Skip to main content
Log in

„Hounsfield units“ als Maß für die Knochendichte – Anwendungsmöglichkeiten in der Wirbelsäulenchirurgie

Hounsfield units as a measure of bone density—applications in spine surgery

  • In der Diskussion
  • Published:
Der Unfallchirurg Aims and scope Submit manuscript

Zusammenfassung

Trotz der heutigen guten diagnostischen und therapeutischen Möglichkeiten ist die Dunkelziffer der an Osteoporose erkrankten Patienten weiterhin sehr hoch und die Therapie folglich meist unzureichend. Häufig wird die Diagnose erst nach Auftreten einer Fraktur gestellt. Ursächlich hierfür ist sicherlich neben den anfallenden Kosten wie auch der zusätzlichen Strahlenexposition die nur eingeschränkte Verfügbarkeit der Dual-energy-Röntgenabsorptiometrie (DEXA) als auch der quantitativen Computertomographie (q-CT). Auf der Suche nach einer alternativen Technik erwiesen sich die „Hounsfield units“ (HU) der klinischen CT-Untersuchung als richtungsweisend. So zeigte sich eine signifikante Korrelation zwischen den T‑Werten der DEXA-Messung und den HU des gleichen Wirbelkörpers. Aufgrund der weiten Verbreitung klinischer CT-Untersuchungen des Thorax und des Abdomens kann durch diese Methode die Dunkelziffer der Erkrankung im Rahmen des Osteoporosescreenings sicherlich deutlich reduziert werden – ohne zusätzliche Kosten, Strahlenexposition oder Mehraufwand für den Patienten. Neben der Osteoporosediagnostik ermöglichen die berechneten HU auch eine bessere präoperative Planung als auch Vorhersage des weiteren Krankheitsverlaufs. So lässt sich das Risiko für Wirbelkörperfrakturen, Schraubenlockerungen und Cagesinterungen nach ventralen Fusionsoperationen suffizient vorhersagen. Auf diese Weise lassen sich bereits präoperativ Modifikationen des chirurgischen Vorgehens treffen, um den Schraubenhalt und die Cageverankerung zu verbessern und Anschlussfrakturen zu vermeiden.

Abstract

Despite today’s good diagnostic and therapeutic options for osteoporosis, the number of unidentified cases is very high and therapy is therefore usually inadequate. Frequently, the diagnosis of osteoporosis is made only after the occurrence of a fracture. The reason for this, apart from the costs incurred as well as the additional radiation exposure of the diagnostics, is certainly the limited availability of dual energy X‑ray absorptiometry (DEXA) as well as quantitative computed tomography (q-CT). In search of an alternative technique, Hounsfield units (HU) of the clinical CT examination proved to be ground-breaking: the results of previous investigations demonstrated a reliable correlation between the T values of the DEXA measurement and the HU of the same vertebral body. Due to the widespread use of clinical CT scans of the thorax and the abdomen for a variety of indications, it is expected that the number of unidentified cases of osteoporosis can be significantly reduced—without additional costs and radiation exposure associated with osteoporosis screening. In addition to osteoporosis diagnostics, the calculated HU may also provide better preoperative planning as well as predicting the further course of the disease. Thus, the risk for vertebral body fractures, screw loosening and cage sintering after ventral fusion operations can be sufficiently predicted. In this way, preoperative modifications to the surgical procedure can be made to reduce the risk of implant failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Bauer JS, Link TM (2009) Advances in osteoporosis imaging. Eur J Radiol 71:440–449

    Article  PubMed  Google Scholar 

  2. Becker S, Chavanne A, Spitaler R et al (2008) Assessment of different screw augmentation techniques and screw designs in osteoporotic spines. Eur Spine J 17:1462–1469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bessette L, Ste-Marie LG, Jean S et al (2008) The care gap in diagnosis and treatment of women with a fragility fracture. Osteoporos Int 19:79–86

    Article  CAS  PubMed  Google Scholar 

  4. Bousson V, Bergot C, Sutter B et al (2012) Trabecular bone score (TBS): available knowledge, clinical relevance, and future prospects. Osteoporos Int 23:1489–1501

    Article  CAS  PubMed  Google Scholar 

  5. Bredow J, Boese CK, Werner CM et al (2016) Predictive validity of preoperative CT scans and the risk of pedicle screw loosening in spinal surgery. Arch Orthop Trauma Surg 136:1063–1067

