Skip to main content

Advertisement

Log in

Pathobiology of Modic changes

  • Review Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

Low back pain (LBP) is the most disabling condition worldwide. Although LBP relates to different spinal pathologies, vertebral bone marrow lesions visualized as Modic changes on MRI have a high specificity for discogenic LBP. This review summarizes the pathobiology of Modic changes and suggests a disease model.

Methods

Non-systematic literature review.

Results

Chemical and mechanical stimulation of nociceptors adjacent to damaged endplates are likely a source of pain. Modic changes are adjacent to a degenerated intervertebral disc and have three generally interconvertible types suggesting that the different Modic change types represent different stages of the same pathological process, which is characterized by inflammation, high bone turnover, and fibrosis. A disease model is suggested where disc/endplate damage and the persistence of an inflammatory stimulus (i.e., occult discitis or autoimmune response against disc material) create predisposing conditions. The risk to develop Modic changes likely depends on the inflammatory potential of the disc and the capacity of the bone marrow to respond to it. Bone marrow lesions in osteoarthritic knee joints share many characteristics with Modic changes adjacent to degenerated discs and suggest that damage-associated molecular patterns and marrow fat metabolism are important pathogenetic factors. There is no consensus on the ideal therapy. Non-surgical treatment approaches including intradiscal steroid injections, anti-TNF-α antibody, antibiotics, and bisphosphonates have some demonstrated efficacy in mostly non-replicated clinical studies in reducing Modic changes in the short term, but with unknown long-term benefits. New diagnostic tools and animal models are required to improve painful Modic change identification and classification, and to clarify the pathogenesis.

Conclusion

Modic changes are likely to be more than just a coincidental imaging finding in LBP patients and rather represent an underlying pathology that should be a target for therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Vos T, Flaxman AD, Naghavi M et al (2012) Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380:2163–2196. doi:10.1016/S0140-6736(12)61729-2

    Article  PubMed  Google Scholar 

  2. Thompson KJ, Dagher AP, Eckel TS et al (2009) Modic changes on MR images as studied with provocative diskography: clinical relevance–a retrospective study of 2457 disks. Radiology 250:849–855. doi:10.1148/radiol.2503080474

    Article  PubMed  Google Scholar 

  3. Modic MT, Steinberg PM, Ross JS et al (1988) Degenerative disk disease: assessment of changes in vertebral body marrow with MR imaging. Radiology 166:193–199

    Article  CAS  PubMed  Google Scholar 

  4. De Roos A, Kressel H, Spritzer C, Dalinka M (1987) MR imaging of marrow changes adjacent to end plates in degenerative lumbar disk disease. AJR Am J Roentgenol 149:531–534

    Article  PubMed  Google Scholar 

  5. Jensen TS, Karppinen J, Sorensen JS et al (2008) Vertebral endplate signal changes (Modic change): a systematic literature review of prevalence and association with non-specific low back pain. Eur Spine J 17:1407–1422. doi:10.1007/s00586-008-0770-2

    Article  PubMed  PubMed Central  Google Scholar 

  6. Jensen RK, Leboeuf-Yde C (2011) Is the presence of Modic changes associated with the outcomes of different treatments? A systematic critical review. BMC Musculoskelet Disord 12:183. doi:10.1186/1471-2474-12-183

    Article  PubMed  PubMed Central  Google Scholar 

  7. Karppinen J, Solovieva S, Luoma K et al (2009) Modic changes and interleukin 1 gene locus polymorphisms in occupational cohort of middle-aged men. Eur Spine J 18:1963–1970. doi:10.1007/s00586-009-1139-x

    Article  PubMed  PubMed Central  Google Scholar 

  8. Rahme R, Moussa R (2008) The modic vertebral endplate and marrow changes: pathologic significance and relation to low back pain and segmental instability of the lumbar spine. AJNR Am J Neuroradiol 29:838–842. doi:10.3174/ajnr.A0925

