	Std. Err	p Value				
Sex							
Male	Reference						
Female	-0.012 (-0.191, 0.158)	0.094	0.898				
Age group							
< 45	Reference						
45 - 54	0.221 (-0.087, 0.528)	0.157	0.159				
55 - 64	0.406 (0.113, 0.698)	0.149	<0.01				
65 – 75	0.485 (0.186, 0.785)	0.153	<0.01				
> 75	0.688 (0.345, 1.030)	0.175	<0.001				
SIMD							
1 (most deprived)	Reference						
2	-0.644 (-0.908, -0.381)	0.134	<0.001				
3	-0.627 (-0.904, -0.350)	0.141	<0.001				
4	-0.572 (-0.837, -0.308)	0.135	<0.001				
5 (least deprived)	-0.379 (-0.669, -0.088)	0.148	< 0.05				
Clinical outcomes							
HAQ-DI score	0.178 (0.030, 0.327)	0.076	< 0.05				
EQ5D score	-0.107 (-0.622, 0.408)	0.263	0.684				
Follow-up period							
Index year	Reference						
2	0.415 (0.127, 0.703)	0.147	<0.01				
3	0.552 (0.262, 0.843)	0.148	< 0.001				
4	0.706 (0.414, 0.999)	0.149	< 0.001				
5	0.344 (0.049, 0.640)	0.151	<0.01				
6	0.517 (0.218, 0.816)	0.153	<0.001				
LTC group (using the CCI grouping)							
RA alone	Reference						
RA + Single LTC	0.867 (0.633, 1.110)	0.119	< 0.001				
RA + MLTCs	1.576 (1.300, 1.851)	0.141	<0.001				

Table S3 Regression results for the CCI grouping: coefficients of the GLM model estimating direct costs

Abbreviations: CCI = Charlson Comorbidity Index, EQ5D= EuroQol- 5 Dimension

, GLM= generalised linear model, HAQ-DI= Health Assessment Questionnaire-Disability Index, LTC= long-term conditions, MLTCs= multiple long-term conditions, RA= rheumatoid arthritis, SIMD: Scottish Index of Multiple Deprivation Covariates

1st modelling part

2nd modelling part

Covariates	(probability of incurring costs)			(conditional on incurring costs)			
	Coefficient (95% CI)	Std. Err	p value	(conditional of r Coefficient (95% CI)	0	p value	
Age group							
< 45	Reference			Reference			
45 – 55	-0.040 (-0.325, 0.255)	0.148	0.812	0.073 (-0.133, 0.279)	0.105	0.487	
55 - 65	-0.095 (-0.371, 0.181)	0.140	0.501	0.162 (-0.033, 0.357)	0.100	0.104	
Sex							
Male	Reference			Reference			
Female	0.215 (-0.020, 0.450)	0.120	0.073	-0.394 (-0.559, -0.229)	0.084	<0.001	
SIMD							
1 (most deprived)	Reference			Reference			
2	0.050 (-0.266, 0.366)	0.161	0.755	-0.052 (-0.250, 0.146)	0.101	0.606	
3	-0.351 (-0.684, -0.019)	0.170	< 0.05	0.004 (-0.241, 0.233)	0.121	0.975	
4	-0.457 (-0.773, -0.142)	0.161	<0.01	-0.168 (-0.382, 0.046)	0.109	0.125	
5 (least deprived)	-0.330 (-0.693, 0.022)	0.180	0.066	-0.150 (-0.395, 0.095)	0.125	0.230	
Clinical outo							
HAQ-DI score	0.640 (0.258, 0.627)	0.094	<0.001	0.156 (0.033, 0.279)	0.063	<0.05	
EQ5D score	-2.094 (-2.051, -0.795)	0.320	<0.001	-0.171 (-0.589, 0.248)	0.214	0.425	
LTC group							
RA alone	Reference			Reference			
RA + Single LTC	0.800 (0.482, 1.118)	0.162	<0.001	0.326 (0.140, 0.512)	0.095	<0.001	
RA + MLTCs	0.856 (0.427, 1.285)	0.219	<0.001	$0.617 \\ (0.379, 0.854) \\ \hline 0.5D = 5 \\ \hline 0.001 \\ \hline 0.51 $	0.121	<0.001	

 Table S4 Regression results for the CCI grouping: coefficients of the two-part model

 estimating indirect costs

Abbreviations: CCI = Charlson Comorbidity Index, EQ5D= EuroQol- 5 Dimension, HAQ-DI= Health Assessment Questionnaire-Disability Index, LTC= long-term conditions, MLTCs= multiple long-term conditions, RA= rheumatoid arthritis, SIMD: Scottish Index of Multiple Deprivation

