Skip to main content

Advertisement

Log in

Update on Ankylosing Spondylitis: Current Concepts in Pathogenesis

  • AUTOIMMUNITY (TK TARRANT, SECTION EDITOR)
  • Published:
Current Allergy and Asthma Reports Aims and scope Submit manuscript

Abstract

Ankylosing spondylitis is an insidiously progressive and debilitating form of arthritis involving the axial skeleton. The long delay in diagnosis and insufficient response to currently available therapeutics both advocate for a greater understanding of disease pathogenesis. Genome-wide association studies of this highly genetic disease have implicated specific immune pathways, including the interleukin (IL)-17/IL-23 pathway, control of nuclear factor kappa B (NF-κB) activation, amino acid trimming for major histocompatibility complex (MHC) antigen presentation, and other genes controlling CD8 and CD4 T cell subsets. The relevance of these pathways has borne out in animal and human subject studies, in particular, the response to novel therapeutic agents. Genetics and the findings of autoantibodies in ankylosing spondylitis revisit the question of autoimmune vs. autoinflammatory etiology. As environmental partners to genetics, recent attention has focused on the roles of microbiota and biomechanical stress in initiating and perpetuating inflammation. Herein, we review these current developments in the investigation of ankylosing spondylitis pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Reveille JD, Weisman MH. The epidemiology of back pain, axial spondyloarthritis and HLA-B27 in the United States. Am J Med Sci. 2013;345:431–6.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Stolwijk C, Essers I, van Tubergen A, Boonen A, Bazelier MT, et al. The epidemiology of extra-articular manifestations in ankylosing spondylitis: a population-based matched cohort study. Ann Rheum Dis. 2014. doi:10.1136/annrheumdis-2014-205253.

    Google Scholar 

  3. Boonen A, Severens JL. Ankylosing spondylitis: what is the cost to society, and can it be reduced? Best Pract Res Clin Rheumatol. 2002;16:691–705.

    Article  CAS  PubMed  Google Scholar 

  4. Feldtkeller E, Khan MA, van der Heijde D, van der Linden S, Braun J. Age at disease onset and diagnosis delay in HLA-B27 negative vs. positive patients with ankylosing spondylitis. Rheumatol Int. 2003;23:61–6.

    PubMed  Google Scholar 

  5. Anandarajah A, Ritchlin CT. Treatment update on spondyloarthropathy. Curr Opin Rheumatol. 2005;17:247–56.

    Article  PubMed  Google Scholar 

  6. Rudwaleit M, Listing J, Brandt J, Braun J, Sieper J. Prediction of a major clinical response (BASDAI 50) to tumour necrosis factor alpha blockers in ankylosing spondylitis. Ann Rheum Dis. 2004;63:665–70.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Brown MA, Kennedy LG, MacGregor AJ, Darke C, Duncan E, et al. Susceptibility to ankylosing spondylitis in twins: the role of genes, HLA, and the environment. Arthritis Rheum. 1997;40:1823–8.

    Article  CAS  PubMed  Google Scholar 

  8. Reveille JD. An update on the contribution of the MHC to as susceptibility. Clin Rheumatol. 2014;33:749–57.

    Article  PubMed  Google Scholar 

  9. Colbert RA, Tran TM, Layh-Schmitt G. HLA-B27 misfolding and ankylosing spondylitis. Mol Immunol. 2014;57:44–51.

    Article  CAS  PubMed  Google Scholar 

  10. Taurog JD. The role of HLA-B27 in spondyloarthritis. J Rheumatol. 2010;37:2606–16.

    Article  CAS  PubMed  Google Scholar 

  11. Jeanty C, Sourisce A, Noteuil A, Jah N, Wielgosik A, et al. HLA-B27 subtype oligomerization and intracellular accumulation patterns correlate with predisposition to spondyloarthritis. Arthritis Rheumatol. 2014;66:2113–23.

