Skip to main content
Log in

Oxidative Stress in Atherosclerosis

  • Genetics and Genomics (A. Marian, Section Editor)
  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Atherosclerosis is now considered a chronic inflammatory disease. Oxidative stress induced by generation of excess reactive oxygen species has emerged as a critical, final common mechanism in atherosclerosis. Reactive oxygen species (ROS) are a group of small reactive molecules that play critical roles in the regulation of various cell functions and biological processes. Although essential for vascular homeostasis, uncontrolled production of ROS is implicated in vascular injury. Endogenous anti-oxidants function as checkpoints to avoid these untoward consequences of ROS, and an imbalance in the oxidant/anti-oxidant mechanisms leads to a state of oxidative stress. In this review, we discuss the role of ROS and anti-oxidant mechanisms in the development and progression of atherosclerosis, the role of oxidized low-density lipoprotein cholesterol, and highlight potential anti-oxidant therapeutic strategies relevant to atherosclerosis.

Recent Findings

There is growing evidence on how traditional risk factors translate into oxidative stress and contribute to atherosclerosis. Clinical trials evaluating anti-oxidant supplements had failed to improve atherosclerosis. Current studies focus on newer ROS scavengers that specifically target mitochondrial ROS, newer nanotechnology-based drug delivery systems, gene therapies, and anti-miRNAs. Synthetic LOX-1 modulators that inhibit the effects of Ox-LDL are currently in development.

Summary

Research over the past few decades has led to identification of multiple ROS generating systems that could potentially be modulated in atherosclerosis. Therapeutic approaches currently being used for atheroslcerotic vascular disease such as aspirin, statins, and renin-angiotensin system inhibitors exert a pleiotropic antioxidative effects. There is ongoing research to identify novel therapeutic modalities to selectively target oxidative stress in atherosclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of Importance •• Of Major Importance

  1. Hansson GK, Hermansson A. The immune system in atherosclerosis. Nat Immunol. 2011;12(3):204–12.

    Article  CAS  PubMed  Google Scholar 

  2. Peluso I, Morabito G, Urban L, Ioannone F, Serafini M. Oxidative stress in atherosclerosis development: the central role of LDL and oxidative burst. Endocr Metab Immune Disord Drug Targets. 2012;12(4):351–60.

    Article  CAS  PubMed  Google Scholar 

  3. Zhang DX, Gutterman DD. Mitochondrial reactive oxygen species-mediated signaling in endothelial cells. Am J Physiol Heart Circ Physiol. 2007;292(5):2023.

    Article  CAS  Google Scholar 

  4. •• Förstermann U, Xia N, Li H. Roles of vascular oxidative stress and nitric oxide in the pathogenesis of atherosclerosis. Circ Res. 2017;120(4):713–35. This review discusses the role of ROS generators in vascular wall include NADPH (reduced form of nicotinamide adenine dinucleotide phosphate) oxidase, xanthine oxidase, the mitochondrial electron transport chain, and uncoupled endothelial nitric oxide (NO) synthase in the pathogenesis of atherosclerosis

    Article  PubMed  CAS  Google Scholar 

  5. Ketelhuth DFJ, Hansson GK. Cellular immunity, low-density lipoprotein and atherosclerosis: break of tolerance in the artery wall. Thromb Haemost. 2011 Nov;106(5):779–86.

    Article  CAS  PubMed  Google Scholar 

  6. Libby P. Inflammation in atherosclerosis. Nature. 2002;420(6917):868–74.

    Article  CAS  PubMed  Google Scholar 

  7. Drummond GR, Selemidis S, Griendling KK, Sobey CG. Combating oxidative stress in vascular disease: NADPH oxidases as therapeutic targets. Nat Rev Drug Discov. 2011;10(6):453–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lassègue B, Sorescu D, Szöcs K, Yin Q, Akers M, Zhang Y, et al. Novel gp91 (phox) homologues in vascular smooth muscle cells: nox1 mediates angiotensin II-induced superoxide formation and redox-sensitive signaling pathways. Circ Res. 2001;88(9):888–94.