    Article  CAS  PubMed  Google Scholar 

  9. Wang Y, Videman T, Battié MC (2012) Modic changes: prevalence, distribution patterns, and association with age in white men. Spine J 12:411–416. doi:10.1016/j.spinee.2012.03.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kääpä E, Luoma K, Pitkäniemi J et al (2012) Correlation of size and type of modic types 1 and 2 lesions with clinical symptoms: a descriptive study in a subgroup of patients with chronic low back pain on the basis of a university hospital patient sample. Spine (Phila Pa 1976) 37:134–9. doi:10.1097/BRS.0b013e3182188a90

  11. Järvinen J, Karppinen J, Niinimäki J et al (2015) Association between changes in lumbar Modic changes and low back symptoms over a two-year period. BMC Musculoskelet Disord 16:98. doi:10.1186/s12891-015-0540-3

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kuisma M, Karppinen J, Niinimäki J et al (2007) Modic changes in endplates of lumbar vertebral bodies: prevalence and association with low back and sciatic pain among middle-aged male workers. Spine (Phila Pa 1976) 32:1116–1122. doi:10.1097/01.brs.0000261561.12944.ff

  13. Chung CB, Vande Berg BC, Tavernier T et al (2004) End plate marrow changes in the asymptomatic lumbosacral spine: frequency, distribution and correlation with age and degenerative changes. Skeletal Radiol 33:399–404. doi:10.1007/s00256-004-0780-z

    Article  PubMed  Google Scholar 

  14. Karchevsky M, Schweitzer ME, Carrino JA et al (2005) Reactive endplate marrow changes: a systematic morphologic and epidemiologic evaluation. Skeletal Radiol 34:125–129. doi:10.1007/s00256-004-0886-3

    Article  PubMed  Google Scholar 

  15. Kuisma M, Karppinen J, Niinimäki J et al (2006) A three-year follow-up of lumbar spine endplate (Modic) changes. Spine (Phila Pa 1976) 31:1714–1718. doi:10.1097/01.brs.0000224167.18483.14

  16. Kjaer P, Korsholm L, Bendix T et al (2006) Modic changes and their associations with clinical findings. Eur Spine J 15:1312–1319. doi:10.1007/s00586-006-0185-x

    Article  PubMed  PubMed Central  Google Scholar 

  17. Jensen TS, Bendix T, Sorensen JS et al (2009) Characteristics and natural course of vertebral endplate signal (Modic) changes in the Danish general population. BMC Musculoskelet Disord 10:81. doi:10.1186/1471-2474-10-81

    Article  PubMed  PubMed Central  Google Scholar 

  18. Jensen TS, Kjaer P, Korsholm L et al (2010) Predictors of new vertebral endplate signal (Modic) changes in the general population. Eur Spine J 19:129–135. doi:10.1007/s00586-009-1184-5

    Article  PubMed  Google Scholar 

  19. Albert HB, Briggs AM, Kent P et al (2011) The prevalence of MRI-defined spinal pathoanatomies and their association with modic changes in individuals seeking care for low back pain. Eur Spine J 20:1355–1362. doi:10.1007/s00586-011-1794-6

    Article  PubMed  PubMed Central  Google Scholar 

  20. Arana E, Kovacs FM, Royuela A et al (2011) Modic changes and associated features in Southern European chronic low back pain patients. Spine J 11:402–411. doi:10.1016/j.spinee.2011.03.019

    Article  PubMed  Google Scholar 

  21. Määttä JH, Kraatari M, Wolber L et al (2014) Vertebral endplate change as a feature of intervertebral disc degeneration: a heritability study. Eur Spine J 23:1856–1862. doi:10.1007/s00586-014-3333-8

    Article  PubMed  Google Scholar 

  22. Kuisma M, Karppinen J, Haapea M et al (2008) Are the determinants of vertebral endplate changes and severe disc degeneration in the lumbar spine the same? A magnetic resonance imaging study in middle-aged male workers. BMC Musculoskelet Disord 9:51. doi:10.1186/1471-2474-9-51