    Article  CAS  PubMed  Google Scholar 

  12. Cortes A, Hadler J, Pointon JP, Robinson PC, Karaderi T, et al. Identification of multiple risk variants for ankylosing spondylitis through high-density genotyping of immune-related loci. Nat Genet. 2013;45:730–8. The largest GWAS to date, bringing a number of risk loci up to 31. This paper also includes an analysis comparing genetics of AS and other immune diseases.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Sarin R, Wu X, Abraham C. Inflammatory disease protective R381Q IL23 receptor polymorphism results in decreased primary CD4+ and CD8+ human T-cell functional responses. Proc Natl Acad Sci U S A. 2011;108:9560–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Evans DM, Spencer CC, Pointon JJ, Su Z, Harvey D, et al. Interaction between ERAP1 and HLA-B27 in ankylosing spondylitis implicates peptide handling in the mechanism for HLA-B27 in disease susceptibility. Nat Genet. 2011;43:761–7. Established epistatic interaction between ERAP1 and HLA-B27 which laid foundation for subsequent functional studies.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Diveu C, McGeachy MJ, Cua DJ. Cytokines that regulate autoimmunity. Curr Opin Immunol. 2008;20:663–8.

    Article  CAS  PubMed  Google Scholar 

  16. Langrish CL, McKenzie BS, Wilson NJ, de Waal MR, Kastelein RA, et al. IL-12 and IL-23: master regulators of innate and adaptive immunity. Immunol Rev. 2004;202:96–105.

    Article  CAS  PubMed  Google Scholar 

  17. Davidson SI, Liu Y, Danoy PA, Wu X, Thomas GP, et al. Association of STAT3 and TNFRSF1A with ankylosing spondylitis in Han Chinese. Ann Rheum Dis. 2011;70:289–92.

    Article  CAS  PubMed  Google Scholar 

  18. Xu H, Chen X, Huang J, Deng W, Zhong Q, et al. Identification of GPR65, a novel regulator of matrix metalloproteinases using high through-put screening. Biochem Biophys Res Commun. 2013;436:96–103.

    Article  CAS  PubMed  Google Scholar 

  19. Tsui FW, Tsui HW, Akram A, Haroon N, Inman RD. The genetic basis of ankylosing spondylitis: new insights into disease pathogenesis. Appl Clin Genet. 2014;7:105–15.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Robinson PC, Brown MA. Genetics of ankylosing spondylitis. Mol Immunol. 2014;57:2–11.

    Article  CAS  PubMed  Google Scholar 

  21. Lazarevic V, Glimcher LH, Lord GM. T-bet: a bridge between innate and adaptive immunity. Nat Rev Immunol. 2013;13:777–89.

    Article  CAS  PubMed  Google Scholar 

  22. Coffre M, Roumier M, Rybczynska M, Sechet E, Law HK, et al. Combinatorial control of Th17 and Th1 cell functions by genetic variations in genes associated with the interleukin-23 signaling pathway in spondyloarthritis. Arthritis Rheum. 2013;65:1510–21. This study began the investigation of interaction of IL-17/IL-23 pathway risk alleles in controlling T helper gene expression.

    Article  CAS  PubMed  Google Scholar 

  23. Mielants H, Veys EM, Cuvelier C, De Vos M, Botelberghe L. HLA-B27 related arthritis and bowel inflammation. Part 2. Ileocolonoscopy and bowel histology in patients with HLA-B27 related arthritis. J Rheumatol. 1985;12:294–8.

    CAS  PubMed  Google Scholar 

  24. Kenna TJ, Davidson SI, Duan R, Bradbury LA, McFarlane J, et al. Enrichment of circulating interleukin-17-secreting interleukin-23 receptor-positive gamma/delta T cells in patients with active ankylosing spondylitis. Arthritis Rheum. 2012;64:1420–9.

    Article  CAS  PubMed  Google Scholar 

  25. Meresse B, Cerf-Bensussan N. Innate T cell responses in human gut. Semin Immunol. 2009;21:121–9.

    Article  CAS  PubMed  Google Scholar 

  26. Al-Mossawi MH, Ridley A, Kiedel S, Bowness P. The role of natural killer cells, gamma delta T-cells and other innate immune cells in spondyloarthritis. Curr Opin Rheumatol. 2013;25:434–9.

    Article  CAS  PubMed  Google Scholar 

  27. Costello ME, Elewaut D, Kenna TJ, Brown MA. Microbes, the gut and ankylosing spondylitis. Arthritis Res Ther. 2013;15:214.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Ciccia F, Bombardieri M, Principato A, Giardina A, Tripodo C, et al. Overexpression of interleukin-23, but not interleukin-17, as an immunologic signature of subclinical intestinal inflammation in ankylosing spondylitis. Arthritis Rheum. 2009;60:955–65.