    Article  PubMed  Google Scholar 

  6. Buckens CF, Dijkhuis G, De Keizer B et al (2015) Opportunistic screening for osteoporosis on routine computed tomography? An external validation study. Eur Radiol 25:2074–2079

    Article  PubMed  Google Scholar 

  7. Campbell PG, Harrop JS (2008) Incidence of fracture in adjacent levels in patients treated with balloon kyphoplasty: a review of the literature. Curr Rev Musculoskelet Med 1:61–64

    Article  PubMed  Google Scholar 

  8. Choi MK, Kim SM, Lim JK (2016) Diagnostic efficacy of Hounsfield units in spine CT for the assessment of real bone mineral density of degenerative spine: correlation study between T‑scores determined by DEXA scan and Hounsfield units from CT. Acta Neurochir (Wien) 158:1421–1427

    Article  Google Scholar 

  9. Committee on Practice Bulletins-Gynecology TaCOO, Gynecologists (2012) ACOG Practice Bulletin N. 129. Osteoporosis. Obstet Gynecol 120:718–734

    Article  Google Scholar 

  10. Cooper C, Cole ZA, Holroyd CR et al (2011) Secular trends in the incidence of hip and other osteoporotic fractures. Osteoporos Int 22:1277–1288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Coppenrath E, Schmid C, Brandl R et al (2001) Spiral CT of the abdomen: weight-adjusted dose reduction. Rofo 173:52–56

    Article  CAS  PubMed  Google Scholar 

  12. Diel P, Freiburghaus L, Roder C et al (2012) Safety, effectiveness and predictors for early reoperation in therapeutic and prophylactic vertebroplasty: short-term results of a prospective case series of patients with osteoporotic vertebral fractures. Eur Spine J 21(S6):792–799

    Article  Google Scholar 

  13. Ebeling PR (2008) Clinical practice. Osteoporosis in men. N Engl J Med 358:1474–1482

    Article  CAS  PubMed  Google Scholar 

  14. Emohare O, Cagan A, Morgan R et al (2014) The use of computed tomography attenuation to evaluate osteoporosis following acute fractures of the thoracic and lumbar vertebra. Geriatr Orthop Surg Rehabil 5:50–55

    Article  PubMed  PubMed Central  Google Scholar 

  15. Emohare O, Dittmer A, Morgan RA et al (2015) Osteoporosis in acute fractures of the cervical spine: the role of opportunistic CT screening. J Neurosurg Spine 23:1–7

    Article  PubMed  Google Scholar 

  16. Engelke K, Lang T, Khosla S et al (2015) Clinical use of quantitative computed tomography-based advanced techniques in the management of osteoporosis in adults: the 2015 ISCD official positions-part III. J Clin Densitom 18:393–407

    Article  PubMed  Google Scholar 

  17. Erickson MA, Oliver T, Baldini T et al (2004) Biomechanical assessment of conventional unit rod fixation versus a unit rod pedicle screw construct: a human cadaver study. Spine 29:1314–1319

    Article  PubMed  Google Scholar 

  18. Gausden EB, Nwachukwu BU, Schreiber JJ et al (2017) Opportunistic use of CT imaging for osteoporosis screening and Bone density assessment: a qualitative systematic review. J Bone Joint Surg Am 99:1580–1590

    Article  PubMed  Google Scholar 

  19. Genant HK (1985) Assessing osteoporosis: CT’s quantitative advantage. Diagn Imaging (San Franc) 7:52–57

    CAS  Google Scholar 

  20. Gerety EL, Hopper MA, Bearcroft PW (2017) The reliability of measuring the density of the L1 vertebral body on CT imaging as a predictor of bone mineral density. Clin Radiol 72:177e9–177e15

    Article  Google Scholar 

  21. Hans DB, Shepherd JA, Schwartz EN et al (2008) Peripheral dual-energy X‑ray absorptiometry in the management of osteoporosis: the 2007 ISCD official positions. J Clin Densitom 11:188–206

    Article  PubMed  Google Scholar 

  22. Heyde CE, Rohlmann A, Weber U et al (2010) Stabilization of the osteoporotic spine from a biomechanical viewpoint. Orthopade 39:407–416

    Article  PubMed  Google Scholar 

  23. Lee SJ, Graffy PM, Zea RD et al (2018) Future osteoporotic fracture risk related to lumbar vertebral trabecular attenuation measured at routine body CT. J Bone Miner Res 33:860–867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lehman RA Jr., Kuklo TR, Belmont PJ Jr. et al (2002) Advantage of pedicle screw fixation directed into the apex of the sacral promontory over bicortical fixation: a biomechanical analysis. Spine 27:806–811