Covariates	Coefficient (95% CI)	Std. Err	p Value	
Sex	· · · · · · · · · · · · · · · · · · ·		•	
Male	Reference			
Female	-0.133 (-0.317, 0.052)	0.094	< 0.05	
Age group				
< 45	Reference			
45 - 54	0.236 (-0.073, 0.546)	0.158	0.135	
55 - 64	0.270 (-0.030, 0.569)	0.153	0.007	
65 - 75	0.415 (0.107, 0.723)	0.157	< 0.01	
> 75	0.855 (0.505, 1.206)	0.179	< 0.001	
SIMD				
1 (most deprived)	Reference			
2	-0.485 (-0.750, -0.220)	0.135	< 0.001	
3	-0.608 (-0.886, -0.301)	0.142	< 0.001	
4	-0.389 (-0.656, -0.123)	0.136	< 0.01	
5 (least deprived)	-0.308 (-0.599, -0.016)	0.149	< 0.05	
Clinical outcomes				
HAQ-DI score	0.201 (0.051, 0.350)	0.076	<0.01	
EQ5D score	-0.080 (-0.599, 0.439)	0.265	0.763	
Follow-up period				
Index year	Reference			
2	0.363 (0.074, 0.654)	0.148	< 0.05	
3	0.538 (0.246, 0.830)	0.149	< 0.001	
4	0.568 (0.274, 0.861)	0.150	< 0.001	
5	0.316 (0.019, 0.612)	0.151	< 0.05	
6	0.471 (0.171, 0.772)	0.153	<0.01	
LTC group				
RA alone	Reference			
RA + Single LTC	0.644 (0.402, 0.887)	0.141	< 0.001	
RA + MLTCs	1.530 (1.307, 1.754)	0.134	< 0.001	

Table S5Regression results for the EULAR grouping in the sensitivity analysis:coefficients of the GLM model estimating direct costs

Abbreviations: EQ5D= EuroQol- 5 Dimension, EULAR: European Alliance of Associations for Rheumatology, GLM= generalised linear model, HAQ-DI= Health Assessment Questionnaire-Disability Index, LTC= long-term conditions, MLTCs= multiple long-term conditions, RA= rheumatoid arthritis, SIMD: Scottish Index of Multiple Deprivation Covariates

2nd modelling part

p value Coefficient

(conditional on incurring costs)

Std.

p value

	(95% CI)	Sta. Err	p value	(95% CI)	Sta. Err	p value
Age group						
18 - 34	Reference			Reference		
35 – 44	-0.142 (-0.441, 0.156)	0.152	0.350	0.100 (-0.112, 0.312)	0.108	0.356
45 – 54	-0.264 (-0.551, 0.024)	0.147	0.072	0.185 (-0.017, 0.386)	0.103	0.073
Sex						
Male	Reference			Reference		
Female	0.137 (-0.097, 0.372)	0.120	0.251	-0.427 (-0.595, -0.258)	0.086	<0.001
SIMD						
1 (most deprived)	Reference			Reference		
2	0.101 (-0.216, 0.420)	0.162	0.531	0.003 (-0.200, 0.205)	0.103	0.978
3	-0.407 (-0.742, -0.071)	0.171	<0.05	-0.016 (-0.258, 0.226)	0.123	0.895
4	-0.443 (-0.762, -0.123)	0.163	<0.01	-0.170 (-0.390, -0.050)	0.112	0.130
5 (least deprived)	-0.317 (-0.673, 0.039)	0.182	0.081	-0.121 (-0.373, 0.130)	0.128	0.344
Clinical outc	omes					
HAQ-DI score	0.409 (0.223, 0.596)	0.095	<0.001	0.179 (0.054, 0.305)	0.064	<0.01
EQ5D score	-1.230 (-1.865, -0.596)	0.323	<0.001	-0.024 (-0.452, 0.403)	0.218	0.910
LTC group ((using EULAR cor	norbidity	list)			
RA alone	Reference			Reference		
RA + Single LTC	0.752 (0.479, 1.025)	0.139	<0.001	0.167 (-0.041, 0.376)	0.106	0.116
RA + MLTCs	1.064 (0.801, 1.327) EO5D= EuroOol-	0.134	<0.001	0.495 (0.302, 0.688)	0.098	<0.001

