Skip to main content

Advertisement

Log in

Anti-citrullinated Protein Antibodies Activated ERK1/2 and JNK Mitogen-activated Protein Kinases via Binding to Surface-expressed Citrullinated GRP78 on Mononuclear Cells

  • Original Research
  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

In a previous study, we found that anti-citrullinated protein antibodies (ACPAs) enhance nuclear factor (NF)-κB activity and tumor necrosis factor (TNF)-α production by normal human peripheral blood mononuclear cells (PBMCs) and U937 cells via binding to surface-expressed citrullinated glucose-regulated protein 78 (cit-GRP78). However, the downstream signaling pathways remain unclear after binding. In the present study, we firstly measured the effects of different kinase inhibitors on ACPA-mediated TNF-α production from normal PBMCs and monocytes. Then, the native and phosphorylated mitogen-activated protein kinases (MAPKs) were detected in ACPA-activated U937 cells by Western blotting. We also explored the role of the phosphoinositide 3-kinase (PI3K)-Akt pathway in activating IκB kinase alpha (IKK-α) in ACPA-stimulated U937 cells. Finally, we measured the amount of cit-GRP78 from PBMC membrane extracts in RA patients and controls. We found that MAPK and Akt inhibitors, but not PI3K inhibitor, remarkably suppressed ACPA-mediated TNF-α production. Interestingly, ACPAs selectively activated extracellular signal-regulated kinase 1/2 (ERK1/2) and c-jun N-terminal kinase (JNK), but not p38 MAPK, in U937 cells. This activation was suppressed by cit-GRP78, but not GRP78. The JNK activation further enhanced the phosphorylation of Akt and IKK-α. The expression of cit-GRP78 on cell membrane was higher in RA than normal PBMCs. Taken together; these results suggest that through binding to surface, over-expressed cit-GRP78 on RA PBMCs, ACPAs selectively activate ERK1/2 and JNK signaling pathways to enhance IKK-α phosphorylation, which leads to the activation of NF-κB and the production of TNF-α .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lu MC, Hsieh SC, Lai NS, Li KJ, Wu CH, Yu CL. Comparison of anti-agalactosyl IgG antibodies, rheumatoid factors, and anti-cyclic citrullinated peptide antibodies in the differential diagnosis of rheumatoid arthritis and its mimics. Clin Exp Rheumatol. 2007;25:716–21.

    PubMed  Google Scholar 

  2. Schellekens GA, Visser H, de Jong BA, van den Hoogen FH, Hazes JM, Breedveld FC, et al. The diagnostic properties of rheumatoid arthritis antibodies recognizing a cyclic citrullinated peptide. Arthritis Rheum. 2000;43:155–63.

    Article  PubMed  CAS  Google Scholar 

  3. van Gaalen FA, Linn-Rasker SP, van Venrooij WJ, de Jong BA, Breedveld FC, Verweij CL, et al. Autoantibodies to cyclic citrullinated peptides predict progression to rheumatoid arthritis in patients with undifferentiated arthritis: a prospective cohort study. Arthritis Rheum. 2004;50:709–15.

    Article  PubMed  Google Scholar 

  4. Nielen MM, van Schaardenburg D, Reesink HW, van de Stadt RJ, van der Horst-Bruinsma IE, de Koning MH, et al. Specific autoantibodies precede the symptoms of rheumatoid arthritis: a study of serial measurements in blood donors. Arthritis Rheum. 2004;50:380–6.

    Article  PubMed  Google Scholar 

  5. Edwards CJ, Cooper C. Early environmental factors and rheumatoid arthritis. Clin Exp Immunol. 2006;143:1–5.

    Article  PubMed  CAS  Google Scholar 

  6. Kastbom A, Strandberg G, Lindroos A, Skogh T. Anti-CCP antibody test predicts the disease course during 3 years in early rheumatoid arthritis (the Swedish TIRA project). Ann Rheum Dis. 2004;63:1085–9.

    Article  PubMed  CAS  Google Scholar 

  7. Syversen SW, Gaarder PI, Goll GL, Ødegård S, Haavardsholm EA, Mowinckel P, et al. High anti-cyclic citrullinated peptide levels and an algorithm of four variables predict radiographic progression in patients with rheumatoid arthritis: results from a 10-year longitudinal study. Ann Rheum Dis. 2008;67:212–7.

    Article  PubMed  CAS  Google Scholar 

  8. Klareskog L, Stolt P, Lundberg K, Källberg H, Bengtsson C, Grunewald J, et al. A new model for an etiology of rheumatoid arthritis: smoking may trigger HLA-DR (shared epitope)-restricted immune reactions to autoantigens modified by citrullination. Arthritis Rheum. 2006;54:38–46.

