Skip to main content
Log in

Evaluation of MR imaging guided steroid injection of the sacroiliac joints for the treatment of children with refractory enthesitis-related arthritis

  • Musculoskeletal
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

To test the hypothesis that MR imaging guided triamcinolone acetonide injection into the sacroiliac joints of children with enthesitis-related arthritis is feasible, accurate and safe; and effectively reduces sacroiliac inflammation and disease progression.

Methods

A retrospective analysis of 14 children (6/14 [43%] female, 8/14 (57%) male; mean age, 13.2 years; range, 6–16 years) who received MR imaging guided sacroiliac joint injections at 0.2 Tesla or 1.5 Tesla for enthesitis-related arthritis and acute sacroilitis refractory to medical therapy was performed. 20 mg triamcinolone acetonide were injected. Assessed were intra-articular drug delivery; image quality, duration, and complications. Success of therapy was defined by change of sacroiliac inflammation. Remission time and erosions were assessed by follow-up MRI (range, 10–22 months).

Results

Twenty four procedures resulted in intra-articular injection. Image quality was sufficient. No complications occurred. Procedure time was 40 min. Sedation time was 22 min. Success of therapy was achieved in 11/14 (79%) children. Sacroiliac inflammation decreased significantly (−59%). Median remission time was 13.7 months. No erosions occurred.

Conclusions

MR imaging guided steroid injection of the sacroiliac joints is feasible, accurate, and safe and can effectively reduce sacroiliac inflammatory activity and may therefore aid in the prevention of disease progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Azouz EM, Duffy CM (1995) Juvenile spondyloarthropathies: clinical manifestations and medical imaging. Skeletal Radiol 24:399–408

    Article  PubMed  CAS  Google Scholar 

  2. Hartman GH, Renaud DL, Sundaram M, Reed AM (2007) Spondyloarthropathy presenting at a young age: case report and review. Skeletal Radiol 36:161–164

    Article  PubMed  Google Scholar 

  3. Flato B, Hoffmann-Vold AM, Reiff A, Forre O, Lien G, Vinje O (2006) Long-term outcome and prognostic factors in enthesitis-related arthritis: a case-control study. Arthritis Rheum 54:3573–3582

    Article  PubMed  Google Scholar 

  4. Burgos-Vargas R (2002) The juvenile-onset spondyloarthritides. Rheum Dis Clin North Am 28:531–560, vi

    Article  PubMed  Google Scholar 

  5. Hashkes PJ, Laxer RM (2005) Medical treatment of juvenile idiopathic arthritis. JAMA 294:1671–1684

    Article  PubMed  CAS  Google Scholar 

  6. Hashkes PJ, Laxer RM (2006) Update on the medical treatment of juvenile idiopathic arthritis. Curr Rheumatol Rep 8:450–458

    Article  PubMed  CAS  Google Scholar 

  7. Bongartz T, Sutton AJ, Sweeting MJ, Buchan I, Matteson EL, Montori V (2006) Anti-TNF antibody therapy in rheumatoid arthritis and the risk of serious infections and malignancies: systematic review and meta-analysis of rare harmful effects in randomized controlled trials. JAMA 295:2275–2285

    Article  PubMed  CAS  Google Scholar 

  8. Breit W, Frosch M, Meyer U, Heinecke A, Ganser G (2000) A subgroup-specific evaluation of the efficacy of intraarticular triamcinolone hexacetonide in juvenile chronic arthritis. J Rheumatol 27:2696–2702

    PubMed  CAS  Google Scholar 

  9. Balogh Z, Ruzsonyi E (1987) Triamcinolone hexacetonide versus betamethasone. A double-blind comparative study of the long-term effects of intra-articular steroids in patients with juvenile chronic arthritis. Scand J Rheumatol Suppl 67:80–82

    PubMed  CAS  Google Scholar 

  10. Zulian F, Martini G, Gobber D, Plebani M, Zacchello F, Manners P (2004) Triamcinolone acetonide and hexacetonide intra-articular treatment of symmetrical joints in juvenile idiopathic arthritis: a double-blind trial. Rheumatology (Oxford) 43:1288–1291

    Article  CAS  Google Scholar 

  11. Fischer T, Biedermann T, Hermann KG et al (2003) Sacroiliitis in children with spondyloarthropathy: therapeutic effect of CT-Guided intra-articular corticosteroid injection. Rofo 175:814–821

    PubMed  CAS  Google Scholar 

  12. Fritz J, Clasen S, Boss A et al (2008) Real-time MR fluoroscopy-navigated lumbar facet joint injections: feasibility and technical properties. Eur Radiol 18:1513–1518

    Article  PubMed  CAS  Google Scholar 

  13. Fritz J, Henes JC, Thomas C et al (2008) Diagnostic and interventional MRI of the sacroiliac joints using a 1.5-T open-bore magnet: a one-stop-shopping approach. AJR Am J Roentgenol 191:1717–1724

    Article  PubMed  Google Scholar 

  14. Slovis TL (2002) The ALARA concept in pediatric CT: myth or reality? Radiology 223:5–6

    Article  PubMed  Google Scholar 

  15. Stattaus J, Maderwald S, Baba HA et al (2008) MR-guided liver biopsy within a short, wide-bore 1.5 Tesla MR system. Eur Radiol 18:2865–2873