    Article  PubMed  Google Scholar 

  25. Lenchik L, Weaver AA, Ward RJ et al (2018) Opportunistic screening for osteoporosis using computed tomography: state of the art and argument for paradigm shift. Curr Rheumatol Rep 20:74

    Article  CAS  PubMed  Google Scholar 

  26. Leslie WD, Giangregorio LM, Yogendran M et al (2012) A population-based analysis of the post-fracture care gap 1996–2008: the situation is not improving. Osteoporos Int 23:1623–1629

    Article  CAS  PubMed  Google Scholar 

  27. Mai HT, Mitchell SM, Hashmi SZ et al (2016) Differences in bone mineral density of fixation points between lumbar cortical and traditional pedicle screws. Spine J 16:835–841

    Article  PubMed  Google Scholar 

  28. Majumdar SR, Mcalister FA, Johnson JA et al (2014) Critical impact of patient knowledge and bone density testing on starting osteoporosis treatment after fragility fracture: secondary analyses from two controlled trials. Osteoporos Int 25:2173–2179

    Article  CAS  PubMed  Google Scholar 

  29. Meredith DS, Schreiber JJ, Taher F et al (2013) Lower preoperative Hounsfield unit measurements are associated with adjacent segment fracture after spinal fusion. Spine (phila Pa 38:415–418

    Article  Google Scholar 

  30. Metge CJ, Leslie WD, Manness LJ et al (2008) Postfracture care for older women: gaps between optimal care and actual care. Can Fam Physician 54:1270–1276

    PubMed  PubMed Central  Google Scholar 

  31. Muehlematter UJ, Mannil M, Becker AS, Vokinger KN, Finkenstaedt T, Osterhoff G et al (2019) Vertebral body insufficiency fractures: detection of vertebrae at risk on standard CT images using texture analysis and machine learning. Eur Radiol 29(5):2207–2217. https://doi.org/10.1007/s00330-018-5846-8

    Article  PubMed  Google Scholar 

  32. Nelson HD, Haney EM, Dana T et al (2010) Screening for osteoporosis: an update for the U.S. Preventive Services Task Force. Ann Intern Med 153:99–111

    Article  PubMed  Google Scholar 

  33. Nguyen HS, Soliman HM, Patel M et al (2016) CT Hounsfield units as a predictor for the worsening of traumatic vertebral compression fractures. World Neurosurg 93:50–54

    Article  PubMed  Google Scholar 

  34. Njeh CF, Fuerst T, Hans D et al (1999) Radiation exposure in bone mineral density assessment. Appl Radiat Isot 50:215–236

    Article  CAS  PubMed  Google Scholar 

  35. Nouda S, Tomita S, Kin A et al (2009) Adjacent vertebral body fracture following vertebroplasty with polymethylmethacrylate or calcium phosphate cement: biomechanical evaluation of the cadaveric spine. Spine 34:2613–2618

    Article  PubMed  Google Scholar 

  36. Pickhardt PJ, Lauder T, Pooler BD et al (2016) Effect of IV contrast on lumbar trabecular attenuation at routine abdominal CT: correlation with DXA and implications for opportunistic osteoporosis screening. Osteoporos Int 27:147–152

    Article  CAS  PubMed  Google Scholar 

  37. Pickhardt PJ, Lee LJ, Del Rio AM et al (2011) Simultaneous screening for osteoporosis at CT colonography: bone mineral density assessment using MDCT attenuation techniques compared with the DXA reference standard. J Bone Miner Res 26:2194–2203

    Article  PubMed  PubMed Central  Google Scholar 

  38. Pickhardt PJ, Pooler BD, Lauder T et al (2013) Opportunistic screening for osteoporosis using abdominal computed tomography scans obtained for other indications. Ann Intern Med 158:588–595

    Article  PubMed  PubMed Central  Google Scholar 

  39. Pompe E, Willemink MJ, Dijkhuis GR et al (2015) Intravenous contrast injection significantly affects bone mineral density measured on CT. Eur Radiol 25:283–289

    Article  PubMed  Google Scholar 

  40. Raisz LG (2005) Clinical practice. Screening for osteoporosis. N Engl J Med 353:164–171

    Article  CAS  PubMed  Google Scholar 

  41. Romme EA, Murchison JT, Phang KF et al (2012) Bone attenuation on routine chest CT correlates with bone mineral density on DXA in patients with COPD. J Bone Miner Res 27:2338–2343