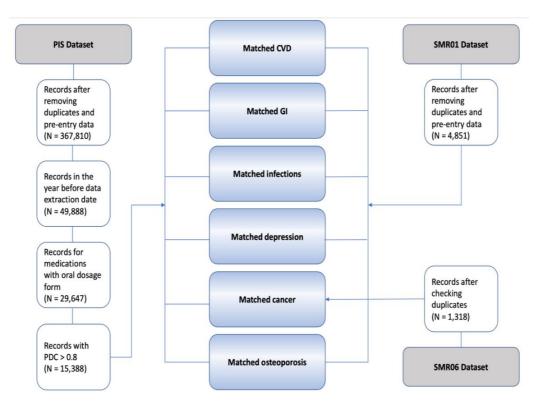
Table S6 Regression results for the EULAR grouping in the sensitivity analysis: coefficients of the two-part model estimating indirect costs

1st modelling part

Coefficient

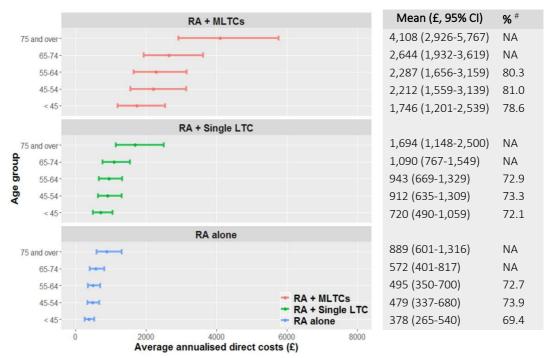
(probability of incurring costs)

Std.

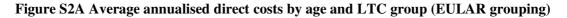

Abbreviations: EQ5D= EuroQol- 5 Dimension, EULAR: European Alliance of Associations for Rheumatology, HAQ-DI= Health Assessment Questionnaire-Disability Index, LTC= long-term conditions, MLTCs= multiple long-term conditions, RA= rheumatoid arthritis, SIMD: Scottish Index of Multiple Deprivation

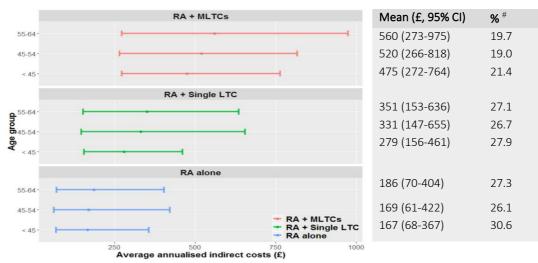
Data source	CVD	GI	Infection	Depression	Cancer	Osteoporosis
Prescription#	304	269	13	126	12	91
Hospitalisation	321	349	127	17	150	39
Cancer registry					184	
Overall*	367	393	106	109	159	104

Abbreviations: CVD = cardiovascular diseases, GI = Gastrointestinal diseases

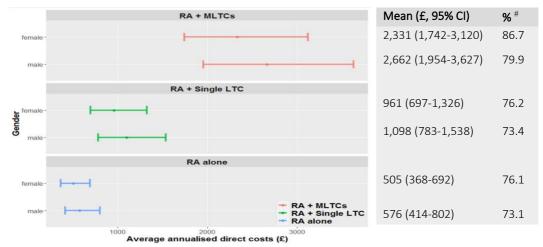

[#]Prescriptions were assigned by therapeutic uses for the six comorbidities within relevant British National Formulary chapters (Table S2). Subsequently, the Proportion of Days Covered (PDC) approach was adopted to identify medications with a PDC over 0.8 in the last year of follow-up (1/12/2018-30/11/2019).

* Prescribing, hospital and cancer records were combined to count the number of long-term conditions.




Figure S1 Data preparation for identifying EULAR list of comorbidities

Abbreviations: CVD = cardiovascular diseases, GI = Gastrointestinal diseases, PIS = Prescription Information System, SMR01 = Scottish Morbidity Records-general/acute inpatient daycase, SMR06 = Scottish Morbidity Records – cancer registry


[#] The proportion of direct costs in total (direct and indirect) costs for those aged under 65 years within each age group.

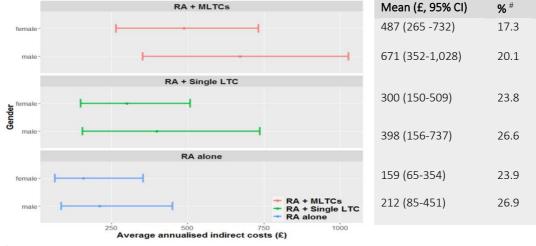

[#] The proportion of indirect costs in total (direct and indirect) costs for those aged under 65 years within each age group.

Figure S2B Average annualised indirect costs by age and LTC group (EULAR grouping)

[#]The proportion of direct costs in total (direct and indirect) costs within each gender group.

Figure S3A Average annualised direct costs by gender and LTC group (EULAR grouping)

[#] The proportion of indirect costs in total (direct and indirect) costs within each gender group.

Figure S3B Average annualised indirect costs by gender and LTC group (EULAR grouping)