    Article  PubMed  PubMed Central  Google Scholar 

  23. Leboeuf-Yde C, Kjaer P, Bendix T, Manniche C (2008) Self-reported hard physical work combined with heavy smoking or overweight may result in so-called Modic changes. BMC Musculoskelet Disord 9:5. doi:10.1186/1471-2474-9-5

    Article  PubMed  PubMed Central  Google Scholar 

  24. Farshad-Amacker NA, Hughes AP, Aichmair A et al (2014) Determinants of evolution of endplate and disc degeneration in the lumbar spine: a multifactorial perspective. Eur Spine J 23:1863–1868. doi:10.1007/s00586-014-3382-z

    Article  PubMed  Google Scholar 

  25. Wu H-L, Ding W-Y, Shen Y et al (2012) Prevalence of vertebral endplate modic changes in degenerative lumbar scoliosis and its associated factors analysis. Spine (Phila Pa 1976) 37:1958–1964. doi:10.1097/BRS.0b013e31825bfb85

  26. Kleinstück F, Dvorak J, Mannion AF (2006) Are “structural abnormalities” on magnetic resonance imaging a contraindication to the successful conservative treatment of chronic nonspecific low back pain? Spine (Phila Pa 1976) 31:2250–2257. doi:10.1097/01.brs.0000232802.95773.89

  27. Buttermann GR (2004) The effect of spinal steroid injections for degenerative disc disease. Spine J 4:495–505. doi:10.1016/j.spinee.2004.03.024

    Article  PubMed  Google Scholar 

  28. Fayad F, Lefevre-Colau M-M, Rannou F et al (2007) Relation of inflammatory modic changes to intradiscal steroid injection outcome in chronic low back pain. Eur Spine J 16:925–931. doi:10.1007/s00586-006-0301-y

    Article  PubMed  PubMed Central  Google Scholar 

  29. Jensen OK, Nielsen CV, Sørensen JS, Stengaard-Pedersen K (2014) Type 1 Modic changes was a significant risk factor for 1-year outcome in sick-listed low back pain patients: a nested cohort study using magnetic resonance imaging of the lumbar spine. Spine J 14:2568–2581. doi:10.1016/j.spinee.2014.02.018

    Article  PubMed  Google Scholar 

  30. Lurie JD, Moses RA, Tosteson ANA et al (2013) Magnetic resonance imaging predictors of surgical outcome in patients with lumbar intervertebral disc herniation. Spine (Phila Pa 1976) 38:1216–1225. doi:10.1097/BRS.0b013e31828ce66d

  31. Ohtori S, Inoue G, Ito T et al (2006) Tumor necrosis factor-immunoreactive cells and PGP 9.5-immunoreactive nerve fibers in vertebral endplates of patients with discogenic low back Pain and Modic Type 1 or Type 2 changes on MRI. Spine (Phila Pa 1976) 31:1026–1031. doi:10.1097/01.brs.0000215027.87102.7c

  32. Fields AJ, Liebenberg EC, Lotz JC (2014) Innervation of pathologies in the lumbar vertebral end plate and intervertebral disc. Spine J 14:513–521. doi:10.1016/j.spinee.2013.06.075

    Article  PubMed  Google Scholar 

  33. Eskola JP, Männikkö M, Samartzis D, Karppinen J (2014) Genome-wide association studies of lumbar disc degeneration—are we there yet? Spine J 14:479–482

    Article  PubMed  Google Scholar 

  34. Schmid G, Witteler A, Willburger R et al (2004) Lumbar disk herniation: correlation of histologic findings with marrow signal intensity changes in vertebral endplates at MR imaging. Radiology 231:352–358. doi:10.1148/radiol.2312021708

    Article  PubMed  Google Scholar 

  35. Perilli E, Parkinson IH, Truong L-H et al (2014) Modic (endplate) changes in the lumbar spine: bone micro-architecture and remodelling. Eur Spine J 24:1926–1934. doi:10.1007/s00586-014-3455-z