    Article  CAS  PubMed  Google Scholar 

  29. Ciccia F, Accardo-Palumbo A, Alessandro R, Rizzo A, Principe S, et al. Interleukin-22 and interleukin-22-producing NKp44+ natural killer cells in subclinical gut inflammation in ankylosing spondylitis. Arthritis Rheum. 2012;64:1869–78.

    Article  CAS  PubMed  Google Scholar 

  30. Sugimoto K, Ogawa A, Mizoguchi E, Shimomura Y, Andoh A, et al. IL-22 ameliorates intestinal inflammation in a mouse model of ulcerative colitis. J Clin Invest. 2008;118:534–44.

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Ciccia F, Alessandro R, Rizzo A, Accardo-Palumbo A, Raimondo S, et al. Macrophage phenotype in the subclinical gut inflammation of patients with ankylosing spondylitis. Rheumatol (Oxford). 2014;53:104–13.

    Article  CAS  Google Scholar 

  32. Peluso R, Iervolino S, Vitiello M, Bruner V, Lupoli G, et al. Extra-articular manifestations in psoriatic arthritis patients. Clin Rheumatol. 2014

  33. Reveille JD. Genetics of spondyloarthritis—beyond the MHC. Nat Rev Rheumatol. 2012;8:296–304.

    Article  CAS  PubMed  Google Scholar 

  34. Sanchez GA, de Jesus AA, Goldbach-Mansky R. Monogenic autoinflammatory diseases: disorders of amplified danger sensing and cytokine dysregulation. Rheum Dis Clin North Am. 2013;39:701–34.

    Article  PubMed  Google Scholar 

  35. Taurog JD, Dorris ML, Satumtira N, Tran TM, Sharma R, et al. Spondylarthritis in HLA-B27/human beta2-microglobulin-transgenic rats is not prevented by lack of CD8. Arthritis Rheum. 2009;60:1977–84.

    Article  CAS  PubMed  Google Scholar 

  36. Kontoyiannis D, Pasparakis M, Pizarro TT, Cominelli F, Kollias G. Impaired on/off regulation of TNF biosynthesis in mice lacking TNF AU-rich elements: implications for joint and gut-associated immunopathologies. Immunity. 1999;10:387–98.

    Article  CAS  PubMed  Google Scholar 

  37. Jacques P, Lambrecht S, Verheugen E, Pauwels E, Kollias G, et al. Proof of concept: enthesitis and new bone formation in spondyloarthritis are driven by mechanical strain and stromal cells. Ann Rheum Dis. 2014;73:437–45. This study directly interrogated the role of biomechanical stress in promoting joint inflammation in the TNF ΔARE mouse model.

    Article  PubMed  Google Scholar 

  38. Edwards 3rd CK, Bendele AM, Reznikov LI, Fantuzzi G, Chlipala ES, et al. Soluble human p55 and p75 tumor necrosis factor receptors reverse spontaneous arthritis in transgenic mice expressing transmembrane tumor necrosis factor alpha. Arthritis Rheum. 2006;54:2872–85.

    Article  CAS  PubMed  Google Scholar 

  39. Hreggvidsdottir HS, Noordenbos T, Baeten DL. Inflammatory pathways in spondyloarthritis. Mol Immunol. 2014;57:28–37.

    Article  CAS  PubMed  Google Scholar 

  40. Song IH, Heldmann F, Rudwaleit M, Haibel H, Weiss A, et al. Treatment of active ankylosing spondylitis with abatacept: an open-label, 24-week pilot study. Ann Rheum Dis. 2011;70:1108–10.

    Article  CAS  PubMed  Google Scholar 

  41. Baraliakos X, Baerlecken N, Witte T, Heldmann F, Braun J. High prevalence of anti-CD74 antibodies specific for the HLA class II-associated invariant chain peptide (CLIP) in patients with axial spondyloarthritis. Ann Rheum Dis. 2014;73:1079–82. Description of relatively sensitive and specific autoantibodies in previously considered “seronegative” SpA.

