Skip to main content

Advertisement

Log in

Xilonix, a novel true human antibody targeting the inflammatory cytokine interleukin-1 alpha, in non-small cell lung cancer

  • PHASE I STUDIES
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

Background Advanced non-small cell lung cancer (NSCLC) patients were treated as part of a Phase I dose escalation and expansion study evaluating a true human monoclonal antibody targeting IL-1α (Xilonix), which is intended to modulate the malignant phenotype—inhibiting tumor growth, spread and offering relief of symptoms. Methods Sixteen NSCLC patients were included. Patients failed a median of 4 chemotherapy regimens, including 10/16 failing anti-EGFR therapy. Disease progression was evaluated using a multi-modal approach: tumor response, patient reported outcomes (EORTC-QLQC30), and lean body mass (LBM). Patients received infusions every 2 or 3 weeks until progression, and were followed 24 months to assess survival. Results There were no infusion reactions, dose-limiting toxicities, or deaths due to therapy. Albeit not statistically significant, there was a trend in IL-6 (−2.6 ± 18.5 (0.1 [−2.8–2.4]), platelet counts (−11 ± 54 (−4[−36.0–1.0]), CRP (−3.3 ± 30.2 (0.4 [−10.7–1.8]) and LBM (1.0 ± 2.5 (0.4 [−0.5–2.6]). Self-reported outcomes revealed reductions in pain, fatigue and improvement in appetite. Median survival was 7.6 (IQR 4.4–11.5) months, stratification based on prior anti-EGFR therapy revealed a median survival of 9.4 months (IQR 7.6–12.5) for those pretreated (N = 10) versus a survival of 4.8 months (IQR 4.3–5.7) for those without (N = 6, logrank p = 0.187). Conclusion Xilonix was well tolerated, with gains in LBM and improvement in symptoms suggesting a clinically important response. Although not statistically significant, the survival outcomes observed for patients with and without prior anti-EGFR therapy raises intriguing questions about the potential synergy of IL-1α blockade and anti-EGFR therapy. Further study for this agent in NSCLC is warranted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Siegel R, Naishadham D, Jemal A (2014) Cancer statistics, 2012. CA Cancer J Clin 62:10–29

    Article  Google Scholar 

  2. Thornton et al (2010) Platelet interleukin-1a drives cerebrovascular inflammation. Blood 115(17):3632–3639

    Article  CAS  PubMed  Google Scholar 

  3. Sabrkhany et al (2011) The role of blood platelets in tumor angiogenesis. Biochim Biophys Acta 1815:189–196

    CAS  PubMed  Google Scholar 

  4. Tjomsland V et al (2011) Interleukin 1α sustains the expression of inflammatory factors in human pancreatic cancer microenvironment by targeting cancer-associated fibroblasts. Neoplasia 13(8):664–675

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Tomimatsu S, Ichikura T, Mochizuki H (2001) Significant correlation between expression of interleukin-1alpha and liver metastasis in gastric carcinoma. Cancer 91(7):1272–1276

    Article  CAS  PubMed  Google Scholar 

  6. Singer CF et al (2003) Interleukin 1 system and sex steroid receptor expression in human breast cancer: interleukin 1alpha protein secretion is correlated with malignant phenotype. Clin Cancer Res 9(13):4877–4883

    CAS  PubMed  Google Scholar 

  7. Garlanda C, Dinarello CA, Mantovani A (2013) The interleukin-1 family: back to the future. Immunity 39(6):1003–1018. doi:10.1016/j.immuni.2013.11.010

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Dinarello CA, Simon A, van der Meer JW (2012) Treating inflammation by blocking interleukin-1 in a broad spectrum of diseases. Nat Rev Drug Discov 11(8):633–652

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Salven et al (2002) Interleukin-1α promotes angiogenesis in vivo via VEGFR-2 pathway by inducing inflammatory cell VEGF synthesis and secretion. FASEB J 16:1471–1473

