Skip to main content

The Biological Functions and Signaling Mechanisms of the p75 Neurotrophin Receptor

  • Chapter
  • First Online:
Book cover Neurotrophic Factors

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 220))

Abstract

The p75 neurotrophin receptor (p75NTR) regulates a wide range of cellular functions, including programmed cell death, axonal growth and degeneration, cell proliferation, myelination, and synaptic plasticity. The multiplicity of cellular functions governed by the receptor arises from the variety of ligands and co-receptors which associate with p75NTR and regulate its signaling. P75NTR promotes survival through interactions with Trk receptors, inhibits axonal regeneration via partnerships with Nogo receptor (Nogo-R) and Lingo-1, and promotes apoptosis through association with Sortilin. Signals downstream of these interactions are further modulated through regulated intramembrane proteolysis (RIP) of p75NTR and by interactions with numerous cytosolic partners. In this chapter, we discuss the intricate signaling mechanisms of p75NTR, emphasizing how these signals are differentially regulated to mediate these diverse cellular functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agerman K, Baudet C, Fundin B, Willson C, Ernfors P (2000) Attenuation of a caspase-3 dependent cell death in NT4- and p75-deficient embryonic sensory neurons. Mol Cell Neurosci 16:258–268

    CAS  PubMed  Google Scholar 

  • Akbik F, Cafferty WB, Strittmatter SM (2012) Myelin associated inhibitors: a link between injury-induced and experience-dependent plasticity. Exp Neurol 235:43–52

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alavian KN, Sgado P, Alberi L, Subramaniam S, Simon HH (2009) Elevated P75NTR expression causes death of engrailed-deficient midbrain dopaminergic neurons by Erk1/2 suppression. Neural Dev 4:11

    PubMed  PubMed Central  Google Scholar 

  • Ali TK, Al-Gayyar MM, Matragoon S, Pillai BA, Abdelsaid MA et al (2011) Diabetes-induced peroxynitrite impairs the balance of pro-nerve growth factor and nerve growth factor, and causes neurovascular injury. Diabetologia 54:657–668

    CAS  PubMed  Google Scholar 

  • Aloyz RS, Bamji SX, Pozniak CD, Toma JG, Atwal J et al (1998) p53 is essential for developmental neuron death as regulated by the TrkA and p75 neurotrophin receptors. J Cell Biol 143:1691–1703

    CAS  PubMed  PubMed Central  Google Scholar 

  • Anton ES, Weskamp G, Reichardt LF, Matthew WD (1994) Nerve growth factor and its low-affinity receptor promote Schwann cell migration. Proc Natl Acad Sci U S A 91:2795–2799

    CAS  PubMed  PubMed Central  Google Scholar 

  • Arevalo MA, Rodriguez-Tebar A (2006) Activation of casein kinase II and inhibition of phosphatase and tensin homologue deleted on chromosome 10 phosphatase by nerve growth factor/p75NTR inhibit glycogen synthase kinase-3beta and stimulate axonal growth. Mol Biol Cell 17:3369–3377

    CAS  PubMed  PubMed Central  Google Scholar 

  • Atwal JK, Pinkston-Gosse J, Syken J, Stawicki S, Wu Y et al (2008) PirB is a functional receptor for myelin inhibitors of axonal regeneration. Science 322:967–970

    CAS  PubMed  Google Scholar 

  • Baldwin AS (2012) Regulation of cell death and autophagy by IKK and NF-kB: critical mechanisms in immune function and cancer. Immunol Rev 246:327–345

    PubMed  Google Scholar 

  • Baldwin AN, Shooter EM (1995) Zone mapping of the binding domain of the rat low affinity nerve growth factor receptor by the introduction of novel N-glycosylation sites. J Biol Chem 270:4594–4602

    CAS  PubMed  Google Scholar 

  • Bamji SX, Majdan M, Pozniak CD, Belliveau DJ, Aloyz R et al (1998) The p75 neurotrophin receptor mediates neuronal apoptosis and is essential for naturally occurring sympathetic neuron death. J Cell Biol 140:911–923

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baranes D, Lederfein D, Huang YY, Chen M, Bailey CH, Kandel ER (1998) Tissue plasminogen activator contributes to the late phase of LTP and to synaptic growth in the hippocampal mossy fiber pathway. Neuron 21:813–825

    CAS  PubMed  Google Scholar 

  • Barker PA, Shooter EM (1994) Disruption of NGF binding to the low affinity neurotrophin receptor p75LNTR reduces NGF binding to TrkA on PC12 cells. Neuron 13:203–215

    CAS  PubMed  Google Scholar 

  • Beattie MS, Harrington AW, Lee R, Kim JY, Boyce SL et al (2002) ProNGF induces p75-mediated death of oligodendrocytes following spinal cord injury. Neuron 36:375–386

    CAS  PubMed  PubMed Central  Google Scholar 

  • Becker EB, Howell J, Kodama Y, Barker PA, Bonni A (2004) Characterization of the c-Jun N-terminal kinase-BimEL signaling pathway in neuronal apoptosis. J Neurosci 24:8762–8770

    CAS  PubMed  Google Scholar 

  • Benedetti M, Levi A, Chao MV (1993) Differential expression of nerve growth factor receptors leads to altered binding affinity and neurotrophin responsiveness. Proc Natl Acad Sci U S A 90:7859–7863

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bengoechea TG, Chen Z, O’Leary DA, Masliah E, Lee KF (2009) p75 reduces beta-amyloid-induced sympathetic innervation deficits in an Alzheimer’s disease mouse model. Proc Natl Acad Sci U S A 106:7870–7875

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bentley CA, Lee KF (2000) p75 is important for axon growth and schwann cell migration during development. J Neurosci 20:7706–7715

    CAS  PubMed  Google Scholar 

  • Benzel I, Barde YA, Casademunt E (2001) Strain-specific complementation between NRIF1 and NRIF2, two zinc finger proteins sharing structural and biochemical properties. Gene 281:19–30

    CAS  PubMed  Google Scholar 

  • Bergmann I, Priestley JV, McMahon SB, Brocker EB, Toyka KV, Koltzenburg M (1997) Analysis of cutaneous sensory neurons in transgenic mice lacking the low affinity neurotrophin receptor p75. Eur J Neurosci 9:18–28

    CAS  PubMed  Google Scholar 

  • Bertrand MJ, Kenchappa RS, Andrieu D, Leclercq-Smekens M, Nguyen HN et al (2008) NRAGE, a p75NTR adaptor protein, is required for developmental apoptosis in vivo. Cell Death Differ 15:1921–1929

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bhakar AL, Howell JL, Paul CE, Salehi AH, Becker EB et al (2003) Apoptosis induced by p75NTR overexpression requires Jun kinase-dependent phosphorylation of Bad. J Neurosci 23:11373–11381

    CAS  PubMed  Google Scholar 

  • Bibel M, Hoppe E, Barde YA (1999) Biochemical and functional interactions between the neurotrophin receptors trk and p75NTR. EMBO J 18:616–622

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bischoff V, Deogracias R, Poirier F, Barde YA (2012) Seizure-induced neuronal death is suppressed in the absence of the endogenous lectin Galectin-1. J Neurosci 32:15590–15600

    CAS  PubMed  Google Scholar 

  • Blochl A, Sirrenberg C (1996) Neurotrophins stimulate the release of dopamine from rat mesencephalic neurons via Trk and p75Lntr receptors. J Biol Chem 271:21100–21107

    CAS  PubMed  Google Scholar 

  • Bogoyevitch MA, Kobe B (2006) Uses for JNK: the many and varied substrates of the c-Jun N-terminal kinases. Microbiol Mol Biol Rev 70:1061–1095

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boutilier J, Ceni C, Pagdala PC, Forgie A, Neet KE, Barker PA (2008) Proneurotrophins require endocytosis and intracellular proteolysis to induce TrkA activation. J Biol Chem 283:12709–12716

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brann AB, Tcherpakov M, Williams IM, Futerman AH, Fainzilber M (2002) Nerve growth factor-induced p75-mediated death of cultured hippocampal neurons is age-dependent and transduced through ceramide generated by neutral sphingomyelinase. J Biol Chem 277:9812–9818

    CAS  PubMed  Google Scholar 

  • Brunello N, Reynolds M, Wrathall JR, Mocchetti I (1990) Increased nerve growth factor receptor mRNA in contused rat spinal cord. Neurosci Lett 118:238–240

    CAS  PubMed  Google Scholar 

  • Bui NT, Konig HG, Culmsee C, Bauerbach E, Poppe M et al (2002) p75 neurotrophin receptor is required for constitutive and NGF-induced survival signalling in PC12 cells and rat hippocampal neurones. J Neurochem 81:594–605

    CAS  PubMed  Google Scholar 

  • Bunone G, Mariotti A, Compagni A, Morandi E, Della Valle G (1997) Induction of apoptosis by p75 neurotrophin receptor in human neuroblastoma cells. Oncogene 14:1463–1470

    CAS  PubMed  Google Scholar 

  • Caporali A, Pani E, Horrevoets AJ, Kraenkel N, Oikawa A et al (2008) Neurotrophin p75 receptor (p75NTR) promotes endothelial cell apoptosis and inhibits angiogenesis: implications for diabetes-induced impaired neovascularization in ischemic limb muscles. Circ Res 103:e15–e26

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carter BD, Kaltschmidt C, Kaltschmidt B, Offenhauser N, Bohm-Matthaei R et al (1996) Selective activation of NF-kappa B by nerve growth factor through the neurotrophin receptor p75. Science 272:542–545