    Article  CAS  PubMed  Google Scholar 

  42. Tsui FW, Tsui HW, Las Heras F, Pritzker KP, Inman RD. Serum levels of novel noggin and sclerostin-immune complexes are elevated in ankylosing spondylitis. Ann Rheum Dis. 2013;73(10):1873–9. Implication of Wnt signaling and immune complexes in ankylosing spondylitis.

    Article  PubMed  Google Scholar 

  43. Corr M. Wnt signaling in ankylosing spondylitis. Clin Rheumatol. 2014;33:759–62.

    Article  PubMed  Google Scholar 

  44. Daoussis D, Liossis SN, Solomou EE, Tsanaktsi A, Bounia K, et al. Evidence that Dkk-1 is dysfunctional in ankylosing spondylitis. Arthritis Rheum. 2010;62:150–8.

    Article  CAS  PubMed  Google Scholar 

  45. Kwon SR, Lim MJ, Suh CH, Park SG, Hong YS, et al. Dickkopf-1 level is lower in patients with ankylosing spondylitis than in healthy people and is not influenced by anti-tumor necrosis factor therapy. Rheumatol Int. 2012;32:2523–7.

    Article  CAS  PubMed  Google Scholar 

  46. Saad CG, Ribeiro AC, Moraes JC, Takayama L, Goncalves CR, et al. Low sclerostin levels: a predictive marker of persistent inflammation in ankylosing spondylitis during anti-tumor necrosis factor therapy? Arthritis Res Ther. 2012;14:R216.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Lories RJ, Derese I, Luyten FP. Modulation of bone morphogenetic protein signaling inhibits the onset and progression of ankylosing enthesitis. J Clin Invest. 2005;115:1571–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Song IH, Heldmann F, Rudwaleit M, Listing J, Appel H, et al. Different response to rituximab in tumor necrosis factor blocker-naive patients with active ankylosing spondylitis and in patients in whom tumor necrosis factor blockers have failed: a twenty-four-week clinical trial. Arthritis Rheum. 2010;62:1290–7.

    Article  CAS  PubMed  Google Scholar 

  49. Birtley JR, Saridakis E, Stratikos E, Mavridis IM. The crystal structure of human endoplasmic reticulum aminopeptidase 2 reveals the atomic basis for distinct roles in antigen processing. Biochemistry. 2012;51:286–95.

    Article  CAS  PubMed  Google Scholar 

  50. Saveanu L, Carroll O, Lindo V, Del Val M, Lopez D, et al. Concerted peptide trimming by human ERAP1 and ERAP2 aminopeptidase complexes in the endoplasmic reticulum. Nat Immunol. 2005;6:689–97.

    Article  CAS  PubMed  Google Scholar 

  51. York IA, Chang SC, Saric T, Keys JA, Favreau JM, et al. The ER aminopeptidase ERAP1 enhances or limits antigen presentation by trimming epitopes to 8-9 residues. Nat Immunol. 2002;3:1177–84.

    Article  CAS  PubMed  Google Scholar 

  52. Seregin SS, Rastall DP, Evnouchidou I, Aylsworth CF, Quiroga D, et al. Endoplasmic reticulum aminopeptidase-1 alleles associated with increased risk of ankylosing spondylitis reduce HLA-B27 mediated presentation of multiple antigens. Autoimmunity. 2013;46:497–508.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Garcia-Medel N, Sanz-Bravo A, Van Nguyen D, Galocha B, Gomez-Molina P, et al. Functional interaction of the ankylosing spondylitis-associated endoplasmic reticulum aminopeptidase 1 polymorphism and HLA-B27 in vivo. Mol Cell Proteomics. 2012;11:1416–29.

    Article  PubMed Central  PubMed  Google Scholar 

  54. Akram A, Lin A, Gracey E, Streutker CJ, Inman RD. HLA-B27, but not HLA-B7, immunodominance to influenza is ERAP dependent. J Immunol. 2014;192:5520–8.

    Article  CAS  PubMed  Google Scholar 

  55. Alvarez-Navarro C, Lopez de Castro JA. ERAP1 structure, function and pathogenetic role in ankylosing spondylitis and other MHC-associated diseases. Mol Immunol. 2014;57:12–21.