    CAS  PubMed  Google Scholar 

  10. Van Lint P, Libert C (2007) Chemokine and cytokine processing by matrix metalloproteinases and its effect on leukocyte migration and inflammation. J Leukoc Biol 82(6):1375–1381

    Article  PubMed  Google Scholar 

  11. Rock KL et al (2010) The sterile inflammatory response. Annu Rev Immunol 28:321–342

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Allavena P, Mantovani A (2012) Immunology in the clinic review series; focus on cancer: tumour-associated macrophages: undisputed stars of the inflammatory tumour microenvironment. Clin Exp Immunol 167(2):195–205. doi:10.1111/j.1365-2249.2011.04515.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Dinarello CA (2014) Interleukin-1α neutralisation in patients with cancer. Lancet Oncol 15(6):552–553. doi:10.1016/S1470-2045(14)70164-0

    Article  CAS  PubMed  Google Scholar 

  14. Eisenhauer EA, Therasse P, Bogaerts J et al (2009) New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer 45(2):228–247. doi:10.1016/j.ejca.2008.10.026

    Article  CAS  PubMed  Google Scholar 

  15. Wolchok JD et al (2009) Guidelines for the evaluation of immune therapy activity in solid tumors: immune-related response criteria. Clin Cancer Res 15:7412–7420

    Article  CAS  PubMed  Google Scholar 

  16. Quinten C et al (2009) Baseline quality of life as a prognostic indicator of survival: a meta-analysis of individual patient data from EORTC clinical trials. Lancet Oncol 10:865–871

    Article  PubMed  Google Scholar 

  17. Hong DS et al (2014) MABp1, a first-in-class true human antibody targeting interleukin-1α in refractory cancers: an open-label, phase 1 dose-escalation and expansion study. Lancet Oncol 15(6):656–666

    Article  CAS  PubMed  Google Scholar 

  18. Yeh KY, Li YY, Hsieh LL et al (2010) Analysis of the effect of serum interleukin-6 (IL-6) and soluble IL-6 receptor levels on survival of patients with colorectal cancer. Jpn J Clin Oncol 40(6):580–587. doi:10.1093/jjco/hyq010

    Article  PubMed  Google Scholar 

  19. Stone RL, Nick AM, McNeish IA et al (2012) Paraneoplastic thrombocytosis in ovarian cancer. N Engl J Med 366(7):610–618. doi:10.1056/NEJMoa1110352

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Ravasco P, Monteiro-Grillo I, Camilo M (2007) Colorectal cancer: intrinsic characteristics modulate cancer energy expenditure and the risk of cachexia. Cancer Invest 25(5):308–314

    Article  CAS  PubMed  Google Scholar 

  21. Quinten C, Coens C, Mauer M et al (2009) Baseline quality of life as a prognostic indicator of survival: a meta-analysis of individual patient data from EORTC clinical trials. Lancet Oncol 10(9):865–871. doi:10.1016/S1470-2045(09)70200-1

    Article  PubMed  Google Scholar 

  22. Herrmann F et al (2004) HER-2/neu-mediated regulation of components of the MHC class I antigen-processing pathway. Cancer Res 64:215–220

    Article  CAS  PubMed  Google Scholar 

  23. Mimura K (2004) T. et al. T cell recognition of HLA-A2 restricted tumor antigens is impaired by the oncogene HER2. Int J Cancer 128:390–401

    Article  Google Scholar 

  24. So T et al (2005) Haplotype loss of HLA class I antigen as an escape mechanism from immune attack in lung cancer. Cancer Res 65(13):5945–5952

    Article  CAS  PubMed  Google Scholar 

  25. Corthay A (2014) Does the immune system naturally protect against cancer? Front Immunol 5:197. doi:10.3389/fimmu.2014.00197. eCollection 2014

    Article  PubMed Central  PubMed  Google Scholar 

  26. Campoli M, Ferrone S (2008) HLA antigen changes in malignant cells: epigenetic mechanisms and biologic significance. Oncogene 27:5869–5885. doi:10.1038/onc.2008.273