    Article  PubMed  Google Scholar 

  9. Görlach A, Brandes RP, Nguyen K, Amidi M, Dehghani F, Busse R. A gp91phox containing NADPH oxidase selectively expressed in endothelial cells is a major source of oxygen radical generation in the arterial wall. Circ Res. 2000;87(1):26–32.

    Article  PubMed  Google Scholar 

  10. Ago T, Kitazono T, Ooboshi H, Iyama T, Han YH, Takada J, et al. Nox4 As the major catalytic component of an endothelial NAD(P)H oxidase. Circulation. 2004;109(2):227–33.

    Article  CAS  PubMed  Google Scholar 

  11. Takac I, Schröder K, Zhang L, Lardy B, Anilkumar N, Lambeth JD, et al. The E-loop is involved in hydrogen peroxide formation by the NADPH oxidase Nox4. J Biol Chem. 2011;286(15):13304–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Guzik TJ, Chen W, Gongora MC, Guzik B, Lob HE, Mangalat D, et al. Calcium-dependent NOX5 nicotinamide adenine dinucleotide phosphate oxidase contributes to vascular oxidative stress in human coronary artery disease. J Am Coll Cardiol. 2008;52(22):1803–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yu P, Han W, Villar VAM, Yang Y, Lu Q, Lee H, et al. Unique role of NADPH oxidase 5 in oxidative stress in human renal proximal tubule cells. Redox Biol. 2014;2:570–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Holterman CE, Thibodeau J, Towaij C, Gutsol A, Montezano AC, Parks RJ, et al. Nephropathy and elevated BP in mice with podocyte-specific NADPH oxidase 5 expression. J Am Soc Nephrol. 2014;25(4):784–97.

    Article  CAS  PubMed  Google Scholar 

  15. Vendrov AE, Hakim ZS, Madamanchi NR, Rojas M, Madamanchi C, Runge MS. Atherosclerosis is attenuated by limiting superoxide generation in both macrophages and vessel wall cells. Arterioscler Thromb Vasc Biol. 2007;27(12):2714–21.

    Article  CAS  PubMed  Google Scholar 

  16. Patetsios P, Song M, Shutze WP, Pappas C, Rodino W, Ramirez JA, et al. Identification of uric acid and xanthine oxidase in atherosclerotic plaque. Am J Cardiol. 2001;88(2):191, A6.

    Article  Google Scholar 

  17. McNally JS, Davis ME, Giddens DP, Saha A, Hwang J, Dikalov S, et al. Role of xanthine oxidoreductase and NAD(P)H oxidase in endothelial superoxide production in response to oscillatory shear stress. Am J Physiol Heart Circ Physiol. 2003;285(6):2290.

    Article  Google Scholar 

  18. Landmesser U, Spiekermann S, Preuss C, Sorrentino S, Fischer D, Manes C, et al. Angiotensin II induces endothelial xanthine oxidase activation: role for endothelial dysfunction in patients with coronary disease. Arterioscler Thromb Vasc Biol. 2007;27(4):943–8.

    Article  CAS  PubMed  Google Scholar 

  19. Guthikonda S, Sinkey C, Barenz T, Haynes WG. Xanthine oxidase inhibition reverses endothelial dysfunction in heavy smokers. Circulation. 2003;107(3):416–21.

    Article  CAS  PubMed  Google Scholar 

  20. Schröder K, Vecchione C, Jung O, Schreiber JG, Shiri-Sverdlov R, van Gorp PJ, et al. Xanthine oxidase inhibitor tungsten prevents the development of atherosclerosis in Apo E knockout mice fed a western-type diet. Free Radic Biol Med. 2006;41(9):1353–60.

    Article  PubMed  CAS  Google Scholar 

  21. Dai Y, Cao Y, Zhang Z, Vallurupalli S, Mehta JL. Xanthine oxidase induces foam cell formation through LOX-1 and NLRP3 activation. Cardiovasc Drugs Ther. 2017;31(1):19–27.