    CAS  PubMed  Google Scholar 

  • Casaccia-Bonnefil P, Carter BD, Dobrowsky RT, Chao MV (1996) Death of oligodendrocytes mediated by the interaction of nerve growth factor with its receptor p75. Nature 383:716–719

    CAS  PubMed  Google Scholar 

  • Casademunt E, Carter BD, Benzel I, Frade JM, Dechant G, Barde YA (1999) The zinc finger protein NRIF interacts with the neurotrophin receptor p75(NTR) and participates in programmed cell death. EMBO J 18:6050–6061

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ceni C, Kommaddi RP, Thomas R, Vereker E, Liu X et al (2010) The p75NTR intracellular domain generated by neurotrophin-induced receptor cleavage potentiates Trk signaling. J Cell Sci 123:2299–2307

    CAS  PubMed  Google Scholar 

  • Cesca F, Yabe A, Spencer-Dene B, Arrigoni A, Al-Qatari M et al (2011) Kidins220/ARMS is an essential modulator of cardiovascular and nervous system development. Cell Death Dis 2:e226

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chan JR, Cosgaya JM, Wu YJ, Shooter EM (2001) Neurotrophins are key mediators of the myelination program in the peripheral nervous system. Proc Natl Acad Sci U S A 98:14661–14668

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chan JR, Jolicoeur C, Yamauchi J, Elliott J, Fawcett JP et al (2006) The polarity protein Par-3 directly interacts with p75NTR to regulate myelination. Science 314:832–836

    CAS  PubMed  Google Scholar 

  • Chang MS, Arevalo JC, Chao MV (2004) Ternary complex with Trk, p75, and an ankyrin-rich membrane spanning protein. J Neurosci Res 78:186–192

    CAS  PubMed  Google Scholar 

  • Chao MV, Hempstead BL (1995) p75 and Trk: a two-receptor system. Trends Neurosci 18:321–326

    CAS  PubMed  Google Scholar 

  • Chao MV, Bothwell MA, Ross AH, Koprowski H, Lanahan AA et al (1986) Gene transfer and molecular cloning of the human NGF receptor. Science 232:518–521

    CAS  PubMed  Google Scholar 

  • Chapman BS (1995) A region of the 75 kDa neurotrophin receptor homologous to the death domains of TNFR-I and Fas. FEBS Lett 374:216–220

    CAS  PubMed  Google Scholar 

  • Chapman BS, Kuntz ID (1995) Modeled structure of the 75-kDa neurotrophin receptor. Protein Sci 4:1696–1707

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chittka A, Chao MV (1999) Identification of a zinc finger protein whose subcellular distribution is regulated by serum and nerve growth factor. Proc Natl Acad Sci U S A 96:10705–10710

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chittka A, Arevalo JC, Rodriguez-Guzman M, Perez P, Chao MV, Sendtner M (2004) The p75NTR-interacting protein SC1 inhibits cell cycle progression by transcriptional repression of cyclin E. J Cell Biol 164:985–996

    CAS  PubMed  PubMed Central  Google Scholar 

  • Choi S, Friedman WJ (2009) Inflammatory cytokines IL-1beta and TNF-alpha regulate p75NTR expression in CNS neurons and astrocytes by distinct cell-type-specific signalling mechanisms. ASN Neuro 1(2):e00010

    PubMed  PubMed Central  Google Scholar 

  • Clary DO, Reichardt LF (1994) An alternatively spliced form of the nerve growth factor receptor TrkA confers an enhanced response to neurotrophin 3. Proc Natl Acad Sci U S A 91:11133–11137

    CAS  PubMed  PubMed Central  Google Scholar 

  • Copray JC, Jaarsma D, Kust BM, Bruggeman RW, Mantingh I et al (2003) Expression of the low affinity neurotrophin receptor p75 in spinal motoneurons in a transgenic mouse model for amyotrophic lateral sclerosis. Neuroscience 116:685–694

    CAS  PubMed  Google Scholar 

  • Cortazzo MH, Kassis ES, Sproul KA, Schor NF (1996) Nerve growth factor (NGF)-mediated protection of neural crest cells from antimitotic agent-induced apoptosis: the role of the low-affinity NGF receptor. J Neurosci 16:3895–3899

    CAS  PubMed  Google Scholar 

  • Cosgaya JM, Chan JR, Shooter EM (2002) The neurotrophin receptor p75NTR as a positive modulator of myelination. Science 298:1245–1248

    CAS  PubMed  Google Scholar 

  • Costantini C, Rossi F, Formaggio E, Bernardoni R, Cecconi D, Della-Bianca V (2005) Characterization of the signaling pathway downstream p75 neurotrophin receptor involved in beta-amyloid peptide-dependent cell death. J Mol Neurosci 25:141–156

    CAS  PubMed  Google Scholar 

  • Costantini C, Scrable H, Puglielli L (2006) An aging pathway controls the TrkA to p75NTR receptor switch and amyloid beta-peptide generation. EMBO J 25:1997–2006

    CAS  PubMed  PubMed Central  Google Scholar 

  • Coulson EJ, Reid K, Baca M, Shipham KA, Hulett SM et al (2000) Chopper, a new death domain of the p75 neurotrophin receptor that mediates rapid neuronal cell death. J Biol Chem 275:30537–30545

    CAS  PubMed  Google Scholar 

  • Coulson EJ, Reid K, Shipham KM, Morley S, Kilpatrick TJ, Bartlett PF (2004) The role of neurotransmission and the Chopper domain in p75 neurotrophin receptor death signaling. Prog Brain Res 146:41–62

    CAS  PubMed  Google Scholar 

  • Coulson EJ, May LM, Osborne SL, Reid K, Underwood CK et al (2008) p75 neurotrophin receptor mediates neuronal cell death by activating GIRK channels through phosphatidylinositol 4,5-bisphosphate. J Neurosci 28:315–324

    CAS  PubMed  Google Scholar 

  • Cragnolini AB, Friedman WJ (2008) The function of p75NTR in glia. Trends Neurosci 31:99–104

    CAS  PubMed  Google Scholar 

  • Culmsee C, Gerling N, Lehmann M, Nikolova-Karakashian M, Prehn JH et al (2002) Nerve growth factor survival signaling in cultured hippocampal neurons is mediated through TrkA and requires the common neurotrophin receptor P75. Neuroscience 115:1089–1108

    CAS  PubMed  Google Scholar 

  • Davies AM, Lee KF, Jaenisch R (1993) p75-deficient trigeminal sensory neurons have an altered response to NGF but not to other neurotrophins. Neuron 11:565–574

    CAS  PubMed  Google Scholar 

  • DeFreitas MF, McQuillen PS, Shatz CJ (2001) A novel p75NTR signaling pathway promotes survival, not death, of immunopurified neocortical subplate neurons. J Neurosci 21:5121–5129

    CAS  PubMed  Google Scholar 

  • Deinhardt K, Kim T, Spellman DS, Mains RE, Eipper BA et al (2011) Neuronal growth cone retraction relies on proneurotrophin receptor signaling through Rac. Sci Signal 4:ra82

    PubMed  PubMed Central  Google Scholar 

  • Dempsey PW, Doyle SE, He JQ, Cheng G (2003) The signaling adaptors and pathways activated by TNF superfamily. Cytokine Growth Factor Rev 14:193–209

    CAS  PubMed  Google Scholar 

  • Deppmann CD, Mihalas S, Sharma N, Lonze BE, Niebur E, Ginty DD (2008) A model for neuronal competition during development. Science 320:369–373

    CAS  PubMed  PubMed Central  Google Scholar 

  • Desmond NL, Levy WB (1986) Changes in the postsynaptic density with long-term potentiation in the dentate gyrus. J Comp Neurol 253:476–482

    CAS  PubMed  Google Scholar 

  • Dhanasekaran DN, Reddy EP (2008) JNK signaling in apoptosis. Oncogene 27:6245–6251

    CAS  PubMed  PubMed Central  Google Scholar 

  • Di Certo MG, Corbi N, Bruno T, Iezzi S, De Nicola F et al (2007) NRAGE associates with the anti-apoptotic factor Che-1 and regulates its degradation to induce cell death. J Cell Sci 120:1852–1858

    PubMed  Google Scholar 

  • Dobrowsky RT, Werner MH, Castellino AM, Chao MV, Hannun YA (1994) Activation of the sphingomyelin cycle through the low-affinity neurotrophin receptor. Science 265:1596–1599

    CAS  PubMed  Google Scholar 

  • Domeniconi M, Zampieri N, Spencer T, Hilaire M, Mellado W et al (2005) MAG induces regulated intramembrane proteolysis of the p75 neurotrophin receptor to inhibit neurite outgrowth. Neuron 46:849–855

    CAS  PubMed  Google Scholar 

  • Donovan N, Becker EB, Konishi Y, Bonni A (2002) JNK phosphorylation and activation of BAD couples the stress-activated signaling pathway to the cell death machinery. J Biol Chem 277:40944–40949

    CAS  PubMed  Google Scholar 

  • Du Q, Zhang Y, Tian XX, Li Y, Fang WG (2009) MAGE-D1 inhibits proliferation, migration and invasion of human breast cancer cells. Oncol Rep 22:659–665

    CAS  PubMed  Google Scholar 

  • Dubreuil CI, Winton MJ, McKerracher L (2003) Rho activation patterns after spinal cord injury and the role of activated Rho in apoptosis in the central nervous system. J Cell Biol 162:233–243