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Trivedi S, Concha-Benavente F, Srivastava RM, Jie HB, Gibson SP, Schmitt NC, Ferris RL (2014) Immune biomarkers of anti-EGFR monoclonal antibody therapy. Ann Oncol

  28. Pollack BP, Sapkota B, Cartee TV (2011) Epidermal growth factor receptor inhibition augments the expression of MHC class I and II genes. Clin Cancer Res 17:4400–4413

    Article  CAS  PubMed  Google Scholar 

  29. Voronov E, Carmi Y, Apte RN (2014) The role IL-1 in tumor-mediated angiogenesis. Front Physiol 5:114. doi:10.3389/fphys.2014.00114, eCollection 2014

    Article  PubMed Central  PubMed  Google Scholar 

  30. Ostrand-Rosenberg S, Sinha P (2009) Myeloid-derived suppressor cells: linking inflammation and cancer. J Immunol 182(8):4499–4506. doi:10.4049/jimmunol.0802740

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Kim B et al (2013) The interleukin-1α precursor is biologically active and is likely a key alarmin in the IL-1 family of cytokines. Front Immunol 4:391. doi:10.3389/fimmu.2013.00391. eCollection 2013

    PubMed Central  PubMed  Google Scholar 

  32. Fletcher EV et al (2013) EGFR inhibition induces proinflammatory cytokines via NOX4 in HNSCC. Mol Cancer Res 11(12):1574–1584. doi:10.1158/1541-7786.MCR-13-0187

    Article  CAS  PubMed  Google Scholar 

  33. Giles KM et al (2013) Axl mediates acquired resistance of head and neck cancer cells to the epidermal growth factor receptor inhibitor erlotinib. Mol Cancer Ther 12(11):2541–2558. doi:10.1158/1535-7163.MCT-13-0170

    Article  CAS  PubMed  Google Scholar 

  34. Stone RL et al (2012) Paraneoplastic thrombocytosis in ovarian cancer. N Engl J Med 366:610–618

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Narsale AA, Carson JA (2014) Role of interleukin-6 in cachexia: therapeutic implications. Curr Opin Support Palliat Care 8(4):321–327. doi:10.1097/SPC.0000000000000091

    Article  PubMed  Google Scholar 

  36. Yao Z et al (2010) TGF-beta IL-6 axis mediates selective and adaptive mechanisms of resistance to molecular targeted therapy in lung cancer. Proc Natl Acad Sci U S A 107(35):15535–15540. doi:10.1073/pnas.1009472107

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Li L et al (2014) Metformin sensitizes EGFR-TKI-resistant human lung cancer cells in vitro and in vivo through inhibition of IL-6 signaling and EMT reversal. Clin Cancer Res 20(10):2714–2726. doi:10.1158/1078-0432.CCR-13-2613

    Article  CAS  PubMed  Google Scholar 

  38. Qin Y, Ekmekcioglu S, Liu P, Duncan LM, Lizée G, Poindexter N, Grimm EA (2011) Constitutive aberrant endogenous interleukin-1 facilitates inflammation and growth in human melanoma. Mol Cancer Res 9(11):1537–1550. doi:10.1158/1541-7786.MCR-11-0279

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Compliance with ethical standards

Funding

This study was funded by XBiotech USA, Inc.

Conflicts of interest

DSH reports grants from Xbiotech during the conduct of the study.

RK reports funding for research.

MS and PM are employees of XBiotech with stock options. JS is an employee of XBiotech with stock options, and patents related to anti-IL-1α therapy.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David S. Hong.

Additional information

One sentence summary

IL-1α blockade may help overcome resistance to anti-EGFR therapy by inhibiting the immunosuppressive effects of tumor-associated inflammation.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Materials and Methods S1

EORTC Questionnaire (DOC 39 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, D.S., Janku, F., Naing, A. et al. Xilonix, a novel true human antibody targeting the inflammatory cytokine interleukin-1 alpha, in non-small cell lung cancer. Invest New Drugs 33, 621–631 (2015). https://doi.org/10.1007/s10637-015-0226-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-015-0226-6

Keywords

Navigation