Skip to main content

Advertisement

Log in

Subchondral bone and osteoarthritis: biological and cellular aspects

  • Bone Quality Seminars: Subchondral Bone
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

The subchondral bone is involved in the pathophysiology of osteoarthritis (OA), both by biochemical and mechanical pathways. Overloaded OA subchondral bone osteoblasts express a pro-angiogenic and pro-inflammatory phenotype which contributes to explain the structural changes (sclerosis and bone marrow lesion) visible in OA subchondral bone. Further, microfractures and conjonctivo-vascular structures constitute exchange routes between bone and the overlying cartilage for mediators produced by osteoblasts. This narrative review describes these physiopathological mechanisms and identifies possible therapeutic targets for pharmacological modalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Pesesse L, Sanchez C, Henrotin Y (2011) Osteochondral plate angiogenesis: a new treatment target in osteoarthritis. Joint Bone Spine 78:144–149

    Article  PubMed  Google Scholar 

  2. Imhof H, Sulzbacher I, Grampp S, Czerny C, Youssefzadeh S, Kainberger F (2000) Subchondral bone and cartilage disease: a rediscovered functional unit. Invest Radiol 35:581–588

    Article  PubMed  CAS  Google Scholar 

  3. Duncan H, Jundt J, Riddle JM, Pitchford W, Christopherson T (1987) The tibial subchondral plate. A scanning electron microscopic study. J Bone Joint Surg Am 69:1212–1220

    PubMed  CAS  Google Scholar 

  4. Mansell JP, Bailey AJ (1998) Abnormal cancellous bone collagen metabolism in osteoarthritis. J Clin Invest 101:1596–1603

    Article  PubMed  CAS  Google Scholar 

  5. Bailey AJ, Sims TJ, Knott L (2002) Phenotypic expression of osteoblast collagen in osteoarthritic bone: production of type I homotrimer. Int J Biochem Cell Biol 34:176–182

    Article  PubMed  CAS  Google Scholar 

  6. Hilal G, Massicotte F, Martel-Pelletier J, Fernandes JC, Pelletier JP, Lajeunesse D (2001) Endogenous prostaglandin E2 and insulin-like growth factor 1 can modulate the levels of parathyroid hormone receptor in human osteoarthritic osteoblasts. J Bone Miner Res 16:713–721

    Article  PubMed  CAS  Google Scholar 

  7. Hilal G, Martel-Pelletier J, Pelletier JP, Duval N, Lajeunesse D (1999) Abnormal regulation of urokinase plasminogen activator by insulin-like growth factor 1 in human osteoarthritic subchondral osteoblasts. Arthritis Rheum 42:2112–2122

    Article  PubMed  CAS  Google Scholar 

  8. Massicotte F, Fernandes JC, Martel-Pelletier J, Pelletier JP, Lajeunesse D (2006) Modulation of insulin-like growth factor 1 levels in human osteoarthritic subchondral bone osteoblasts. Bone 38:333–341

    Article  PubMed  CAS  Google Scholar 

  9. Hilal G, Martel-Pelletier J, Pelletier JP, Ranger P, Lajeunesse D (1998) Osteoblast-like cells from human subchondral osteoarthritic bone demonstrate an altered phenotype in vitro: possible role in subchondral bone sclerosis. Arthritis Rheum 41:891–899

    Article  PubMed  CAS  Google Scholar 

  10. Sanchez C, Deberg MA, Bellahcene A, Castronovo V, Msika P, Delcour JP, Crielaard JM, Henrotin YE (2008) Phenotypic characterization of osteoblasts from the sclerotic zones of osteoarthritic subchondral bone. Arthritis Rheum 58:442–455

    Article  PubMed  CAS  Google Scholar 

  11. Hopwood B, Tsykin A, Findlay DM, Fazzalari NL (2007) Microarray gene expression profiling of osteoarthritic bone suggests altered bone remodelling, Wnt and transforming growth factor-beta/bone morphogenic protein signalling. Arthritis Res Ther 9:R100

    Article  PubMed  Google Scholar 

  12. Lamas JR, Rodriguez-Rodriguez L, Vigo AG et al (2010) Large-scale gene expression in bone marrow mesenchymal stem cells: a putative role for COL10A1 in osteoarthritis. Ann Rheum Dis 69:1880–1885

    Article  PubMed  CAS  Google Scholar 

  13. Chan BY, Fuller ES, Russell AK et al (2011) Increased chondrocyte sclerostin may protect against cartilage degradation in osteoarthritis. Osteoarthr Cartil 19:874–885

