Skip to main content

Advertisement

Log in

Prevalence of positive ppd in a cohort of rheumatoid arthritis patients

  • Original Article
  • Published:
Rheumatology International Aims and scope Submit manuscript

Abstract

The main objective of this study is to determine the prevalence of positive and anergic tuberculin skin test (ppd) in a rheumatoid arthritis cohort of patients (RA) and assess the association among ppd results and clinical and treatment variables. Patients with RA diagnosis were included. The ppd was done by Mantoux method. Positive result was considered when indurations were equal or greater than 5 mm. Anergic reaction was defined when the indurations was 0 mm. We included 105 patients (N = 105). The prevalence of positive ppd was 12.4% (n = 13), while the 87.6% (n = 92) presented a negative result. The 69.5% (n = 73) of the population were anergic to ppd. Patients with negative result received higher steroids dosages than patients with positive ppd (p < 0.04). In the multivariable model, the steroids dosage was a significant and independent predictor of negative ppd (p = 0.021, OR 0.72, 95% CI 0.55–0.95). Anergic and non-anergic patients were separated in groups, and a new analysis was done. The higher dosage of methotrexate was associated to tuberculine anergy (p = 0.025). In the multivariable model, the methotrexate dosage was a significant and independent predictor of tuberculine anergy (p = 0.005, OR 1.14, 95% CIs 1.04–1.24). In conclusion, in our cohort, the prevalence of positive ppd was lower than others studies. Among analyzed variables, the high steroid dose was a significant and independent predictor of negative ppd. The methotrexate treatment and dose were associated with ppd anergy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Furst DE, Schiff MH, Fleischmann RM, Strand V, Birbara CA, Compagnone D et al (2003) Adalimumab, a fully human anti tumor necrosis factor alpha monoclonal antibody, and concomitant estándar antirheumatic therapy for treatment of rheumatoid arthritis: results of STAR (Safety Trial of Adalimumab in Rheumatoid Artritis). J Rheumatol 30:2563–2571

    CAS  PubMed  Google Scholar 

  2. Klareskog L, Van Der Heijde D, de Jager JP, Gough A, Kalden J, Malaise M et al (2004) Therapeutic effect of the combination of etanercept and methotrexate compared with each alone in patients with rheumatoid arthritis: double blinded randomised controlled trial. Lancet 343:1594–1602

    Google Scholar 

  3. Lipsky PE, Van der Heijde DM, St Clair EW, Furst DE, Breedvelved FC, Kalden JR et al (2000) Infliximab and methotrexate in the treatment of rheumatoid arthritis. Anti tumor necrosis factor trial in rheumatoid arthritis with concomitant therapy study group. N Engl J Med 342:763–769. doi:10.1056/NEJM200003163421103

    Article  Google Scholar 

  4. Breedveld FC, Weisman MH, Kavanaugh AF, Cohen SB, Pavelka K, Van Vollenhoven R et al (2006) The Premier Study: a multicenter, randomized, double blind clinical trial of combination therapy with adalimumab plus methotrexate versus methotrexate alone or adalimumab alone in patients with early, aggressive rheumatoid arthritis who had not had previous methotrexate treatment. Arthritis Rheum 54:26–37. doi:10.1002/art.21519

    Article  CAS  PubMed  Google Scholar 

  5. Genovese MC, Bothon JM, Martin RW, Fleischmann RM, Tesser JR, Schiff MH et al (2002) Etanercept versus methotrexate in patients with early rheumatoid arthritis: two years radiographic and clinical outcomes. Arthritis Rheum 46:1443–1450. doi:10.1002/art.10308

    Article  CAS  PubMed  Google Scholar 

  6. Joseph K, Gershon S, Wise PR, Mirabile E et al (2001) Tuberculosis associated with infliximab, a tumor necrosis factor α-neutralizing agent. N Engl J Med 345:1098–1104. doi:10.1056/NEJMoa011110

    Article  Google Scholar 

  7. Imperato A, Smiles S, Abramson SB (2004) Long-term risks associated with biologic response modifiers used in rheumatic diseases. Curr Opin Rheumatol 16:199–205. doi:10.1097/00002281-200405000-00006