    Article  CAS  PubMed  Google Scholar 

  56. Cauli A, Dessole G, Fiorillo MT, Vacca A, Mameli A, et al. Increased level of HLA-B27 expression in ankylosing spondylitis patients compared with healthy HLA-B27-positive subjects: a possible further susceptibility factor for the development of disease. Rheumatol (Oxford). 2002;41:1375–9.

    Article  CAS  Google Scholar 

  57. Sherlock JP, Joyce-Shaikh B, Turner SP, Chao CC, Sathe M, et al. IL-23 induces spondyloarthropathy by acting on ROR-gammat+ CD3+CD4-CD8- entheseal resident T cells. Nat Med. 2012;18:1069–76. Landmark study showing sufficiency of IL-23 overexpression in driving SpA phenotype in mice.

    Article  CAS  PubMed  Google Scholar 

  58. Smith JA, Colbert RA. The IL-23/IL-17 axis in spondyloarthritis pathogenesis: Th17 and beyond. Arthritis Rheum. 2013.

  59. Sherlock JP, Buckley CD, Cua DJ. The critical role of interleukin-23 in spondyloarthropathy. Mol Immunol. 2014;57:38–43.

    Article  CAS  PubMed  Google Scholar 

  60. Shen H, Goodall JC, Hill Gaston JS. Frequency and phenotype of peripheral blood Th17 cells in ankylosing spondylitis and rheumatoid arthritis. Arthritis Rheum. 2009;60:1647–56.

    Article  CAS  PubMed  Google Scholar 

  61. Bowness P, Ridley A, Shaw J, Chan AT, Wong-Baeza I, et al. Th17 cells expressing KIR3DL2+ and responsive to HLA-B27 homodimers are increased in ankylosing spondylitis. J Immunol. 2011;186:2672–80.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Noordenbos T, Yeremenko N, Gofita I, van de Sande M, Tak PP, et al. Interleukin-17-positive mast cells contribute to synovial inflammation in spondylarthritis. Arthritis Rheum. 2012;64:99–109.

    Article  CAS  PubMed  Google Scholar 

  63. Appel H, Maier R, Wu P, Scheer R, Hempfing A, et al. Analysis of IL-17(+) cells in facet joints of patients with spondyloarthritis suggests that the innate immune pathway might be of greater relevance than the Th17-mediated adaptive immune response. Arthritis Res Ther. 2011;13:R95.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Appel H, Maier R, Bleil J, Hempfing A, Loddenkemper C, et al. In situ analysis of interleukin-23- and interleukin-12-positive cells in the spine of patients with ankylosing spondylitis. Arthritis Rheum. 2013;65:1522–9.

    Article  CAS  PubMed  Google Scholar 

  65. Ciccia F, Accardo-Palumbo A, Rizzo A, Guggino G, Raimondo S, et al. Evidence that autophagy, but not the unfolded protein response, regulates the expression of IL-23 in the gut of patients with ankylosing spondylitis and subclinical gut inflammation. Ann Rheum Dis. 2014;73:1566–74.

    Article  CAS  PubMed  Google Scholar 

  66. Sakaguchi N, Takahashi T, Hata H, Nomura T, Tagami T, et al. Altered thymic T-cell selection due to a mutation of the ZAP-70 gene causes autoimmune arthritis in mice. Nature. 2003;426:454–60.

    Article  CAS  PubMed  Google Scholar 

  67. Ruutu M, Thomas G, Steck R, Degli-Esposti MA, Zinkernagel MS, et al. Beta-glucan triggers spondylarthritis and Crohn’s disease-like ileitis in SKG mice. Arthritis Rheum. 2012;64:2211–22.

    Article  CAS  PubMed  Google Scholar 

  68. Benham H, Rehaume LM, Hasnain SZ, Velasco J, Baillet AC, et al. Interleukin-23 mediates the intestinal response to microbial beta-1,3-glucan and the development of spondyloarthritis pathology in SKG mice. Arthritis Rheumatol. 2014;66:1755–67.

    Article  CAS  PubMed  Google Scholar 

  69. Rosenbaum JT, Lin P, Asquith M, Costello ME, Kenna TJ, et al. Does the microbiome play a causal role in spondyloarthritis? Clin Rheumatol. 2014;33:763–7.