    Article  PubMed  CAS  Google Scholar 

  14. Sakao K, Takahashi KA, Arai Y et al (2009) Osteoblasts derived from osteophytes produce interleukin-6, interleukin-8, and matrix metalloproteinase-13 in osteoarthritis. J Bone Miner Metab 27:412–423

    Article  PubMed  CAS  Google Scholar 

  15. Chiba K, Uetani M, Kido Y, Ito M, Okazaki N, Taguchi K, Shindo H (2011) Osteoporotic changes of subchondral trabecular bone in osteoarthritis of the knee: a 3-T MRI study. Osteoporos Int 23(2):589–597

    Article  PubMed  Google Scholar 

  16. Sanchez C, Gabay O, Salvat C, Henrotin YE, Berenbaum F (2009) Mechanical loading highly increases IL-6 production and decreases OPG expression by osteoblasts. Osteoarthr Cartil 17:473–481

    Article  PubMed  CAS  Google Scholar 

  17. Sanchez C, Pesesse L, Gabay O, Delcour JP, Msika P, Baudouin C, Henrotin Y (2012) Regulation of subchondral bone osteoblast metabolism by cyclic compression. Arthritis Rheum 64(4):1193–203

    Article  PubMed  CAS  Google Scholar 

  18. Liu XH, Kirschenbaum A, Yao S, Levine AC (2006) Interactive effect of interleukin-6 and prostaglandin E2 on osteoclastogenesis via the OPG/RANKL/RANK system. Ann N Y Acad Sci 1068:225–233

    Article  PubMed  CAS  Google Scholar 

  19. Liu XH, Kirschenbaum A, Yao S, Levine AC (2005) Cross-talk between the interleukin-6 and prostaglandin E(2) signaling systems results in enhancement of osteoclastogenesis through effects on the osteoprotegerin/receptor activator of nuclear factor-{kappa}B (RANK) ligand/RANK system. Endocrinology 146:1991–1998

    Article  PubMed  CAS  Google Scholar 

  20. Bennell KL, Creaby MW, Wrigley TV, Bowles KA, Hinman RS, Cicuttini F, Hunter DJ (2010) Bone marrow lesions are related to dynamic knee loading in medial knee osteoarthritis. Ann Rheum Dis 69:1151–1154

    Article  PubMed  Google Scholar 

  21. Hunter DJ, Zhang Y, Niu J, Goggins J, Amin S, LaValley MP, Guermazi A, Genant H, Gale D, Felson DT (2006) Increase in bone marrow lesions associated with cartilage loss: a longitudinal magnetic resonance imaging study of knee osteoarthritis. Arthritis Rheum 54:1529–1535

    Article  PubMed  Google Scholar 

  22. Grimston SK, Screen J, Haskell JH, Chung DJ, Brodt MD, Silva MJ, Civitelli R (2006) Role of connexin43 in osteoblast response to physical load. Ann N Y Acad Sci 1068:214–224

    Article  PubMed  CAS  Google Scholar 

  23. Grynpas MD, Alpert B, Katz I, Lieberman I, Pritzker KP (1991) Subchondral bone in osteoarthritis. Calcif Tissue Int 49:20–26

    Article  PubMed  CAS  Google Scholar 

  24. Cox LG, van Rietbergen B, van Donkelaar CC, Ito K (2011) Bone structural changes in osteoarthritis as a result of mechanoregulated bone adaptation: a modeling approach. Osteoarthr Cartil 19:676–682

    Article  PubMed  CAS  Google Scholar 

  25. Gosset M, Berenbaum F, Salvat C, Sautet A, Pigenet A, Tahiri K, Jacques C (2008) Crucial role of visfatin/pre-B cell colony-enhancing factor in matrix degradation and prostaglandin E2 synthesis in chondrocytes: possible influence on osteoarthritis. Arthritis Rheum 58:1399–1409

    Article  PubMed  CAS  Google Scholar 

  26. Griffin TM, Huebner JL, Kraus VB, Guilak F (2009) Extreme obesity due to impaired leptin signaling in mice does not cause knee osteoarthritis. Arthritis Rheum 60:2935–2944

    Article  PubMed  CAS  Google Scholar 

  27. Mutabaruka MS, Aoulad Aissa M, Delalandre A, Lavigne M, Lajeunesse D (2010) Local leptin production in osteoarthritis subchondral osteoblasts may be responsible for their abnormal phenotypic expression. Arthritis Res Ther 12:R20