    Article  PubMed  Google Scholar 

  8. Askling J, Fored CM, Brandt L, Baecklund E, Bertilsson L, Coster L et al (2005) Risk and case characteristics of tuberculosis in rheumatoid arthritis associated with tumor necrosis factor antagonists in Sweden. Arthritis Rheum 52(7):1986–1992. doi:10.1002/art.21137

    Article  CAS  PubMed  Google Scholar 

  9. Jacobs M, Togbe D, Fremond C et al (2007) Tumor necrosis factor is critical to control tuberculosis infection. Microbes Infect 9:623–628. doi:10.1016/j.micinf.2007.02.002

    Article  CAS  PubMed  Google Scholar 

  10. Hamdi H, Marieta X, Godoy V et al (2006) Inhibition of antituberculosis T Lymphocyte function with tumour necrosis factor antagonists. Arthritis Res Ther 8:R114

    Article  PubMed  Google Scholar 

  11. Obrador A, San Roman LA, Muñoz P, Gassull MA et al (2003) Guia de Consenso sobre tuberculosis y tratamiento de la enfermedad inflamatoria intestinal con infliximab. Gastroenterol Hepatol 26(1):29–33. doi:10.1157/13042212

    Article  CAS  PubMed  Google Scholar 

  12. Ledingham J, Wilkinson C, Deighton C (2005) British Thoracic Society recommendations for assessing risk and managing tuberculosis in patients due to Stara anti-TNF alpha treatments. Rheumatology 44:1205–1206. doi:10.1093/rheumatology/kei103

    Article  CAS  PubMed  Google Scholar 

  13. Furst DE, Breedveld FC, Kalden JR et al (2006) Updated consensus statement on biological agents for the treatment of rheumatic diseases, 2006. Ann Rheum Dis 65(suppl III):iii2–iii15. doi:101136/ard2006.061937

    Article  PubMed  Google Scholar 

  14. Corrigall VM, Garyfallos A, Panayi GS (1999) The relative proportions of secreted interleukin-2 and interleukin-10 determine the magnitude of rheumatoid arthritis T cell proliferation to the recall antigen tuberculin purified protein derivative. Rheumatol 38:1203–1207. doi:10.1093/rheumatology/38.12.1203

    Article  CAS  Google Scholar 

  15. Loza E, Alen J, Canto F, Alarcon G (2005) Artritis Reumatoide. In: Ramos Casal M, Carrasco M, Salazar J (eds) Enfermedades Autoinmunes sistémicas y reumatológicas. Masson, Barcelona, pp 369–399

    Google Scholar 

  16. Fraser P (1999) Micobacterias. In: Fraser RS, Muller NL, Colman N, Pare PD (eds) Diagnóstico de las Enfermedades del tórax, Ed 4º. WD Sounders, Philadelphia, pp 790–866

  17. Gil Germán, Neira O, Marcone P, Sabagh E (2006) Tuberculine reactivity in chilean RA patients (abstract). J Clin Rheumatol 12(Suppl 4):S8

  18. Ponce de León D, Acevedo-Vásquez E, Sánchez-Torres A, Cucho M et al (2005) Attenuated response to purified protein derivative in patients with rheumatoid arthritis: study in a population with a high prevalence of tuberculosis. Ann Rheum Dis 64:1360–1361. doi:10.1136/ard.2004.029041

    Article  PubMed  Google Scholar 

  19. Matulis G, Juni P, Villiger PM et al (2008) Detection of latent tuberculosis in immunosuppressed patients with autoimmune diseases: performance of mycobacterium tuberculosis antigen-specific interferon assay. Ann Rheum Dis 67(1):84–90

    Article  CAS  PubMed  Google Scholar 

  20. Small PM, Fujiwara PI (2001) Management of tuberculosis in the United States. N Engl J Med 345(3):189–200

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Natalia Tamborenea.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tamborenea, M.N., Tate, G., Mysler, E. et al. Prevalence of positive ppd in a cohort of rheumatoid arthritis patients. Rheumatol Int 30, 613–616 (2010). https://doi.org/10.1007/s00296-009-1027-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00296-009-1027-z

Keywords

Navigation