    Article  PubMed  Google Scholar 

  36. Kuisma M, Karppinen J, Haapea M et al (2009) Modic changes in vertebral endplates: a comparison of MR imaging and multislice CT. Skeletal Radiol 38:141–147. doi:10.1007/s00256-008-0590-9

    Article  PubMed  Google Scholar 

  37. Lecka-Czernik B (2012) Marrow fat metabolism is linked to the systemic energy metabolism. Bone 50:534–539. doi:10.1016/j.bone.2011.06.032

    Article  CAS  PubMed  Google Scholar 

  38. Weiner BK, Vilendecic M, Ledic D et al (2014) Endplate changes following discectomy: natural history and associations between imaging and clinical data. Eur Spine J 24:2449–2457. doi:10.1007/s00586-014-3734-8

    Article  PubMed  Google Scholar 

  39. Kerttula LI, Serlo WS, Tervonen OA et al (2000) Post-traumatic findings of the spine after earlier vertebral fracture in young patients. Spine (Phila Pa 1976) 25:1104–1108

  40. Dudli S, Ferguson SJ, Haschtmann D (2014) Severity and pattern of post-traumatic intervertebral disc degeneration depend on the type of injury. Spine J 14:1256–1264. doi:10.1016/j.spinee.2013.07.488

    Article  PubMed  Google Scholar 

  41. Mok FPS, Samartzis D, Karppinen J et al (2010) ISSLS prize winner: prevalence, determinants, and association of Schmorl nodes of the lumbar spine with disc degeneration: a population-based study of 2449 individuals. Spine (Phila Pa 1976) 35:1944–1952. doi:10.1097/BRS.0b013e3181d534f3

  42. Yoganandan N, Larson SJ, Gallagher M et al (1994) Correlation of microtrauma in the lumbar spine with intraosseous pressures. Spine (Phila Pa 1976) 19:435–440

  43. Dudli S, Haschtmann D, Ferguson SJ (2014) Persistent degenerative changes in the intervertebral disc after burst fracture in an in vitro model mimicking physiological post-traumatic conditions. Eur Spine J 24:1901–1908. doi:10.1007/s00586-014-3301-3

    Article  PubMed  Google Scholar 

  44. Ishihara H, McNally DS, Urban JP, Hall AC (1996) Effects of hydrostatic pressure on matrix in different regions of the intervertebral synthesis disk. J Appl Physiol 80:839–846

    CAS  PubMed  Google Scholar 

  45. Lotz J, Chin JR (2000) Intervertebral Disc Cell Death Is Dependent on the Magnitude and Duration of Spinal Loading. Spine (Phila Pa 1976) 25:1477–1483

  46. Rajasekaran S, Babu JN, Arun R et al (2004) ISSLS prize winner: A study of diffusion in human lumbar discs: a serial magnetic resonance imaging study documenting the influence of the endplate on diffusion in normal and degenerate discs. Spine (Phila Pa 1976) 29:2654–2667

  47. Adams MA, Freeman BJ, Morrison HP et al (2000) Mechanical initiation of intervertebral disc degeneration. Spine (Phila Pa 1976) 25:1625–1636

  48. Ferguson SJ, Ito K, Nolte LP (2004) Fluid flow and convective transport of solutes within the intervertebral disc. J Biomech 37:213–221

    Article  PubMed  Google Scholar 

  49. Brown DB, Glaiberman CB, Gilula LA, Shimony JS (2005) Correlation between preprocedural MRI findings and clinical outcomes in the treatment of chronic symptomatic vertebral compression fractures with percutaneous vertebroplasty. AJR Am J Roentgenol 184:1951–1955. doi:10.2214/ajr.184.6.01841951

    Article  PubMed  Google Scholar 

  50. Wagner AL, Murtagh FR, Arrington JA, Stallworth D (2000) Relationship of Schmorl’s nodes to vertebral body endplate fractures and acute endplate disk extrusions. AJNR Am J Neuroradiol 21:276–281