    Article  PubMed  Google Scholar 

  28. Davies-Tuck ML, Hanna F, Davis SR, Bell RJ, Davison SL, Wluka AE, Adams J, Cicuttini FM (2009) Total cholesterol and triglycerides are associated with the development of new bone marrow lesions in asymptomatic middle-aged women—a prospective cohort study. Arthritis Res Ther 11:R181

    Article  PubMed  Google Scholar 

  29. Walsh DA, McWilliams DF, Turley MJ, Dixon MR, Franses RE, Mapp PI, Wilson D (2010) Angiogenesis and nerve growth factor at the osteochondral junction in rheumatoid arthritis and osteoarthritis. Rheumatology (Oxford) 49:1852–1861

    Article  CAS  Google Scholar 

  30. Westacott CI, Webb GR, Warnock MG, Sims JV, Elson CJ (1997) Alteration of cartilage metabolism by cells from osteoarthritic bone. Arthritis Rheum 40:1282–1291

    PubMed  CAS  Google Scholar 

  31. Sanchez C, Deberg MA, Piccardi N, Msika P, Reginster JY, Henrotin Y (2005) Osteoblasts from the sclerotic subchondral bone downregulate aggrecan but upregulate metalloproteinases expression by chondrocytes. This effect is mimicked by Interleukin-6, -1β and oncostatin M pre-treated non sclerotic osteoblasts. Osteoarthr Cartil 13:979–987

    Article  PubMed  CAS  Google Scholar 

  32. Sanchez C, Deberg MA, Piccardi N, Msika P, Reginster JY, Henrotin Y (2005) Subchondral bone osteoblasts induce phenotypic changes in human osteoarthritic chondrocytes. Osteoarthr Cartil 13:988–997

    Article  PubMed  CAS  Google Scholar 

  33. Kadri A, Funck-Brentano T, Lin H, Ea HK, Hannouche D, Marty C, Liote F, Geoffroy V, Cohen-Solal ME (2010) Inhibition of bone resorption blunts osteoarthritis in mice with high bone remodelling. Ann Rheum Dis 69:1533–1538

    Article  PubMed  Google Scholar 

  34. Agnello KA, Trumble TN, Chambers JN, Seewald W, Budsberg SC (2005) Effects of zoledronate on markers of bone metabolism and subchondral bone mineral density in dogs with experimentally induced cruciate-deficient osteoarthritis. Am J Vet Res 66:1487–1495

    Article  PubMed  CAS  Google Scholar 

  35. Podworny NV, Kandel RA, Renlund RC, Grynpas MD (1999) Partial chondroprotective effect of zoledronate in a rabbit model of inflammatory arthritis. J Rheumatol 26:1972–1982

    PubMed  CAS  Google Scholar 

  36. Strassle BW, Mark L, Leventhal L, Piesla MJ, Jian Li X, Kennedy JD, Glasson SS, Whiteside GT (2010) Inhibition of osteoclasts prevents cartilage loss and pain in a rat model of degenerative joint disease. Osteoarthr Cartil 18:1319–1328

    Article  PubMed  CAS  Google Scholar 

  37. Laslett LL, Dore DA, Quinn SJ, Boon P, Ryan E, Winzenberg TM, Jones G (2012) Zoledronic acid reduces knee pain and bone marrow lesions over 1 year: a randomised controlled trial. Ann Rheum Dis 71:1322–1328

    Article  PubMed  CAS  Google Scholar 

  38. Tat SK, Pelletier JP, Mineau F, Caron J, Martel-Pelletier J (2011) Strontium ranelate inhibits key factors affecting bone remodeling in human osteoarthritic subchondral bone osteoblasts. Bone 49:559–567

    Article  PubMed  CAS  Google Scholar 

  39. Reginster JY, Charpurlat R, Christiansen C et al (2012) Structure modifying effect of strontium ranelate on knee ostoearthritis. Osteoporos Int 23:58–59

    Article  Google Scholar 

Download references

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Henrotin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Henrotin, Y., Pesesse, L. & Sanchez, C. Subchondral bone and osteoarthritis: biological and cellular aspects. Osteoporos Int 23 (Suppl 8), 847–851 (2012). https://doi.org/10.1007/s00198-012-2162-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-012-2162-z

Keywords

Navigation