    CAS  PubMed  PubMed Central  Google Scholar 

  • Edwards RH, Selby MJ, Garcia PD, Rutter WJ (1988) Processing of the native nerve growth factor precursor to form biologically active nerve growth factor. J Biol Chem 263:6810–6815

    CAS  PubMed  Google Scholar 

  • Ernfors P, Henschen A, Olson L, Persson H (1989) Expression of nerve growth factor receptor mRNA is developmentally regulated and increased after axotomy in rat spinal cord motoneurons. Neuron 2:1605–1613

    CAS  PubMed  Google Scholar 

  • Ernfors P, Wetmore C, Eriksdotter-Nilsson M, Bygdeman M, Stromberg I et al (1991) The nerve growth factor receptor gene is expressed in both neuronal and non-neuronal tissues in the human fetus. Int J Dev Neurosci 9:57–66

    CAS  PubMed  Google Scholar 

  • Ernfors P, Lee KF, Kucera J, Jaenisch R (1994) Lack of neurotrophin-3 leads to deficiencies in the peripheral nervous system and loss of limb proprioceptive afferents. Cell 77:503–512

    CAS  PubMed  Google Scholar 

  • Esposito D, Patel P, Stephens RM, Perez P, Chao MV et al (2001) The cytoplasmic and transmembrane domains of the p75 and Trk A receptors regulate high affinity binding to nerve growth factor. J Biol Chem 276:32687–32695

    CAS  PubMed  Google Scholar 

  • Fan YJ, Wu LL, Li HY, Wang YJ, Zhou XF (2008) Differential effects of pro-BDNF on sensory neurons after sciatic nerve transection in neonatal rats. Eur J Neurosci 27:2380–2390

    PubMed  Google Scholar 

  • Farinas I, Jones KR, Backus C, Wang XY, Reichardt LF (1994) Severe sensory and sympathetic deficits in mice lacking neurotrophin-3. Nature 369:658–661

    CAS  PubMed  Google Scholar 

  • Feinstein E, Kimchi A, Wallach D, Boldin M, Varfolomeev E (1995) The death domain: a module shared by proteins with diverse cellular functions. Trends Biochem Sci 20:342–344

    CAS  PubMed  Google Scholar 

  • Feng D, Kim T, Ozkan E, Light M, Torkin R et al (2010) Molecular and structural insight into proNGF engagement of p75NTR and sortilin. J Mol Biol 396:967–984

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fifkova E, Anderson CL (1981) Stimulation-induced changes in dimensions of stalks of dendritic spines in the dentate molecular layer. Exp Neurol 74:621–627

    CAS  PubMed  Google Scholar 

  • Figurov A, Pozzo-Miller LD, Olafsson P, Wang T, Lu B (1996) Regulation of synaptic responses to high-frequency stimulation and LTP by neurotrophins in the hippocampus. Nature 381:706–709

    CAS  PubMed  Google Scholar 

  • Frade JM (2005) Nuclear translocation of the p75 neurotrophin receptor cytoplasmic domain in response to neurotrophin binding. J Neurosci 25:1407–1411

    CAS  PubMed  Google Scholar 

  • Frade JM, Barde YA (1999) Genetic evidence for cell death mediated by nerve growth factor and the neurotrophin receptor p75 in the developing mouse retina and spinal cord. Development 126:683–690

    CAS  PubMed  Google Scholar 

  • Frade JM, Rodriguez-Tebar A, Barde YA (1996) Induction of cell death by endogenous nerve growth factor through its p75 receptor. Nature 383:166–168

    CAS  PubMed  Google Scholar 

  • Francis N, Farinas I, Brennan C, Rivas-Plata K, Backus C et al (1999) NT-3, like NGF, is required for survival of sympathetic neurons, but not their precursors. Dev Biol 210:411–427

    CAS  PubMed  Google Scholar 

  • Frazier WA, Boyd LF, Bradshaw RA (1974a) Properties of the specific binding of 125I-nerve growth factor to responsive peripheral neurons. J Biol Chem 249:5513–5519

    CAS  PubMed  Google Scholar 

  • Frazier WA, Boyd LF, Szutowicz A, Pulliam MW, Bradshaw RA (1974b) Specific binding sites for 125I-nerve growth factor in peripheral tissues and brain. Biochem Biophys Res Commun 57:1096–1103

    CAS  PubMed  Google Scholar 

  • Frey U, Muller M, Kuhl D (1996) A different form of long-lasting potentiation revealed in tissue plasminogen activator mutant mice. J Neurosci 16:2057–2063

    CAS  PubMed  Google Scholar 

  • Friedman WJ (2000) Neurotrophins induce death of hippocampal neurons via the p75 receptor. J Neurosci 20:6340–6346

    CAS  PubMed  Google Scholar 

  • Fujita Y, Endo S, Takai T, Yamashita T (2011a) Myelin suppresses axon regeneration by PIR-B/SHP-mediated inhibition of Trk activity. EMBO J 30:1389–1401

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fujita Y, Takashima R, Endo S, Takai T, Yamashita T (2011b) The p75 receptor mediates axon growth inhibition through an association with PIR-B. Cell Death Dis 2:e198

    CAS  PubMed  PubMed Central  Google Scholar 

  • Geetha T, Kenchappa RS, Wooten MW, Carter BD (2005) TRAF6-mediated ubiquitination regulates nuclear translocation of NRIF, the p75 receptor interactor. EMBO J 24:3859–3868

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gehler S, Shaw AE, Sarmiere PD, Bamburg JR, Letourneau PC (2004) Brain-derived neurotrophic factor regulation of retinal growth cone filopodial dynamics is mediated through actin depolymerizing factor/cofilin. J Neurosci 24:10741–10749

    CAS  PubMed  Google Scholar 

  • Gentry JJ, Casaccia-Bonnefil P, Carter BD (2000) Nerve growth factor activation of nuclear factor kappaB through its p75 receptor is an anti-apoptotic signal in RN22 schwannoma cells. J Biol Chem 275:7558–7565

    CAS  PubMed  Google Scholar 

  • Gentry JJ, Rutkoski NJ, Burke TL, Carter BD (2004) A functional interaction between the p75 neurotrophin receptor interacting factors, TRAF6 and NRIF. J Biol Chem 279:16646–16656

    CAS  PubMed  Google Scholar 

  • Giehl KM, Rohrig S, Bonatz H, Gutjahr M, Leiner B et al (2001) Endogenous brain-derived neurotrophic factor and neurotrophin-3 antagonistically regulate survival of axotomized corticospinal neurons in vivo. J Neurosci 21:3492–3502

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ginsberg D (2002) E2F1 pathways to apoptosis. FEBS Lett 529:122–125

    CAS  PubMed  Google Scholar 

  • Gjerstad MD, Tandrup T, Koltzenburg M, Jakobsen J (2002) Predominant neuronal B-cell loss in L5 DRG of p75 receptor-deficient mice. J Anat 200:81–87

    PubMed  Google Scholar 

  • Goldstein B, Macara IG (2007) The PAR proteins: fundamental players in animal cell polarization. Dev Cell 13:609–622

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gong Y, Cao P, Yu HJ, Jiang T (2008) Crystal structure of the neurotrophin-3 and p75NTR symmetrical complex. Nature 454:789–793

    CAS  PubMed  Google Scholar 

  • Grob PM, Berlot CH, Bothwell MA (1983) Affinity labeling and partial purification of nerve growth factor receptors from rat pheochromocytoma and human melanoma cells. Proc Natl Acad Sci U S A 80:6819–6823

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grob PM, Ross AH, Koprowski H, Bothwell M (1985) Characterization of the human melanoma nerve growth factor receptor. J Biol Chem 260:8044–8049

    CAS  PubMed  Google Scholar 

  • Gu C, Casaccia-Bonnefil P, Srinivasan A, Chao MV (1999) Oligodendrocyte apoptosis mediated by caspase activation. J Neurosci 19:3043–3049

    CAS  PubMed  Google Scholar 

  • Gupta S, Barrett T, Whitmarsh AJ, Cavanagh J, Sluss HK et al (1996) Selective interaction of JNK protein kinase isoforms with transcription factors. EMBO J 15:2760–2770

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ha H, Han D, Choi Y (2009) TRAF-mediated TNFR-family signaling. Curr Protoc Immunol Chapter 11:Unit11 9D

    PubMed  Google Scholar 

  • Hacker H, Tseng PH, Karin M (2011) Expanding TRAF function: TRAF3 as a tri-faced immune regulator. Nat Rev Immunol 11:457–468

    PubMed  Google Scholar 

  • Hamanoue M, Middleton G, Wyatt S, Jaffray E, Hay RT, Davies AM (1999) p75-mediated NF-kappaB activation enhances the survival response of developing sensory neurons to nerve growth factor. Mol Cell Neurosci 14:28–40

    CAS  PubMed  Google Scholar 

  • Harrington AW, Kim JY, Yoon SO (2002) Activation of Rac GTPase by p75 Is Necessary for c-jun N-Terminal Kinase-Mediated Apoptosis. J Neurosci 22:156–166

    CAS  PubMed  Google Scholar 

  • Harrington AW, Leiner B, Blechschmitt C, Arevalo JC, Lee R et al (2004) Secreted proNGF is a pathophysiological death-inducing ligand after adult CNS injury. Proc Natl Acad Sci U S A 101:6226–6230