    Article  PubMed  Google Scholar 

  16. Ricke J, Thormann M, Ludewig M et al (2010) MR-guided liver tumor ablation employing open high-field 1.0T MRI for image-guided brachytherapy. Eur Radiol 20:1985–1993

    Article  PubMed  Google Scholar 

  17. Kos S, Huegli R, Bongartz GM, Jacob AL, Bilecen D (2008) MR-guided endovascular interventions: a comprehensive review on techniques and applications. Eur Radiol 18:645–657

    Article  PubMed  Google Scholar 

  18. Konig CW, Schott UG, Pereira PL et al (2002) MR-guided lumbar sympathicolysis. Eur Radiol 12:1388–1393

    Article  PubMed  Google Scholar 

  19. Streitparth F, Walter T, Wonneberger U et al (2010) Image-guided spinal injection procedures in open high-field MRI with vertical field orientation: feasibility and technical features. Eur Radiol 20:395–403

    Article  PubMed  CAS  Google Scholar 

  20. Cahill AM, Cho SS, Baskin KM et al (2007) Benefit of fluoroscopically guided intraarticular, long-acting corticosteroid injection for subtalar arthritis in juvenile idiopathic arthritis. Pediatr Radiol 37:544–548

    Article  PubMed  Google Scholar 

  21. National Research Council (U.S.), Committee to Assess Health Risks from Exposure to Low Level of Ionizing Radiation (2006) Health risks from exposure to low levels of ionizing radiation: BEIR VII, Phase 2. National Academies Press, Washington, D.C

    Google Scholar 

  22. Fritz J, Niemeyer T, Clasen S et al (2007) Management of chronic low back pain: rationales, principles, and targets of imaging-guided spinal injections. Radiographics 27:1751–1771

    Article  PubMed  Google Scholar 

  23. Petty RE, Southwood TR, Manners P et al (2004) International League of Associations for Rheumatology classification of juvenile idiopathic arthritis: second revision, Edmonton, 2001. J Rheumatol 31:390–392

    PubMed  Google Scholar 

  24. Lewin JS, Petersilge CA, Hatem SF et al (1998) Interactive MR imaging-guided biopsy and aspiration with a modified clinical C-arm system. AJR Am J Roentgenol 170:1593–1601

    CAS  Google Scholar 

  25. Hicks CL, von Baeyer CL, Spafford PA, van Korlaar I, Goodenough B (2001) The Faces Pain Scale-Revised: toward a common metric in pediatric pain measurement. Pain 93:173–183

    Article  PubMed  CAS  Google Scholar 

  26. Fritz J, Thomas C, Clasen S, Claussen CD, Lewin JS, Pereira PL (2009) Freehand real-time MRI-guided lumbar spinal injection procedures at 1.5 T: feasibility, accuracy, and safety. AJR Am J Roentgenol 192:W161–W167

    Article  PubMed  Google Scholar 

  27. Lewin JS, Duerk JL, Jain VR, Petersilge CA, Chao CP, Haaga JR (1996) Needle localization in MR-guided biopsy and aspiration: effects of field strength, sequence design, and magnetic field orientation. AJR Am J Roentgenol 166:1337–1345

    PubMed  CAS  Google Scholar 

  28. Cleary AG, Murphy HD, Davidson JE (2003) Intra-articular corticosteroid injections in juvenile idiopathic arthritis. Arch Dis Child 88:192–196

    Article  PubMed  CAS  Google Scholar 

  29. Bollow M, Fischer T, Reisshauer H et al (2000) Quantitative analyses of sacroiliac biopsies in spondyloarthropathies: T cells and macrophages predominate in early and active sacroiliitis-cellularity correlates with the degree of enhancement detected by magnetic resonance imaging. Ann Rheum Dis 59:135–140

    Article  PubMed  CAS  Google Scholar 

  30. Wick MC, Weiss RJ, Jaschke W, Klauser AS (2010) Erosions are the most relevant magnetic resonance imaging features in quantification of sacroiliac joints in ankylosing spondylitis. J Rheumatol 37:622–627

    Article  PubMed  Google Scholar 

  31. Bollow M, Braun J, Taupitz M et al (1996) CT-guided intraarticular corticosteroid injection into the sacroiliac joints in patients with spondyloarthropathy: indication and follow-up with contrast-enhanced MRI. J Comput Assist Tomogr 20:512–521

    Article  PubMed  CAS  Google Scholar 

  32. Huppertz HI, Tschammler A, Horwitz AE, Schwab KO (1995) Intraarticular corticosteroids for chronic arthritis in children: efficacy and effects on cartilage and growth. J Pediatr 127:317–321

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Fritz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fritz, J., Tzaribachev, N., Thomas, C. et al. Evaluation of MR imaging guided steroid injection of the sacroiliac joints for the treatment of children with refractory enthesitis-related arthritis. Eur Radiol 21, 1050–1057 (2011). https://doi.org/10.1007/s00330-010-1994-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-010-1994-1

Keywords

Navigation