    Article  PubMed  CAS  Google Scholar 

  9. Isaacs JD, Cohen SB, Emery P, Tak PP, Wang J, Lei G, et al. Effect of baseline rheumatoid factor and anticitrullinated peptide antibody serotype on rituximab clinical response: a meta-analysis. Ann Rheum Dis 2012 [Epub ahead of print].

  10. Quirke AM, Fisher BA, Kinloch AJ, Venables PJ. Citrullination of autoantigens: upstream of TNFalpha in the pathogenesis of rheumatoid arthritis. FEBS Lett. 2011;585:3681–8.

    Article  PubMed  CAS  Google Scholar 

  11. van Venrooij WJ, van Beers JJ, Pruijn GJ. Anti-CCP antibodies: the past, the present and the future. Nat Rev Rheumatol. 2011;7:391–8.

    Article  PubMed  Google Scholar 

  12. Clavel C, Nogueira L, Laurent L, Iobagiu C, Vincent C, Sebbag M, et al. Induction of macrophage secretion of tumor necrosis factor alpha through Fcgamma receptor IIa engagement by rheumatoid arthritis-specific autoantibodies to citrullinated proteins complexed with fibrinogen. Arthritis Rheum. 2008;58:678–88.

    Article  PubMed  CAS  Google Scholar 

  13. Trouw LA, Haisma EM, Levarht EW, van der Woude D, Ioan-Facsinay A, Daha MR, et al. Anti-cyclic citrullinated peptide antibodies from rheumatoid arthritis patients activate complement via both the classical and alternative pathways. Arthritis Rheum. 2009;60:1923–31.

    Article  PubMed  CAS  Google Scholar 

  14. Sokolove J, Zhao X, Chandra PE, Robinson WH. Immune complexes containing citrullinated fibrinogen costimulate macrophages via Toll-like receptor 4 and Fcgamma receptor. Arthritis Rheum. 2011;63:53–62.

    Article  PubMed  CAS  Google Scholar 

  15. Lu MC, Lai NS, Yu HC, Huang HB, Hsieh SC, Yu CL. Anti-citrullinated protein antibodies bind surface-expressed citrullinated Grp78 on monocyte/macrophages and stimulate tumor necrosis factor alpha production. Arthritis Rheum. 2010;62:1213–23.

    Article  PubMed  CAS  Google Scholar 

  16. Shoda H, Fujio K, Shibuya M, Okamura T, Sumitomo S, Okamoto A, et al. Detection of autoantibodies to citrullinated BiP in rheumatoid arthritis patients and pro-inflammatory role of citrullinated BiP in collagen-induced arthritis. Arthritis Res Ther. 2011;13:R191.

    Article  PubMed  CAS  Google Scholar 

  17. Schett G, Tohidast-Akrad M, Smolen JS, Schmid BJ, Steiner CW, Bitzan P, et al. Activation, differential localization, and regulation of the stress-activated protein kinases, extracellular signal-regulated kinase, c-JUN N-terminal kinase, and p38 mitogen-activated protein kinase, in synovial tissue and cells in rheumatoid arthritis. Arthritis Rheum. 2000;43:2501–12.

    Article  PubMed  CAS  Google Scholar 

  18. Arnett FC, Edworthy SM, Bloch DA, McShane DJ, Fries JF, Cooper NS, et al. The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum. 1988;31:315–24.

    Article  PubMed  CAS  Google Scholar 

  19. Shao Z, Bhattacharya K, Hsich E, Park L, Walters B, Germann U, et al. c-Jun N-terminal kinases mediate reactivation of Akt and cardiomyocyte survival after hypoxic injury in vitro and in vivo. Circ Res. 2006;98:111–8.

    Article  PubMed  CAS  Google Scholar 

  20. Bai D, Ueno L, Vogt PK. Akt-mediated regulation of NFkappaB and the essentialness of NFkappaB for the oncogenicity of PI3K and Akt. Int J Cancer. 2009;125:2863–70.

    Article  PubMed  CAS  Google Scholar 

  21. Widmann C, Gibson S, Jarpe MB, Johnson GL. Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human. Physiol Rev. 1999;79:143–80.

    PubMed  CAS  Google Scholar 

  22. Raman M, Chen W, Cobb MH. Differential regulation and properties of MAPKs. Oncogene. 2007;26:3100–12.

    Article  PubMed  CAS  Google Scholar 

  23. Turjanski AG, Vaqué JP, Gutkind JS. MAP kinases and the control of nuclear events. Oncogene. 2007;26:3240–53.

    Article  PubMed  CAS  Google Scholar 

  24. Saito H. Regulation of cross-talk in yeast MAPK signaling pathways. Curr Opin Microbiol. 2010;13:677–83.

    Article  PubMed  CAS  Google Scholar 

  25. Sweeney SE, Firestein GS. Signal transduction in rheumatoid arthritis. Curr Opin Rheumatol. 2004;16:231–7.

    Article  PubMed  CAS  Google Scholar 

  26. Lee JC, Laydon JT, McDonnell PC, Gallagher TF, Kumar S, Green D, et al. A protein kinase involved in the regulation of inflammatory cytokine biosynthesis. Nature. 1994;372:739–46.