    CAS  PubMed  PubMed Central  Google Scholar 

  • Harrington AW, Li QM, Tep C, Park JB, He Z, Yoon SO (2008) The role of Kalirin9 in p75/nogo receptor-mediated RhoA activation in cerebellar granule neurons. J Biol Chem 283:24690–24697

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hashimoto Y, Kaneko Y, Tsukamoto E, Frankowski H, Kouyama K et al (2004) Molecular characterization of neurohybrid cell death induced by Alzheimer’s amyloid-beta peptides via p75NTR/PLAIDD. J Neurochem 90:549–558

    CAS  PubMed  Google Scholar 

  • He XL, Garcia KC (2004) Structure of nerve growth factor complexed with the shared neurotrophin receptor p75. Science 304:870–875

    CAS  PubMed  Google Scholar 

  • Hempstead BL, Martin-Zanca D, Kaplan DR, Parada LF, Chao MV (1991) High-affinity NGF binding requires coexpression of the trk proto-oncogene and the low-affinity NGF receptor. Nature 350:678–683

    CAS  PubMed  Google Scholar 

  • Heymach JV Jr, Shooter EM (1995) The biosynthesis of neurotrophin heterodimers by transfected mammalian cells. J Biol Chem 270:12297–12304

    CAS  PubMed  Google Scholar 

  • Hirata H, Hibasami H, Yoshida T, Ogawa M, Matsumoto M et al (2001) Nerve growth factor signaling of p75 induces differentiation and ceramide-mediated apoptosis in Schwann cells cultured from degenerating nerves. Glia 36:245–258

    CAS  PubMed  Google Scholar 

  • Horres CR, Hannun YA (2012) The roles of neutral sphingomyelinases in neurological pathologies. Neurochem Res 37:1137–1149

    CAS  PubMed  Google Scholar 

  • Hu CJ, Wang LY, Chodosh LA, Keith B, Simon MC (2003) Differential roles of hypoxia-inducible factor 1alpha (HIF-1alpha) and HIF-2alpha in hypoxic gene regulation. Mol Cell Biol 23:9361–9374

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang YY, Bach ME, Lipp HP, Zhuo M, Wolfer DP et al (1996) Mice lacking the gene encoding tissue-type plasminogen activator show a selective interference with late-phase long-term potentiation in both Schaffer collateral and mossy fiber pathways. Proc Natl Acad Sci U S A 93:8699–8704

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hunt DL, Castillo PE (2012) Synaptic plasticity of NMDA receptors: mechanisms and functional implications. Curr Opin Neurobiol 22:496–508

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ibanez CF, Ebendal T, Barbany G, Murray-Rust J, Blundell TL, Persson H (1992) Disruption of the low affinity receptor-binding site in NGF allows neuronal survival and differentiation by binding to the trk gene product. Cell 69:329–341

    CAS  PubMed  Google Scholar 

  • Jack CR Jr, Knopman DS, Jagust WJ, Shaw LM, Aisen PS et al (2010) Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurol 9:119–128

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jansen P, Giehl K, Nyengaard JR, Teng K, Lioubinski O et al (2007) Roles for the pro-neurotrophin receptor sortilin in neuronal development, aging and brain injury. Nat Neurosci 10:1449–1457

    CAS  PubMed  Google Scholar 

  • Je HS, Yang F, Ji Y, Nagappan G, Hempstead BL, Lu B (2012) Role of pro-brain-derived neurotrophic factor (proBDNF) to mature BDNF conversion in activity-dependent competition at developing neuromuscular synapses. Proc Natl Acad Sci U S A 109:15924–15929

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang Y, Nyengaard JR, Zhang JS, Jakobsen J (2004) Selective loss of calcitonin gene-related Peptide-expressing primary sensory neurons of the a-cell phenotype in early experimental diabetes. Diabetes 53:2669–2675

    CAS  PubMed  Google Scholar 

  • Jordan BW, Dinev D, LeMellay V, Troppmair J, Gotz R et al (2001) Neurotrophin receptor-interacting mage homologue is an inducible inhibitor of apoptosis protein-interacting protein that augments cell death. J Biol Chem 276:39985–39989

    CAS  PubMed  Google Scholar 

  • Jung KM, Tan S, Landman N, Petrova K, Murray S et al (2003) Regulated intramembrane proteolysis of the p75 neurotrophin receptor modulates its association with the TrkA receptor. J Biol Chem 278:42161–42169

    CAS  PubMed  Google Scholar 

  • Kang H, Welcher AA, Shelton D, Schuman EM (1997) Neurotrophins and time: different roles for TrkB signaling in hippocampal long-term potentiation. Neuron 19:653–664

    CAS  PubMed  Google Scholar 

  • Kanning KC, Hudson M, Amieux PS, Wiley JC, Bothwell M, Schecterson LC (2003) Proteolytic processing of the p75 neurotrophin receptor and two homologs generates C-terminal fragments with signaling capability. J Neurosci 23:5425–5436

    CAS  PubMed  Google Scholar 

  • Kaplan DR, Martin-Zanca D, Parada LF (1991) Tyrosine phosphorylation and tyrosine kinase activity of the trk proto-oncogene product induced by NGF. Nature 350:158–160

    CAS  PubMed  Google Scholar 

  • Kenchappa RS, Zampieri N, Chao MV, Barker PA, Teng HK et al (2006) Ligand-dependent cleavage of the P75 neurotrophin receptor is necessary for NRIF nuclear translocation and apoptosis in sympathetic neurons. Neuron 50:219–232

    CAS  PubMed  Google Scholar 

  • Kenchappa RS, Tep C, Korade Z, Urra S, Bronfman FC et al (2010) p75 neurotrophin receptor-mediated apoptosis in sympathetic neurons involves a biphasic activation of JNK and up-regulation of tumor necrosis factor-alpha-converting enzyme/ADAM17. J Biol Chem 285:20358–20368

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kendall SE, Battelli C, Irwin S, Mitchell JG, Glackin CA, Verdi JM (2005) NRAGE mediates p38 activation and neural progenitor apoptosis via the bone morphogenetic protein signaling cascade. Mol Cell Biol 25:7711–7724

    CAS  PubMed  PubMed Central  Google Scholar 

  • Khursigara G, Orlinick JR, Chao MV (1999) Association of the p75 neurotrophin receptor with TRAF6. J Biol Chem 274:2597–2600

    CAS  PubMed  Google Scholar 

  • Khursigara G, Bertin J, Yano H, Moffett H, DiStefano PS, Chao MV (2001) A prosurvival function for the p75 receptor death domain mediated via the caspase recruitment domain receptor-interacting protein 2. J Neurosci 21:5854–5863

    CAS  PubMed  Google Scholar 

  • Kim T, Hempstead BL (2009) NRH2 is a trafficking switch to regulate sortilin localization and permit proneurotrophin-induced cell death. EMBO J 28:1612–1623

    CAS  PubMed  PubMed Central  Google Scholar 

  • Klein R, Jing SQ, Nanduri V, O’Rourke E, Barbacid M (1991) The trk proto-oncogene encodes a receptor for nerve growth factor. Cell 65:189–197

    CAS  PubMed  Google Scholar 

  • Knowles JK, Rajadas J, Nguyen TV, Yang T, LeMieux MC et al (2009) The p75 neurotrophin receptor promotes amyloid-beta(1–42)-induced neuritic dystrophy in vitro and in vivo. J Neurosci 29:10627–10637

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kokaia Z, Andsberg G, Martinez-Serrano A, Lindvall O (1998) Focal cerebral ischemia in rats induces expression of P75 neurotrophin receptor in resistant striatal cholinergic neurons. Neuroscience 84:1113–1125

    CAS  PubMed  Google Scholar 

  • Koliatsos VE, Crawford TO, Price DL (1991) Axotomy induces nerve growth factor receptor immunoreactivity in spinal motor neurons. Brain Res 549:297–304

    CAS  PubMed  Google Scholar 

  • Kommaddi RP, Dickson KM, Barker PA (2011a) Stress-induced expression of the p75 neurotrophin receptor is regulated by O-GlcNAcylation of the Sp1 transcription factor. J Neurochem 116:396–405

    CAS  PubMed  Google Scholar 

  • Kommaddi RP, Thomas R, Ceni C, Daigneault K, Barker PA (2011b) Trk-dependent ADAM17 activation facilitates neurotrophin survival signaling. FASEB J 25:2061–2070

    CAS  PubMed  Google Scholar 

  • Kong H, Boulter J, Weber JL, Lai C, Chao MV (2001) An evolutionarily conserved transmembrane protein that is a novel downstream target of neurotrophin and ephrin receptors. J Neurosci 21:176–185

    CAS  PubMed  Google Scholar 

  • Korte M, Kang H, Bonhoeffer T, Schuman E (1998) A role for BDNF in the late-phase of hippocampal long-term potentiation. Neuropharmacology 37:553–559

    CAS  PubMed  Google Scholar 

  • Krystosek A, Seeds NW (1981) Plasminogen activator release at the neuronal growth cone. Science 213:1532–1534

    CAS  PubMed  Google Scholar 

  • Kuan CY, Whitmarsh AJ, Yang DD, Liao G, Schloemer AJ et al (2003) A critical role of neural-specific JNK3 for ischemic apoptosis. Proc Natl Acad Sci U S A 100:15184–15189

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kuruvilla R, Zweifel LS, Glebova NO, Lonze BE, Valdez G et al (2004) A neurotrophin signaling cascade coordinates sympathetic neuron development through differential control of TrkA trafficking and retrograde signaling. Cell 118:243–255