    CAS  PubMed  Google Scholar 

  51. Takahashi K, Miyazaki T, Ohnari H et al (1995) Schmorl’s nodes and low-back pain. Analysis of magnetic resonance imaging findings in symptomatic and asymptomatic individuals. Eur Spine J 4:56–59

    Article  CAS  PubMed  Google Scholar 

  52. Ma X-L, Ma J-X, Wang T et al (2011) Possible role of autoimmune reaction in Modic Type I changes. Med Hypotheses 76:692–694. doi:10.1016/j.mehy.2011.01.035

    Article  PubMed  Google Scholar 

  53. Albert HB, Kjaer P, Jensen TS et al (2008) Modic changes, possible causes and relation to low back pain. Med Hypotheses 70:361–368. doi:10.1016/j.mehy.2007.05.014

    Article  CAS  PubMed  Google Scholar 

  54. Stirling A, Worthington T, Rafiq M et al (2001) Association between sciatica and Propionibacterium acnes. Lancet 357:2024–2025. doi:10.1016/S0140-6736(00)05109-6

    Article  CAS  PubMed  Google Scholar 

  55. Bhanji S, Williams B, Sheller B et al (2002) Transient bacteremia induced by toothbrushing a comparison of the Sonicare toothbrush with a conventional toothbrush. Pediatr Dent 24:295–299

    PubMed  Google Scholar 

  56. Wedderkopp N, Thomsen K, Manniche C et al (2009) No evidence for presence of bacteria in modic type I changes. Acta Radiol 50:65–70. doi:10.1080/02841850802524485

    Article  CAS  PubMed  Google Scholar 

  57. Burke JG, G Watson RW, Conhyea D et al (2003) Human nucleus pulposis can respond to a pro-inflammatory stimulus. Spine (Phila Pa 1976) 28:2685–2693. doi:10.1097/01.BRS.0000103341.45133.F3

  58. Rannou F, Ouanes W, Boutron I et al (2007) High-sensitivity C-reactive protein in chronic low back pain with vertebral end-plate Modic signal changes. Arthritis Rheum 57:1311–1315. doi:10.1002/art.22985

    Article  CAS  PubMed  Google Scholar 

  59. Albert HB, Lambert P, Rollason J et al (2013) Does nuclear tissue infected with bacteria following disc herniations lead to Modic changes in the adjacent vertebrae? Eur Spine J 22:690–696. doi:10.1007/s00586-013-2674-z

    Article  PubMed  PubMed Central  Google Scholar 

  60. Kaneyama S, Nishida K, Takada T et al (2008) Fas ligand expression on human nucleus pulposus cells decreases with disc degeneration processes. J Orthop Sci 13:130–135. doi:10.1007/s00776-007-1204-4

    Article  CAS  PubMed  Google Scholar 

  61. Wang F, Jiang J-M, Deng C-H et al (2011) Expression of Fas receptor and apoptosis in vertebral endplates with degenerative disc diseases categorized as Modic type I or II. Injury 42:790–795. doi:10.1016/j.injury.2011.01.034

    Article  PubMed  Google Scholar 

  62. Geiss A, Larsson K, Junevik K et al (2009) Autologous nucleus pulposus primes T cells to develop into interleukin-4-producing effector cells: an experimental study on the autoimmune properties of nucleus pulposus. J Orthop Res 27:97–103. doi:10.1002/jor.20691

    Article  PubMed  Google Scholar 

  63. Virri J, Grönblad M, Seitsalo S et al (2001) Comparison of the prevalence of inflammatory cells in subtypes of disc herniations and associations with straight leg raising. Spine (Phila Pa 1976) 26:2311–2315

  64. Shamji MF, Allen KD, So S et al (2009) Gait abnormalities and inflammatory cytokines in an autologous nucleus pulposus model of radiculopathy. Spine (Phila Pa 1976) 34:648–654. doi:10.1097/BRS.0b013e318197f013