    Article  PubMed  CAS  Google Scholar 

  27. de Launay D, van de Sande MG, de Hair MJ, Grabiec AM, van de Sande GP, Lehmann KA, et al. Selective involvement of ERK and JNK mitogen-activated protein kinases in early rheumatoid arthritis (1987 ACR criteria compared to 2010 ACR/EULAR criteria): a prospective study aimed at identification of diagnostic and prognostic biomarkers as well as therapeutic targets. Ann Rheum Dis. 2011;71:415–23.

    Article  PubMed  Google Scholar 

  28. Damjanov N, Kauffman RS, Spencer-Green GT. Efficacy, pharmacodynamics, and safety of VX-702, a novel p38 MAPK inhibitor, in rheumatoid arthritis: results of two randomized, double-blind, placebo-controlled clinical studies. Arthritis Rheum. 2009;60:1232–41.

    Article  PubMed  Google Scholar 

  29. Guma M, Hammaker D, Topolewski K, Corr M, Boyle DL, Karin M, et al. Pro- and anti-inflammatory functions of the p38 pathway in rheumatoid arthritis: advantages of targeting upstream kinases MKK3 or MKKk6. Arthritis Rheum. 2012;64:2887–95.

    Article  PubMed  CAS  Google Scholar 

  30. Coulthard LR, Taylor JC, Eyre S, Robinson JI, Wilson AG, Isaacs JD, et al. Genetic variants within the MAP kinase signalling network and anti-TNF treatment response in rheumatoid arthritis patients. Ann Rheum Dis. 2011;70:98–103.

    Article  PubMed  Google Scholar 

  31. Thalhamer T, McGrath MA, Harnett MM. MAPKs and their relevance to arthritis and inflammation. Rheumatology (Oxford). 2008;47:409–14.

    Article  CAS  Google Scholar 

  32. Lee SI, Boyle DL, Berdeja A, Firestein GS. Regulation of inflammatory arthritis by the upstream kinase mitogen activated protein kinase kinase 7 in the c-Jun N-Terminal kinase pathway. Arthritis Res Ther. 2012;14:R38.

    Article  PubMed  CAS  Google Scholar 

  33. Ohori M. ERK inhibitors as a potential new therapy for rheumatoid arthritis. Drug News Perspect. 2008;21:245–50.

    Article  PubMed  CAS  Google Scholar 

  34. Aksamitiene E, Kiyatkin A, Kholodenko BN. Cross-talk between mitogenic Ras/MAPK and survival PI3K/Akt pathways: a fine balance. Biochem Soc Trans. 2012;40:139–46.

    Article  PubMed  CAS  Google Scholar 

  35. Pimienta G, Pascual J. Canonical and alternative MAPK signaling. Cell Cycle. 2007;6:2628–32.

    Article  PubMed  CAS  Google Scholar 

  36. Lee YG, Lee J, Byeon SE, Yoo DS, Kim MH, Lee SY, et al. Functional role of Akt in macrophage-mediated innate immunity. Front Biosci. 2011;16:517–30.

    Article  PubMed  CAS  Google Scholar 

  37. Zhang HG, Wang Y, Xie JF, Liang X, Liu D, Yang P, et al. Regulation of tumor necrosis factor alpha-mediated apoptosis of rheumatoid arthritis synovial fibroblasts by the protein kinase Akt. Arthritis Rheum. 2001;44:1555–67.

    Article  PubMed  CAS  Google Scholar 

  38. Cejka D, Hayer S, Niederreiter B, Sieghart W, Fuereder T, Zwerina J, et al. Mammalian target of rapamycin signaling is crucial for joint destruction in experimental arthritis and is activated in osteoclasts from patients with rheumatoid arthritis. Arthritis Rheum. 2010;62:2294–302.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Funding: This work was supported by the grants from the National Science Council (NCS100-2314-B-303-009 and NSC99-2628-B-002-020-MY3) and the Buddhist Dalin Tzu-Chi General Hospital (DTCRD99-E-02), Taiwan.

We are indebted to the Clinical Immunology and Transplantation Research Center, Department of Medical Research, National Taiwan University Hospital for providing research space and facilities.

Disclosure statement

The authors have declared no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chia-Li Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, MC., Lai, NS., Yin, WY. et al. Anti-citrullinated Protein Antibodies Activated ERK1/2 and JNK Mitogen-activated Protein Kinases via Binding to Surface-expressed Citrullinated GRP78 on Mononuclear Cells. J Clin Immunol 33, 558–566 (2013). https://doi.org/10.1007/s10875-012-9841-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10875-012-9841-6

Keywords

Navigation