    CAS  PubMed  Google Scholar 

  • Kust BM, Brouwer N, Mantingh IJ, Boddeke HW, Copray JC (2003) Reduced p75NTR expression delays disease onset only in female mice of a transgenic model of familial amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord 4:100–105

    CAS  PubMed  Google Scholar 

  • Kuwako K, Taniura H, Yoshikawa K (2004) Necdin-related MAGE proteins differentially interact with the E2F1 transcription factor and the p75 neurotrophin receptor. J Biol Chem 279:1703–1712

    CAS  PubMed  Google Scholar 

  • Lachance C, Belliveau DJ, Barker PA (1997) Blocking nerve growth factor binding to the p75 neurotrophin receptor on sympathetic neurons transiently reduces trkA activation but does not affect neuronal survival. Neuroscience 81:861–871

    CAS  PubMed  Google Scholar 

  • Le Moan N, Houslay DM, Christian F, Houslay MD, Akassoglou K (2011) Oxygen-dependent cleavage of the p75 neurotrophin receptor triggers stabilization of HIF-1alpha. Mol Cell 44:476–490

    PubMed  PubMed Central  Google Scholar 

  • Le AP, Friedman WJ (2012) Matrix metalloproteinase-7 regulates cleavage of pro-nerve growth factor and is neuroprotective following kainic acid-induced seizures. J Neurosci 32:703–712

    CAS  PubMed  Google Scholar 

  • Lebrun-Julien F, Bertrand MJ, De Backer O, Stellwagen D, Morales CR et al (2010) ProNGF induces TNFalpha-dependent death of retinal ganglion cells through a p75NTR non-cell-autonomous signaling pathway. Proc Natl Acad Sci U S A 107:3817–3822

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee KF, Li E, Huber LJ, Landis SC, Sharpe AH et al (1992) Targeted mutation of the gene encoding the low affinity NGF receptor p75 leads to deficits in the peripheral sensory nervous system. Cell 69:737–749

    CAS  PubMed  Google Scholar 

  • Lee R, Kermani P, Teng KK, Hempstead BL (2001) Regulation of cell survival by secreted proneurotrophins. Science 294:1945–1948

    CAS  PubMed  Google Scholar 

  • Lei K, Davis RJ (2003) JNK phosphorylation of Bim-related members of the Bcl2 family induces Bax-dependent apoptosis. Proc Natl Acad Sci U S A 100:2432–2437

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lemke G, Chao M (1988) Axons regulate Schwann cell expression of the major myelin and NGF receptor genes. Development 102:499–504

    CAS  PubMed  Google Scholar 

  • Li QM, Tep C, Yune TY, Zhou XZ, Uchida T et al (2007) Opposite regulation of oligodendrocyte apoptosis by JNK3 and Pin1 after spinal cord injury. J Neurosci 27:8395–8404

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liepinsh E, Ilag LL, Otting G, Ibanez CF (1997) NMR structure of the death domain of the p75 neurotrophin receptor. EMBO J 16:4999–5005

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lim YS, McLaughlin T, Sung TC, Santiago A, Lee KF, O’Leary DD (2008) p75(NTR) mediates ephrin-A reverse signaling required for axon repulsion and mapping. Neuron 59:746–758

    CAS  PubMed  PubMed Central  Google Scholar 

  • Linggi MS, Burke TL, Williams BB, Harrington A, Kraemer R et al (2005) Neurotrophin receptor interacting factor (NRIF) is an essential mediator of apoptotic signaling by the p75 neurotrophin receptor. J Biol Chem 280:13801–13808

    CAS  PubMed  Google Scholar 

  • Loeb DM, Maragos J, Martin-Zanca D, Chao MV, Parada LF, Greene LA (1991) The trk proto-oncogene rescues NGF responsiveness in mutant NGF-nonresponsive PC12 cell lines. Cell 66:961–966

    CAS  PubMed  Google Scholar 

  • Longo FM, Manthorpe M, Xie YM, Varon S (1997) Synthetic NGF peptide derivatives prevent neuronal death via a p75 receptor-dependent mechanism. J Neurosci Res 48:1–17

    CAS  PubMed  Google Scholar 

  • Lopez-Sanchez N, Gonzalez-Fernandez Z, Niinobe M, Yoshikawa K, Frade JM (2007) Single mage gene in the chicken genome encodes CMage, a protein with functional similarities to mammalian type II Mage proteins. Physiol Genomics 30:156–171

    CAS  PubMed  Google Scholar 

  • Lowry KS, Murray SS, McLean CA, Talman P, Mathers S et al (2001) A potential role for the p75 low-affinity neurotrophin receptor in spinal motor neuron degeneration in murine and human amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord 2:127–134

    CAS  PubMed  Google Scholar 

  • MacLachlan TK, El-Deiry WS (2002) Apoptotic threshold is lowered by p53 transactivation of caspase-6. Proc Natl Acad Sci U S A 99:9492–9497

    CAS  PubMed  PubMed Central  Google Scholar 

  • Majdan M, Lachance C, Gloster A, Aloyz R, Zeindler C et al (1997) Transgenic mice expressing the intracellular domain of the p75 neurotrophin receptor undergo neuronal apoptosis. J Neurosci 17:6988–6998

    CAS  PubMed  Google Scholar 

  • Makkerh JP, Ceni C, Auld DS, Vaillancourt F, Dorval G, Barker PA (2005) p75 neurotrophin receptor reduces ligand-induced Trk receptor ubiquitination and delays Trk receptor internalization and degradation. EMBO Rep 6:936–941

    CAS  PubMed  PubMed Central  Google Scholar 

  • Massague J, Guillette BJ, Czech MP, Morgan CJ, Bradshaw RA (1981) Identification of a nerve growth factor receptor protein in sympathetic ganglia membranes by affinity labeling. J Biol Chem 256:9419–9424

    CAS  PubMed  Google Scholar 

  • Massague J, Buxser S, Johnson GL, Czech MP (1982) Affinity labeling of a nerve growth factor receptor component on rat pheochromocytoma (PC12) cells. Biochim Biophys Acta 693:205–212

    CAS  PubMed  Google Scholar 

  • Matsumoto T, Rauskolb S, Polack M, Klose J, Kolbeck R et al (2008) Biosynthesis and processing of endogenous BDNF: CNS neurons store and secrete BDNF, not pro-BDNF. Nat Neurosci 11:131–133

    CAS  PubMed  Google Scholar 

  • McCollum AT, Estus S (2004) NGF acts via p75 low-affinity neurotrophin receptor and calpain inhibition to reduce UV neurotoxicity. J Neurosci Res 77:552–564

    CAS  PubMed  Google Scholar 

  • McQuillen PS, DeFreitas MF, Zada G, Shatz CJ (2002) A novel role for p75NTR in subplate growth cone complexity and visual thalamocortical innervation. J Neurosci 22:3580–3593

    CAS  PubMed  Google Scholar 

  • Mi S, Lee X, Shao Z, Thill G, Ji B et al (2004) LINGO-1 is a component of the Nogo-66 receptor/p75 signaling complex. Nat Neurosci 7:221–228

    CAS  PubMed  Google Scholar 

  • Miyashita T, Reed JC (1995) Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 80:293–299

    CAS  PubMed  Google Scholar 

  • Mohit AA, Martin JH, Miller CA (1995) p493F12 kinase: a novel MAP kinase expressed in a subset of neurons in the human nervous system. Neuron 14:67–78

    CAS  PubMed  Google Scholar 

  • Mukai J, Hachiya T, Shoji-Hoshino S, Kimura MT, Nadano D et al (2000) NADE, a p75NTR-associated cell death executor, is involved in signal transduction mediated by the common neurotrophin receptor p75NTR. J Biol Chem 275:17566–17570

    CAS  PubMed  Google Scholar 

  • Mukai J, Shoji S, Kimura MT, Okubo S, Sano H et al (2002) Structure-function analysis of NADE: identification of regions that mediate nerve growth factor-induced apoptosis. J Biol Chem 277:13973–13982

    CAS  PubMed  Google Scholar 

  • Murray SS, Bartlett PF, Cheema SS (1999) Differential loss of spinal sensory but not motor neurons in the p75NTR knockout mouse. Neurosci Lett 267:45–48

    CAS  PubMed  Google Scholar 

  • Murray SS, Perez P, Lee R, Hempstead BL, Chao MV (2004) A novel p75 neurotrophin receptor-related protein, NRH2, regulates nerve growth factor binding to the TrkA receptor. J Neurosci 24:2742–2749

    CAS  PubMed  Google Scholar 

  • Nakano K, Vousden KH (2001) PUMA, a novel proapoptotic gene, is induced by p53. Mol Cell 7:683–694

    CAS  PubMed  Google Scholar 

  • Naumann T, Casademunt E, Hollerbach E, Hofmann J, Dechant G et al (2002) Complete deletion of the neurotrophin receptor p75NTR leads to long-lasting increases in the number of basal forebrain cholinergic neurons. J Neurosci 22:2409–2418

    CAS  PubMed  Google Scholar 

  • Nykjaer A, Lee R, Teng KK, Jansen P, Madsen P et al (2004) Sortilin is essential for proNGF-induced neuronal cell death. Nature 427:843–848

    CAS  PubMed  Google Scholar 

  • Nykjaer A, Willnow TE, Petersen CM (2005) p75NTR – live or let die. Curr Opin Neurobiol 15:49–57