  65. Gertzbein SD, Tait JH, Devlin SR (1976) The stimulation of lymphocytes by nucleus pulposus in patients with degenerative disk disease of the lumbar spine. Clin Orthop Relat Res 123:149–154

    Google Scholar 

  66. Kanerva A, Kommonen B, Grönblad M et al (1997) Inflammatory cells in experimental intervertebral disc injury. Spine (Phila Pa 1976) 22:2711–2715

  67. Park J-B, Chang H, Kim Y-S (2002) The pattern of interleukin-12 and T-helper types 1 and 2 cytokine expression in herniated lumbar disc tissue. Spine (Phila Pa 1976) 27:2125–2128. doi:10.1097/01.BRS.0000025687.56098.54

  68. Yamamoto J, Maeno K, Takada T et al (2013) Fas ligand plays an important role for the production of pro-inflammatory cytokines in intervertebral disc nucleus pulposus cells. J Orthop Res 31:608–615. doi:10.1002/jor.22274

    Article  CAS  PubMed  Google Scholar 

  69. Murai K, Sakai D, Nakamura Y et al (2010) Primary immune system responders to nucleus pulposus cells: evidence for immune response in disc herniation. Eur Cell Mater 19:13–21

    CAS  PubMed  Google Scholar 

  70. Bárdos T, Szabó Z, Czipri M et al (2005) A longitudinal study on an autoimmune murine model of ankylosing spondylitis. Ann Rheum Dis 64:981–987. doi:10.1136/ard.2004.029710

    Article  PubMed  PubMed Central  Google Scholar 

  71. Burke J, Watson R, McCormack D et al (2003) Endplate changes are associated with increased disc inflammatory mediator production. J Bone Joint Surg Br 85-B no SUPP II:164

  72. Torkki M, Majuri M-L, Wolff H et al (2015) Osteoclast activators are elevated in intervertebral disks with Modic changes among patients operated for herniated nucleus pulposus. Eur Spine J Mar 27 [Epub ahead of print]. doi: 10.1007/s00586-015-3897-y

  73. Klawitter M, Hakozaki M, Kobayashi H et al (2014) Expression and regulation of toll-like receptors (TLRs) in human intervertebral disc cells. Eur Spine J 23:1878–1891. doi:10.1007/s00586-014-3442-4

    Article  PubMed  Google Scholar 

  74. Wuertz K, Vo N, Kletsas D, Boos N (2012) Inflammatory and catabolic signalling in intervertebral discs: the roles of NF-κB and MAP kinases. Eur Cell Mater 23:103–19 (discussion 119–20)

  75. Piccinini AM, Midwood KS (2010) DAMPening inflammation by modulating TLR signalling. Mediators Inflamm. doi:10.1155/2010/672395

    PubMed  PubMed Central  Google Scholar 

  76. Mills KHG (2011) TLR-dependent T cell activation in autoimmunity. Nat Rev Immunol 11:807–822. doi:10.1038/nri3095

    CAS  PubMed  Google Scholar 

  77. Baum T, Yap SP, Karampinos DC et al (2012) Does vertebral bone marrow fat content correlate with abdominal adipose tissue, lumbar spine bone mineral density, and blood biomarkers in women with type 2 diabetes mellitus? J Magn Reson Imaging 35:117–124. doi:10.1002/jmri.22757

    Article  PubMed  Google Scholar 

  78. Thomas GPL, Hemmrich K, Abberton KM et al (2008) Zymosan-induced inflammation stimulates neo-adipogenesis. Int J Obes (Lond) 32:239–248. doi:10.1038/sj.ijo.0803702

    Article  CAS  Google Scholar 

  79. Monden M, Koyama H, Otsuka Y et al (2013) Receptor for advanced glycation end products regulates adipocyte hypertrophy and insulin sensitivity in mice: involvement of Toll-like receptor 2. Diabetes 62:478–489. doi:10.2337/db11-1116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Lim YZ, Wang Y, Wluka AE et al (2014) Association of obesity and systemic factors with bone marrow lesions at the knee: a systematic review. Semin Arthritis Rheum 43:600–612