    Article  PubMed  Google Scholar 

  70. De Keyser F, Baeten D, Van den Bosch F, De Vos M, Cuvelier C, et al. Gut inflammation and spondyloarthropathies. Curr Rheumatol Rep. 2002;4:525–32.

    Article  PubMed  Google Scholar 

  71. Martinez-Gonzalez O, Cantero-Hinojosa J, Paule-Sastre P, Gomez-Magan JC, Salvatierra-Rios D. Intestinal permeability in patients with ankylosing spondylitis and their healthy relatives. Br J Rheumatol. 1994;33:644–7.

    Article  CAS  PubMed  Google Scholar 

  72. Taurog JD, Richardson JA, Croft JT, Simmons WA, Zhou M, et al. The germfree state prevents development of gut and joint inflammatory disease in HLA-B27 transgenic rats. J Exp Med. 1994;180:2359–64.

    Article  CAS  PubMed  Google Scholar 

  73. Rehaume LM, Mondot S. Aguirre de Carcer D, Velasco J, Benham H, et al. ZAP-70 genotype disrupts the relationship between microbiota and host leading to spondyloarthritis and ileitis. Arthritis. Rheumatol. 2014;66(10):2780–92. One of first published studies since germ-free HLA-B27 rat studies to interrogate a role of microbiome in some detail.

    CAS  Google Scholar 

  74. Galea GL, Sunters A, Meakin LB, Zaman G, Sugiyama T, et al. Sost down-regulation by mechanical strain in human osteoblastic cells involves PGE2 signaling via EP4. FEBS Lett. 2011;585:2450–4.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. Tu X, Rhee Y, Condon KW, Bivi N, Allen MR, et al. Sost downregulation and local Wnt signaling are required for the osteogenic response to mechanical loading. Bone. 2012;50:209–17.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Visvanathan S, Wagner C, Marini JC, Baker D, Gathany T, et al. Inflammatory biomarkers, disease activity and spinal disease measures in patients with ankylosing spondylitis after treatment with infliximab. Ann Rheum Dis. 2008;67:511–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Lekpa FK, Poulain C, Wendling D, Soubrier M, De Bandt M, et al. Is IL-6 an appropriate target to treat spondyloarthritis patients refractory to anti-TNF therapy? A multicentre retrospective observational study. Arthritis Res Ther. 2012;14:R53.

    Article  PubMed Central  PubMed  Google Scholar 

  78. Schoels MM, van der Heijde D, Breedveld FC, Burmester GR, Dougados M, et al. Blocking the effects of interleukin-6 in rheumatoid arthritis and other inflammatory rheumatic diseases: systematic literature review and meta-analysis informing a consensus statement. Ann Rheum Dis. 2013;72:583–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Gottlieb A, Menter A, Mendelsohn A, Shen YK, Li S, et al. Ustekinumab, a human interleukin 12/23 monoclonal antibody, for psoriatic arthritis: randomised, double-blind, placebo-controlled, crossover trial. Lancet. 2009;373:633–40. Important proof of concept study for relevance of IL-17/IL-23 pathway in AS pathogenesis.

    Article  CAS  PubMed  Google Scholar 

  80. Poddubnyy D, Hermann KG, Callhoff J, Listing J, Sieper J. Ustekinumab for the treatment of patients with active ankylosing spondylitis: results of a 28-week, prospective, open-label, proof-of-concept study (TOPAS). Ann Rheum Dis. 2014;73(5):817–23.

    Article  CAS  PubMed  Google Scholar 

  81. Baeten D, Baraliakos X, Braun J, Sieper J, Emery P, et al. Anti-interleukin-17A monoclonal antibody secukinumab in treatment of ankylosing spondylitis: a randomised, double-blind, placebo-controlled trial. Lancet. 2013;382:1705–13. Proof of concept for importance of IL-17 in AS pathogenesis.

    Article  CAS  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Dr. Smith has nothing to disclose.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judith A. Smith.

Additional information

This article is part of the Topical Collection on Autoimmunity

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smith, J.A. Update on Ankylosing Spondylitis: Current Concepts in Pathogenesis. Curr Allergy Asthma Rep 15, 489 (2015). https://doi.org/10.1007/s11882-014-0489-6

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11882-014-0489-6

Keywords

Navigation