    CAS  PubMed  Google Scholar 

  • Oh JD, Chartisathian K, Chase TN, Butcher LL (2000) Overexpression of neurotrophin receptor p75 contributes to the excitotoxin-induced cholinergic neuronal death in rat basal forebrain. Brain Res 853:174–185

    CAS  PubMed  Google Scholar 

  • Okamoto K, Nagai T, Miyawaki A, Hayashi Y (2004) Rapid and persistent modulation of actin dynamics regulates postsynaptic reorganization underlying bidirectional plasticity. Nat Neurosci 7:1104–1112

    CAS  PubMed  Google Scholar 

  • Palmada M, Kanwal S, Rutkoski NJ, Gustafson-Brown C, Johnson RS et al (2002) c-jun is essential for sympathetic neuronal death induced by NGF withdrawal but not by p75 activation. J Cell Biol 158:453–461

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pang PT, Teng HK, Zaitsev E, Woo NT, Sakata K et al (2004) Cleavage of proBDNF by tPA/plasmin is essential for long-term hippocampal plasticity. Science 306:487–491

    CAS  PubMed  Google Scholar 

  • Park JB, Yiu G, Kaneko S, Wang J, Chang J et al (2005) A TNF receptor family member, TROY, is a coreceptor with Nogo receptor in mediating the inhibitory activity of myelin inhibitors. Neuron 45:345–351

    CAS  PubMed  Google Scholar 

  • Park KJ, Grosso CA, Aubert I, Kaplan DR, Miller FD (2010) p75NTR-dependent, myelin-mediated axonal degeneration regulates neural connectivity in the adult brain. Nat Neurosci 13:559–566

    CAS  PubMed  Google Scholar 

  • Parkhurst CN, Zampieri N, Chao MV (2010) Nuclear localization of the p75 neurotrophin receptor intracellular domain. J Biol Chem 285:5361–5368

    CAS  PubMed  PubMed Central  Google Scholar 

  • Passino MA, Adams RA, Sikorski SL, Akassoglou K (2007) Regulation of hepatic stellate cell differentiation by the neurotrophin receptor p75NTR. Science 315:1853–1856

    CAS  PubMed  Google Scholar 

  • Patterson SL, Pittenger C, Morozov A, Martin KC, Scanlin H et al (2001) Some forms of cAMP-mediated long-lasting potentiation are associated with release of BDNF and nuclear translocation of phospho-MAP kinase. Neuron 32:123–140

    CAS  PubMed  Google Scholar 

  • Paul CE, Vereker E, Dickson KM, Barker PA (2004) A pro-apoptotic fragment of the p75 neurotrophin receptor is expressed in p75NTRExonIV null mice. J Neurosci 24:1917–1923

    CAS  PubMed  Google Scholar 

  • Pedraza CE, Podlesniy P, Vidal N, Arevalo JC, Lee R et al (2005) Pro-NGF isolated from the human brain affected by Alzheimer’s disease induces neuronal apoptosis mediated by p75NTR. Am J Pathol 166:533–543

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peng S, Wuu J, Mufson EJ, Fahnestock M (2004) Increased proNGF levels in subjects with mild cognitive impairment and mild Alzheimer disease. J Neuropathol Exp Neurol 63:641–649

    CAS  PubMed  Google Scholar 

  • Peterson DA, Dickinson-Anson HA, Leppert JT, Lee KF, Gage FH (1999) Central neuronal loss and behavioral impairment in mice lacking neurotrophin receptor p75. J Comp Neurol 404:1–20

    CAS  PubMed  Google Scholar 

  • Plachta N, Annaheim C, Bissiere S, Lin S, Ruegg M et al (2007) Identification of a lectin causing the degeneration of neuronal processes using engineered embryonic stem cells. Nat Neurosci 10:712–719

    CAS  PubMed  Google Scholar 

  • Podlesniy P, Kichev A, Pedraza C, Saurat J, Encinas M et al (2006) Pro-NGF from Alzheimer’s disease and normal human brain displays distinctive abilities to induce processing and nuclear translocation of intracellular domain of p75NTR and apoptosis. Am J Pathol 169:119–131

    CAS  PubMed  PubMed Central  Google Scholar 

  • Poukka H, Kallio PJ, Janne OA, Palvimo JJ (1996) Regulation of the rat p75 neurotrophin receptor promoter by GC element binding proteins. Biochem Biophys Res Commun 229:565–570

    CAS  PubMed  Google Scholar 

  • Potts PR, Singh S, Knezek M, Thompson CB, Deshmukh M (2003) Critical function of endogenous XIAP in regulating caspase activation during sympathetic neuronal apoptosis. J Cell Biol 163:789–799.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rabizadeh S, Oh J, Zhong LT, Yang J, Bitler CM et al (1993) Induction of apoptosis by the low-affinity NGF receptor. Science 261:345–348

    CAS  PubMed  Google Scholar 

  • Radeke MJ, Misko TP, Hsu C, Herzenberg LA, Shooter EM (1987) Gene transfer and molecular cloning of the rat nerve growth factor receptor. Nature 325:593–597

    CAS  PubMed  Google Scholar 

  • Ramos A, Ho WC, Forte S, Dickson K, Boutilier J et al (2007) Hypo-osmolar stress induces p75NTR expression by activating Sp1-dependent transcription. J Neurosci 27:1498–1506

    CAS  PubMed  Google Scholar 

  • Rattenholl A, Lilie H, Grossmann A, Stern A, Schwarz E, Rudolph R (2001a) The pro-sequence facilitates folding of human nerve growth factor from Escherichia coli inclusion bodies. Eur J Biochem 268:3296–3303

    CAS  PubMed  Google Scholar 

  • Rattenholl A, Ruoppolo M, Flagiello A, Monti M, Vinci F et al (2001b) Pro-sequence assisted folding and disulfide bond formation of human nerve growth factor. J Mol Biol 305:523–533

    CAS  PubMed  Google Scholar 

  • Rende M, Provenzano C, Tonali P (1993) Modulation of low-affinity nerve growth factor receptor in injured adult rat spinal cord motoneurons. J Comp Neurol 338:560–574

    CAS  PubMed  Google Scholar 

  • Rodriguez-Tebar A, Dechant G, Barde YA (1990) Binding of brain-derived neurotrophic factor to the nerve growth factor receptor. Neuron 4:487–492

    CAS  PubMed  Google Scholar 

  • Rodriguez-Tebar A, Dechant G, Gotz R, Barde YA (1992) Binding of neurotrophin-3 to its neuronal receptors and interactions with nerve growth factor and brain-derived neurotrophic factor. EMBO J 11:917–922

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rogers ML, Bailey S, Matusica D, Nicholson I, Muyderman H et al (2010) ProNGF mediates death of Natural Killer cells through activation of the p75NTR-sortilin complex. J Neuroimmunol 226:93–103

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rosch H, Schweigreiter R, Bonhoeffer T, Barde YA, Korte M (2005) The neurotrophin receptor p75NTR modulates long-term depression and regulates the expression of AMPA receptor subunits in the hippocampus. Proc Natl Acad Sci U S A 102:7362–7367

    PubMed  PubMed Central  Google Scholar 

  • Ross AH, Grob P, Bothwell M, Elder DE, Ernst CS et al (1984) Characterization of nerve growth factor receptor in neural crest tumors using monoclonal antibodies. Proc Natl Acad Sci U S A 81:6681–6685

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roux PP, Colicos MA, Barker PA, Kennedy TE (1999) p75 neurotrophin receptor expression is induced in apoptotic neurons after seizure. J Neurosci 19:6887–6896

    CAS  PubMed  Google Scholar 

  • Roux PP, Bhakar AL, Kennedy TE, Barker PA (2001) The p75 neurotrophin receptor activates Akt (protein kinase B) through a phosphatidylinositol 3-kinase-dependent pathway. J Biol Chem 276:23097–23104

    CAS  PubMed  Google Scholar 

  • Ryden M, Murray-Rust J, Glass D, Ilag LL, Trupp M et al (1995) Functional analysis of mutant neurotrophins deficient in low-affinity binding reveals a role for p75LNGFR in NT-4 signalling. EMBO J 14:1979–1990

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ryden M, Hempstead B, Ibanez CF (1997) Differential modulation of neuron survival during development by nerve growth factor binding to the p75 neurotrophin receptor. J Biol Chem 272:16322–16328

    CAS  PubMed  Google Scholar 

  • Salehi AH, Roux PP, Kubu CJ, Zeindler C, Bhakar A et al (2000) NRAGE, a novel MAGE protein, interacts with the p75 neurotrophin receptor and facilitates nerve growth factor-dependent apoptosis. Neuron 27:279–288

    CAS  PubMed  Google Scholar 

  • Salehi AH, Xanthoudakis S, Barker PA (2002) NRAGE, a p75 neurotrophin receptor-interacting protein, induces caspase activation and cell death through a JNK-dependent mitochondrial pathway. J Biol Chem 277:48043–48050

    CAS  PubMed  Google Scholar 

  • Sang M, Wang L, Ding C, Zhou X, Wang B et al (2011) Melanoma-associated antigen genes – an update. Cancer Lett 302:85–90

    CAS  PubMed  Google Scholar 

  • Santos AM, Lopez-Sanchez N, Martin-Oliva D, de la Villa P, Cuadros MA, Frade JM (2012) Sortilin participates in light-dependent photoreceptor degeneration in vivo. PLoS One 7:e36243