    Article  PubMed  Google Scholar 

  81. Hassett G, Hart DJ, Manek NJ et al (2003) Risk factors for progression of lumbar spine disc degeneration: the Chingford Study. Arthritis Rheum 48:3112–3117. doi:10.1002/art.11321

    Article  CAS  PubMed  Google Scholar 

  82. Gimble JM, Zvonic S, Floyd ZE et al (2006) Playing with bone and fat. J Cell Biochem 98:251–266. doi:10.1002/jcb.20777

    Article  CAS  PubMed  Google Scholar 

  83. Schwartz AV, Sigurdsson S, Hue TF et al (2013) Vertebral bone marrow fat associated with lower trabecular BMD and prevalent vertebral fracture in older adults. J Clin Endocrinol Metab 98:2294–2300. doi:10.1210/jc.2012-3949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ott C, Jacobs K, Haucke E et al (2014) Role of advanced glycation end products in cellular signaling. Redox Biol 2:411–429. doi:10.1016/j.redox.2013.12.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Jazini E, Sharan AD, Morse LJ, et al. (2012) Alterations in T2 relaxation magnetic resonance imaging of the ovine intervertebral disc due to nonenzymatic glycation. Spine (Phila Pa 1976) 37:E209–E215. doi:10.1097/BRS.0b013e31822ce81f

  86. Illien-Junger S, Grosjean F, Laudier DM et al (2013) Combined anti-inflammatory and anti-AGE drug treatments have a protective effect on intervertebral discs in mice with diabetes. PLoS One 8:e64302. doi:10.1371/journal.pone.0064302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Fields AJ, Berg-Johansen B, Metz LN et al (2015) Alterations in intervertebral disc composition, matrix homeostasis and biomechanical behavior in the UCD-T2DM rat model of type 2 diabetes. J Orthop Res 33:738–746. doi:10.1002/jor.22807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Liu-Bryan R (2013) Synovium and the innate inflammatory network in osteoarthritis progression. Curr Rheumatol Rep 15:323. doi:10.1007/s11926-013-0323-5

    Article  PubMed  PubMed Central  Google Scholar 

  89. Rojas A, Delgado-López F, González I et al (2013) The receptor for advanced glycation end-products: a complex signaling scenario for a promiscuous receptor. Cell Signal 25:609–614. doi:10.1016/j.cellsig.2012.11.022

    Article  CAS  PubMed  Google Scholar 

  90. Wan Y, Chong L-W, Evans RM (2007) PPAR-gamma regulates osteoclastogenesis in mice. Nat Med 13:1496–1503. doi:10.1038/nm1672

    Article  CAS  PubMed  Google Scholar 

  91. Naveiras O, Nardi V, Wenzel PL et al (2009) Bone-marrow adipocytes as negative regulators of the haematopoietic microenvironment. Nature 460:259–263. doi:10.1038/nature08099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Turner CH (1992) Functional determinants of bone structure: beyond Wolff’s law of bone transformation. Bone 13:403–409

    Article  CAS  PubMed  Google Scholar 

  93. Nuttall ME, Shah F, Singh V et al (2014) Adipocytes and the regulation of bone remodeling: a balancing act. Calcif Tissue Int 94:78–87. doi:10.1007/s00223-013-9807-6

    Article  CAS  PubMed  Google Scholar 

  94. Schellinger D, Lin CS, Hatipoglu HG, Fertikh D (2001) Potential value of vertebral proton MR spectroscopy in determining bone weakness. AJNR Am J Neuroradiol 22:1620–1627

    CAS  PubMed  Google Scholar 

  95. Albert HB, Sorensen JS, Christensen BS, Manniche C (2013) Antibiotic treatment in patients with chronic low back pain and vertebral bone edema (Modic type 1 changes): a double-blind randomized clinical controlled trial of efficacy. Eur Spine J 22:697–707. doi:10.1007/s00586-013-2675-y