    Article  PubMed  Google Scholar 

  42. Saffarzadeh M, Hightower RC, Talton JW et al (2016) Multicenter analysis of CIREN occupant lumbar bone mineral density and correlation with age and fracture incidence. Traffic Inj Prev 17(S1):34–41

    Article  PubMed  Google Scholar 

  43. Salzmann SN, Shirahata T, Yang J et al (2018) Regional bone mineral density differences measured by QCT: does the standard clinically used L1-L2 average correlate with the entire lumbosacral spine? Spine J 19(4):695–702. https://doi.org/10.1016/j.spinee.2018.10.007

    Article  PubMed  Google Scholar 

  44. Sarzier JS, Evans AJ, Cahill DW (2002) Increased pedicle screw pullout strength with vertebroplasty augmentation in osteoporotic spines. J Neurosurg 96:309–312

    PubMed  Google Scholar 

  45. Schonenberg D, Guggenberger R, Frey D et al (2018) CT-based evaluation of volumetric bone density in fragility fractures of the pelvis—a matched case-control analysis. Osteoporos Int 29:459–465

    Article  CAS  PubMed  Google Scholar 

  46. Schreiber JJ, Anderson PA, Rosas HG et al (2011) Hounsfield units for assessing bone mineral density and strength: a tool for osteoporosis management. J Bone Joint Surg Am 93:1057–1063

    Article  PubMed  Google Scholar 

  47. Schwaiger BJ, Gersing AS, Baum T et al (2014) Bone mineral density values derived from routine lumbar spine multidetector row CT predict osteoporotic vertebral fractures and screw loosening. Ajnr Am J Neuroradiol 35:1628–1633

    Article  CAS  PubMed  Google Scholar 

  48. Teo JC, Si-Hoe KM, Keh JE et al (2006) Relationship between CT intensity, micro-architecture and mechanical properties of porcine vertebral cancellous bone. Clin Biomech (Bristol, Avon) 21:235–244

    Article  Google Scholar 

  49. Teuber H, Tiziani S, Halvachizadeh S et al (2018) Single-level vertebral kyphoplasty is not associated with an increased risk of symptomatic secondary adjacent osteoporotic vertebral compression fractures: a matched case-control analysis. Arch Osteoporos 13:82

    Article  PubMed  Google Scholar 

  50. Toyone T, Ozawa T, Kamikawa K et al (2010) Subsequent vertebral fractures following spinal fusion surgery for degenerative lumbar disease: a mean ten-year follow-up. Spine 35:1915–1918

    Article  PubMed  Google Scholar 

  51. Ullrich BW, Schenk P, Spiegl UJ et al (2018) Hounsfield units as predictor for cage subsidence and loss of reduction: following posterior-anterior stabilization in thoracolumbar spine fractures. Eur Spine J 27(12):3034–3042. https://doi.org/10.1007/s00586-018-5792-9

    Article  PubMed  Google Scholar 

  52. Watanabe K, Lenke LG, Bridwell KH et al (2010) Proximal junctional vertebral fracture in adults after spinal deformity surgery using pedicle screw constructs: analysis of morphological features. Spine 35:138–145

    Article  PubMed  Google Scholar 

  53. Zhu Q, Lu WW, Holmes AD et al (2000) The effects of cyclic loading on pull-out strength of sacral screw fixation: an in vitro biomechanical study. Spine 25(1976):1065–1069

    Article  CAS  PubMed  Google Scholar 

  54. Ziemlewicz TJ, Maciejewski A, Binkley N et al (2016) Opportunistic quantitative CT bone mineral density measurement at the proximal femur using routine contrast-enhanced scans: direct comparison with DXA in 355 adults. J Bone Miner Res 31:1835–1840

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Max J. Scheyerer.

Ethics declarations

Interessenkonflikt

M.J. Scheyerer, B. Ullrich, G. Osterhoff, U.A. Spiegl und K.J. Schnake geben an, dass kein Interessenkonflikt besteht.

Additional information

Redaktion

P. Biberthaler, München

F. Gebhard, Ulm

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scheyerer, M.J., Ullrich, B., Osterhoff, G. et al. „Hounsfield units“ als Maß für die Knochendichte – Anwendungsmöglichkeiten in der Wirbelsäulenchirurgie. Unfallchirurg 122, 654–661 (2019). https://doi.org/10.1007/s00113-019-0658-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00113-019-0658-0

Schlüsselwörter

Keywords

Navigation