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sedel F, Bechade C, Triller A (1999) Nerve growth factor (NGF) induces motoneuron apoptosis in rat embryonic spinal cord in vitro. Eur J Neurosci 11:3904–3912

    CAS  PubMed  Google Scholar 

  • Seeburger JL, Tarras S, Natter H, Springer JE (1993) Spinal cord motoneurons express p75NGFR and p145trkB mRNA in amyotrophic lateral sclerosis. Brain Res 621:111–115

    CAS  PubMed  Google Scholar 

  • Seidah NG, Benjannet S, Pareek S, Savaria D, Hamelin J et al (1996) Cellular processing of the nerve growth factor precursor by the mammalian pro-protein convertases. Biochem J 314(Pt 3):951–960

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shao Z, Browning JL, Lee X, Scott ML, Shulga-Morskaya S et al (2005) TAJ/TROY, an orphan TNF receptor family member, binds Nogo-66 receptor 1 and regulates axonal regeneration. Neuron 45:353–359

    CAS  PubMed  Google Scholar 

  • Shulga A, Magalhaes AC, Autio H, Plantman S, di Lieto A et al (2012) The loop diuretic bumetanide blocks posttraumatic p75NTR upregulation and rescues injured neurons. J Neurosci 32:1757–1770

    CAS  PubMed  Google Scholar 

  • Simon DJ, Weimer RM, McLaughlin T, Kallop D, Stanger K et al (2012) A caspase cascade regulating developmental axon degeneration. J Neurosci 32:17540–17553

    CAS  PubMed  PubMed Central  Google Scholar 

  • Singh KK, Park KJ, Hong EJ, Kramer BM, Greenberg ME et al (2008) Developmental axon pruning mediated by BDNF-p75NTR-dependent axon degeneration. Nat Neurosci 11:649–658

    CAS  PubMed  Google Scholar 

  • Skeldal S, Matusica D, Nykjaer A, Coulson EJ (2011) Proteolytic processing of the p75 neurotrophin receptor: a prerequisite for signalling?: Neuronal life, growth and death signalling are crucially regulated by intra-membrane proteolysis and trafficking of p75(NTR). Bioessays 33:614–625

    CAS  PubMed  Google Scholar 

  • Song XY, Zhong JH, Wang X, Zhou XF (2004) Suppression of p75NTR does not promote regeneration of injured spinal cord in mice. J Neurosci 24:542–546

    CAS  PubMed  Google Scholar 

  • Song XY, Zhou FH, Zhong JH, Wu LL, Zhou XF (2006) Knockout of p75(NTR) impairs re-myelination of injured sciatic nerve in mice. J Neurochem 96:833–842

    CAS  PubMed  Google Scholar 

  • Song W, Volosin M, Cragnolini AB, Hempstead BL, Friedman WJ (2010) ProNGF induces PTEN via p75NTR to suppress Trk-mediated survival signaling in brain neurons. J Neurosci 30:15608–15615

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sonnenfeld KH, Ishii DN (1982) Nerve growth factor effects and receptors in cultured human neuroblastoma cell lines. J Neurosci Res 8:375–391

    CAS  PubMed  Google Scholar 

  • Sotthibundhu A, Sykes AM, Fox B, Underwood CK, Thangnipon W, Coulson EJ (2008) Beta-amyloid(1–42) induces neuronal death through the p75 neurotrophin receptor. J Neurosci 28:3941–3946

    CAS  PubMed  Google Scholar 

  • Srinivasan B, Roque CH, Hempstead BL, Al-Ubaidi MR, Roque RS (2004) Microglia-derived pronerve growth factor promotes photoreceptor cell death via p75 neurotrophin receptor. J Biol Chem 279:41839–41845

    CAS  PubMed  Google Scholar 

  • Stach RW, Wagner BJ (1982) Decrease in the number of lower affinity (type II) nerve growth factor receptors on embryonic sensory neurons does not affect fiber outgrowth. J Neurosci Res 7:103–110

    CAS  PubMed  Google Scholar 

  • Stoica G, Lungu G, Kim HT, Wong PK (2008) Up-regulation of pro-nerve growth factor, neurotrophin receptor p75, and sortilin is associated with retrovirus-induced spongiform encephalomyelopathy. Brain Res 1208:204–216

    CAS  PubMed  Google Scholar 

  • Sun Y, Lim Y, Li F, Liu S, Lu JJ et al (2012) ProBDNF collapses neurite outgrowth of primary neurons by activating RhoA. PLoS One [Electronic Resource] 7:e35883

    CAS  Google Scholar 

  • Suter U, Heymach JV Jr, Shooter EM (1991) Two conserved domains in the NGF propeptide are necessary and sufficient for the biosynthesis of correctly processed and biologically active NGF. EMBO J 10:2395–2400

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sutter A, Riopelle RJ, Harris-Warrick RM, Shooter EM (1979) Nerve growth factor receptors. Characterization of two distinct classes of binding sites on chick embryo sensory ganglia cells. J Biol Chem 254:5972–5982

    CAS  PubMed  Google Scholar 

  • Syroid DE, Maycox PJ, Soilu-Hanninen M, Petratos S, Bucci T et al (2000) Induction of postnatal schwann cell death by the low-affinity neurotrophin receptor in vitro and after axotomy. J Neurosci 20:5741–5747

    CAS  PubMed  Google Scholar 

  • Tabassum A, Khwaja F, Djakiew D (2003) The p75(NTR) tumor suppressor induces caspase-mediated apoptosis in bladder tumor cells. Int J Cancer 105:47–52

    CAS  PubMed  Google Scholar 

  • Tan J, Shepherd RK (2006) Aminoglycoside-induced degeneration of adult spiral ganglion neurons involves differential modulation of tyrosine kinase B and p75 neurotrophin receptor signaling. Am J Pathol 169:528–543

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tan J, Clarke M, Barrett G, Millard R (2010) The p75 neurotrophin receptor protects primary auditory neurons against acoustic trauma in mice. Hear Res 268(1–2):46–59

    CAS  PubMed  Google Scholar 

  • Taniuchi M, Clark HB, Johnson EM Jr (1986) Induction of nerve growth factor receptor in Schwann cells after axotomy. Proc Natl Acad Sci U S A 83:4094–4098

    CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor AR, Gifondorwa DJ, Robinson MB, Strupe JL, Prevette D et al (2012) Motoneuron programmed cell death in response to proBDNF. Dev Neurobiol 72:699–712

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tcherpakov M, Bronfman FC, Conticello SG, Vaskovsky A, Levy Z et al (2002) The p75 neurotrophin receptor interacts with multiple MAGE proteins. J Biol Chem 277:49101–49104

    CAS  PubMed  Google Scholar 

  • Teng HK, Teng KK, Lee R, Wright S, Tevar S et al (2005) ProBDNF induces neuronal apoptosis via activation of a receptor complex of p75NTR and sortilin. J Neurosci 25:5455–5463

    CAS  PubMed  Google Scholar 

  • Tep C, Kim ML, Opincariu LI, Limpert AS, Chan JR et al (2012) Brain-derived neurotrophic factor (BDNF) induces polarized signaling of small GTPase (Rac1) protein at the onset of Schwann cell myelination through partitioning-defective 3 (Par3) protein. J Biol Chem 287:1600–1608

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tep C, Lim TH, Ko PO, Getahun S, Ryu JC et al (2013) Oral administration of a small molecule targeted to block proNGF binding to p75 promotes myelin sparing and functional recovery after spinal cord injury. J Neurosci 33:397–410

    CAS  PubMed  PubMed Central  Google Scholar 

  • Troy CM, Friedman JE, Friedman WJ (2002) Mechanisms of p75-mediated death of hippocampal neurons. Role of caspases. J Biol Chem 277:34295–34302

    CAS  PubMed  Google Scholar 

  • Truzzi F, Marconi A, Atzei P, Panza MC, Lotti R et al (2011) p75 neurotrophin receptor mediates apoptosis in transit-amplifying cells and its overexpression restores cell death in psoriatic keratinocytes. Cell Death Differ 18:948–958

    CAS  PubMed  PubMed Central  Google Scholar 

  • Turner BJ, Cheah IK, Macfarlane KJ, Lopes EC, Petratos S et al (2003) Antisense peptide nucleic acid-mediated knockdown of the p75 neurotrophin receptor delays motor neuron disease in mutant SOD1 transgenic mice. J Neurochem 87:752–763

    CAS  PubMed  Google Scholar 

  • Underwood CK, Reid K, May LM, Bartlett PF, Coulson EJ (2008) Palmitoylation of the C-terminal fragment of p75(NTR) regulates death signaling and is required for subsequent cleavage by gamma-secretase. Mol Cell Neurosci 37:346–358

    CAS  PubMed  Google Scholar 

  • Van Harreveld A, Fifkova E (1975) Swelling of dendritic spines in the fascia dentata after stimulation of the perforant fibers as a mechanism of post-tetanic potentiation. Exp Neurol 49:736–749

    PubMed  Google Scholar 

  • Verbeke S, Meignan S, Lagadec C, Germain E, Hondermarck H et al (2010) Overexpression of p75(NTR) increases survival of breast cancer cells through p21(waf1). Cell Signal 22:1864–1873

    CAS  PubMed  Google Scholar 

  • Verdi JM, Birren SJ, Ibanez CF, Persson H, Kaplan DR et al (1994) p75LNGFR regulates Trk signal transduction and NGF-induced neuronal differentiation in MAH cells. Neuron 12:733–745