    Article  PubMed  PubMed Central  Google Scholar 

  96. Korhonen T, Karppinen J, Paimela L et al (2006) The treatment of disc-herniation-induced sciatica with infliximab: one-year follow-up results of FIRST II, a randomized controlled trial. Spine (Phila Pa 1976) 31:2759–2766. doi:10.1097/01.brs.0000245873.23876.1e

  97. Koivisto K, Kyllönen E, Haapea M et al (2014) Efficacy of zoledronic acid for chronic low back pain associated with Modic changes in magnetic resonance imaging. BMC Musculoskelet Disord 15:64. doi:10.1186/1471-2474-15-64

    Article  PubMed  PubMed Central  Google Scholar 

  98. Carbone LD, Nevitt MC, Wildy K et al (2004) The relationship of antiresorptive drug use to structural findings and symptoms of knee osteoarthritis. Arthritis Rheum 50:3516–3525. doi:10.1002/art.20627

    Article  PubMed  Google Scholar 

  99. Papuga MO, Proulx ST, Kwok E et al (2010) Chronic axial compression of the mouse tail segment induces MRI bone marrow edema changes that correlate with increased marrow vasculature and cellularity. J Orthop Res 28:1220–1228. doi:10.1002/jor.21103

    Article  PubMed  PubMed Central  Google Scholar 

  100. Ulrich JA, Liebenberg EC, Thuillier DU, Lotz J (2007) ISSLS prize winner: repeated disc injury causes persistent inflammation. Spine (Phila Pa 1976) 32:2812–2819. doi:10.1097/BRS.0b013e31815b9850

  101. Malinin T, Brown MD (2007) Changes in vertebral bodies adjacent to acutely narrowed intervertebral discs: observations in baboons. Spine (Phila Pa 1976) 32:E603–E607. doi:10.1097/BRS.0b013e31815574e7

  102. Fields AJ, Han M, Krug R, Lotz JC (2015) Cartilaginous end plates: quantitative MR imaging with very short echo times-orientation dependence and correlation with biochemical composition. Radiology 274:482–489. doi:10.1148/radiol.14141082

    Article  PubMed  Google Scholar 

  103. Roemer FW, Frobell R, Hunter DJ et al (2009) MRI-detected subchondral bone marrow signal alterations of the knee joint: terminology, imaging appearance, relevance and radiological differential diagnosis. Osteoarthritis Cartilage 17:1115–1131. doi:10.1016/j.joca.2009.03.012

    Article  CAS  PubMed  Google Scholar 

  104. Felson DT, Niu J, Guermazi A et al (2007) Correlation of the development of knee pain with enlarging bone marrow lesions on magnetic resonance imaging. Arthritis Rheum 56:2986–2992. doi:10.1002/art.22851

    Article  PubMed  Google Scholar 

  105. Bendix T, Sorensen JS, Henriksson GAC et al (2012) Lumbar modic changes-a comparison between findings at low- and high-field magnetic resonance imaging. Spine (Phila Pa 1976) 37:1756–1762. doi:10.1097/BRS.0b013e318257ffce

  106. Urquhart DM, Zheng Y, Cheng AC et al (2015) Could low grade bacterial infection contribute to low back pain? A systematic review. BMC Med 13:13. doi:10.1186/s12916-015-0267-x

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We acknowledge our funding sources: Swiss National Science Foundation Grant PBEZP3_145961 and National Institutes of Health Grant AR063705. We also acknowledge Jaakko Niinimäki for providing MRI scans of MC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Dudli.

Ethics declarations

Conflict of interest

None of the authors has any potential conflict of interest

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dudli, S., Fields, A.J., Samartzis, D. et al. Pathobiology of Modic changes. Eur Spine J 25, 3723–3734 (2016). https://doi.org/10.1007/s00586-016-4459-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-016-4459-7

Keywords

Navigation