    CAS  PubMed  Google Scholar 

  • Vilar M, Charalampopoulos I, Kenchappa RS, Simi A, Karaca E et al (2009) Activation of the p75 neurotrophin receptor through conformational rearrangement of disulphide-linked receptor dimers. Neuron 62:72–83

    CAS  PubMed  PubMed Central  Google Scholar 

  • Volosin M, Song W, Almeida RD, Kaplan DR, Hempstead BL, Friedman WJ (2006) Interaction of survival and death signaling in basal forebrain neurons: roles of neurotrophins and proneurotrophins. J Neurosci 26:7756–7766

    CAS  PubMed  Google Scholar 

  • Volosin M, Trotter C, Cragnolini A, Kenchappa RS, Light M et al (2008) Induction of proneurotrophins and activation of p75NTR-mediated apoptosis via neurotrophin receptor-interacting factor in hippocampal neurons after seizures. J Neurosci 28:9870–9879

    CAS  PubMed  PubMed Central  Google Scholar 

  • von Schack D, Casademunt E, Schweigreiter R, Meyer M, Bibel M, Dechant G (2001) Complete ablation of the neurotrophin receptor p75NTR causes defects both in the nervous and the vascular system. Nat Neurosci 4:977–978

    Google Scholar 

  • Wang S, Bray P, McCaffrey T, March K, Hempstead BL, Kraemer R (2000) p75(NTR) mediates neurotrophin-induced apoptosis of vascular smooth muscle cells. Am J Pathol 157:1247–1258

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang KC, Kim JA, Sivasankaran R, Segal R, He Z (2002) P75 interacts with the Nogo receptor as a co-receptor for Nogo, MAG and OMgp. Nature 420:74–78

    CAS  PubMed  Google Scholar 

  • Wang YQ, Bian GL, Bai Y, Cao R, Chen LW (2008) Identification and kainic acid-induced up-regulation of low-affinity p75 neurotrophin receptor (p75NTR) in the nigral dopamine neurons of adult rats. Neurochem Int 53:56–62

    CAS  PubMed  Google Scholar 

  • Wang YJ, Wang X, Lu JJ, Li QX, Gao CY et al (2011) p75NTR regulates Abeta deposition by increasing Abeta production but inhibiting Abeta aggregation with its extracellular domain. J Neurosci 31:2292–2304

    CAS  PubMed  Google Scholar 

  • Wehrman T, He X, Raab B, Dukipatti A, Blau H, Garcia KC (2007) Structural and mechanistic insights into nerve growth factor interactions with the TrkA and p75 receptors. Neuron 53:25–38

    CAS  PubMed  Google Scholar 

  • Wei Y, Wang N, Lu Q, Zhang N, Zheng D, Li J (2007) Enhanced protein expressions of sortilin and p75NTR in retina of rat following elevated intraocular pressure-induced retinal ischemia. Neurosci Lett 429:169–174

    CAS  PubMed  Google Scholar 

  • Weskamp G, Schlondorff J, Lum L, Becherer JD, Kim TW et al (2004) Evidence for a critical role of the tumor necrosis factor alpha convertase (TACE) in ectodomain shedding of the p75 neurotrophin receptor (p75NTR). J Biol Chem 279:4241–4249

    CAS  PubMed  Google Scholar 

  • Westwick JK, Bielawska AE, Dbaibo G, Hannun YA, Brenner DA (1995) Ceramide activates the stress-activated protein kinases. J Biol Chem 270:22689–22692

    CAS  PubMed  Google Scholar 

  • Wheeler EF, Bothwell M (1992) Spatiotemporal patterns of expression of NGF and the low-affinity NGF receptor in rat embryos suggest functional roles in tissue morphogenesis and myogenesis. J Neurosci 12:930–945

    CAS  PubMed  Google Scholar 

  • Willnow TE, Petersen CM, Nykjaer A (2008) VPS10P-domain receptors – regulators of neuronal viability and function. Nat Rev Neurosci 9:899–909

    CAS  PubMed  Google Scholar 

  • Wolfe SA, Nekludova L, Pabo CO (2000) DNA recognition by Cys2His2 zinc finger proteins. Annu Rev Biophys Biomol Struct 29:183–212

    CAS  PubMed  Google Scholar 

  • Wong ST, Henley JR, Kanning KC, Huang KH, Bothwell M, Poo MM (2002) A p75(NTR) and Nogo receptor complex mediates repulsive signaling by myelin-associated glycoprotein. Nat Neurosci 5:1302–1308

    CAS  PubMed  Google Scholar 

  • Woo NH, Teng HK, Siao CJ, Chiaruttini C, Pang PT et al (2005) Activation of p75NTR by proBDNF facilitates hippocampal long-term depression. Nat Neurosci 8:1069–1077

    CAS  PubMed  Google Scholar 

  • Wu GS (2004) The functional interactions between the p53 and MAPK signaling pathways. Cancer Biol Ther 3:156–161

    CAS  PubMed  Google Scholar 

  • Xiao J, Wong AW, Willingham MM, Kaasinen SK, Hendry IA et al (2009) BDNF exerts contrasting effects on peripheral myelination of NGF-dependent and BDNF-dependent DRG neurons. J Neurosci 29:4016–4022

    CAS  PubMed  Google Scholar 

  • Yaar M, Zhai S, Pilch PF, Doyle SM, Eisenhauer PB et al (1997) Binding of beta-amyloid to the p75 neurotrophin receptor induces apoptosis. A possible mechanism for Alzheimer’s disease. J Clin Invest 100:2333–2340

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yamamoto K, Ichijo H, Korsmeyer SJ (1999) BCL-2 is phosphorylated and inactivated by an ASK1/Jun N-terminal protein kinase pathway normally activated at G(2)/M. Mol Cell Biol 19:8469–8478

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yamashita T, Tohyama M (2003) The p75 receptor acts as a displacement factor that releases Rho from Rho-GDI. Nat Neurosci 6:461–467

    CAS  PubMed  Google Scholar 

  • Yamashita T, Tucker KL, Barde YA (1999) Neurotrophin binding to the p75 receptor modulates Rho activity and axonal outgrowth. Neuron 24:585–593

    CAS  PubMed  Google Scholar 

  • Yamashita T, Higuchi H, Tohyama M (2002) The p75 receptor transduces the signal from myelin-associated glycoprotein to Rho. J Cell Biol 157:565–570

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yamauchi J, Chan JR, Shooter EM (2004) Neurotrophins regulate Schwann cell migration by activating divergent signaling pathways dependent on Rho GTPases. Proc Natl Acad Sci U S A 101:8774–8779

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ye X, Mehlen P, Rabizadeh S, VanArsdale T, Zhang H et al (1999) TRAF family proteins interact with the common neurotrophin receptor and modulate apoptosis induction. J Biol Chem 274:30202–30208

    CAS  PubMed  Google Scholar 

  • Yeiser EC, Rutkoski NJ, Naito A, Inoue J, Carter BD (2004) Neurotrophin signaling through the p75 receptor is deficient in traf6−/− mice. J Neurosci 24:10521–10529

    CAS  PubMed  Google Scholar 

  • Yin Q, Lin SC, Lamothe B, Lu M, Lo YC et al (2009) E2 interaction and dimerization in the crystal structure of TRAF6. Nat Struct Mol Biol 16:658–666

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yoon SO, Casaccia-Bonnefil P, Carter B, Chao MV (1998) Competitive signaling between TrkA and p75 nerve growth factor receptors determines cell survival. J Neurosci 18:3273–3281

    CAS  PubMed  Google Scholar 

  • Zagrebelsky M, Holz A, Dechant G, Barde YA, Bonhoeffer T, Korte M (2005) The p75 neurotrophin receptor negatively modulates dendrite complexity and spine density in hippocampal neurons. J Neurosci 25:9989–9999

    CAS  PubMed  Google Scholar 

  • Zampieri N, Xu CF, Neubert TA, Chao MV (2005) Cleavage of p75 neurotrophin receptor by alpha-secretase and gamma-secretase requires specific receptor domains. J Biol Chem 280:14563–14571

    CAS  PubMed  Google Scholar 

  • Zhang Y, Hong Y, Bounhar Y, Blacker M, Roucou X et al (2003) p75 neurotrophin receptor protects primary cultures of human neurons against extracellular amyloid beta peptide cytotoxicity. J Neurosci 23:7385–7394

    CAS  PubMed  Google Scholar 

  • Zheng B, Atwal J, Ho C, Case L, He XL et al (2005) Genetic deletion of the Nogo receptor does not reduce neurite inhibition in vitro or promote corticospinal tract regeneration in vivo. Proc Natl Acad Sci U S A 102:1205–1210

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Q, Homma KJ, Poo MM (2004) Shrinkage of dendritic spines associated with long-term depression of hippocampal synapses. Neuron 44:749–757

    CAS  PubMed  Google Scholar 

  • Zotti T, Vito P, Stilo R (2012) The seventh ring: exploring TRAF7 functions. J Cell Physiol 227:1280–1284

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants NS038220 (B.D.C. and B.K.) and NS039472 and NS050585 (S.O.Y.) from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. D. Carter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg 2014

About this chapter

Cite this chapter

Kraemer, B.R., Yoon, S.O., Carter, B.D. (2014). The Biological Functions and Signaling Mechanisms of the p75 Neurotrophin Receptor. In: Lewin, G., Carter, B. (eds) Neurotrophic Factors. Handbook of Experimental Pharmacology, vol 220. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45106-5_6

Download citation

Publish with us

Policies and ethics