    Article  CAS  PubMed  Google Scholar 

  22. Lin H, Daimon M, Wang C, Ho Y, Uang Y, Chiang S, et al. Allopurinol, benzbromarone and risk of coronary heart disease in gout patients: a population-based study. Int J Cardiol. 2017;233:85–90.

    Article  PubMed  Google Scholar 

  23. Madamanchi NR, Runge MS. Mitochondrial dysfunction in atherosclerosis. Circ Res. 2007;100(4):460–73.

    Article  CAS  PubMed  Google Scholar 

  24. Cervantes Gracia K, Llanas-Cornejo D, Husi H. CVD and Oxidative Stress. J Clin Med. 2017;6(2):22.

    Article  PubMed Central  Google Scholar 

  25. Bäck M, Hansson GK. Leukotriene receptors in atherosclerosis. Ann Med. 2006;38(7):493–502.

    Article  PubMed  CAS  Google Scholar 

  26. Adamek A, Jung S, Dienesch C, Laser M, Ertl G, Bauersachs J, et al. Role of 5-lipoxygenase in myocardial ischemia-reperfusion injury in mice. Eur J Pharmacol. 2007;571(1):51–4.

    Article  CAS  PubMed  Google Scholar 

  27. Suzuki H, Kayama Y, Sakamoto M, Iuchi H, Shimizu I, Yoshino T, et al. Arachidonate 12/15-lipoxygenase-induced inflammation and oxidative stress are involved in the development of diabetic cardiomyopathy. Diabetes. 2015;64(2):618–30.

    Article  CAS  PubMed  Google Scholar 

  28. Hawkins CL. The role of hypothiocyanous acid (HOSCN) in biological systems. Free Radic Res. 2009;43(12):1147–58.

    Article  CAS  PubMed  Google Scholar 

  29. Baldus S, Heitzer T, Eiserich JP, Lau D, Mollnau H, Ortak M, et al. Myeloperoxidase enhances nitric oxide catabolism during myocardial ischemia and reperfusion. Free Radic Biol Med. 2004;37(6):902–11.

    Article  CAS  PubMed  Google Scholar 

  30. Exner M, Hermann M, Hofbauer R, Hartmann B, Kapiotis S, Gmeiner B. Thiocyanate catalyzes myeloperoxidase-initiated lipid oxidation in LDL. Free Radic Biol Med. 2004;37(2):146–55.

    Article  CAS  PubMed  Google Scholar 

  31. Bergt C, Pennathur S, Fu X, Byun J, O'Brien K, McDonald TO, et al. The myeloperoxidase product hypochlorous acid oxidizes HDL in the human artery wall and impairs ABCA1-dependent cholesterol transport. Proc Natl Acad Sci U S A. 2004;101(35):13032–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Salonen I, Huttunen K, Hirvonen M, Dufva J, Groundstroem K, Dufva H, et al. Serum myeloperoxidase is independent of the risk factors of atherosclerosis. Coron Artery Dis. 2012;23(4):251–8.

    Article  PubMed  Google Scholar 

  33. Antoniades C, Shirodaria C, Crabtree M, Rinze R, Alp N, Cunnington C, et al. Altered plasma versus vascular biopterins in human atherosclerosis reveal relationships between endothelial nitric oxide synthase coupling, endothelial function, and inflammation. Circulation. 2007;116(24):2851–9.

    Article  CAS  PubMed  Google Scholar 

  34. Ueda S, Matsuoka H, Miyazaki H, Usui M, Okuda S, Imaizumi T. Tetrahydrobiopterin restores endothelial function in long-term smokers. J Am Coll Cardiol. 2000;35(1):71–5.

    Article  CAS  PubMed  Google Scholar 

  35. Li H, Horke S, Förstermann U. Oxidative stress in vascular disease and its pharmacological prevention. Trends Pharmacol Sci. 2013;34(6):313–9.

    Article  PubMed  CAS  Google Scholar 

  36. Yang H, Roberts LJ, Shi MJ, Zhou LC, Ballard BR, Richardson A, et al. Retardation of atherosclerosis by overexpression of catalase or both cu/Zn-superoxide dismutase and catalase in mice lacking apolipoprotein E. Circ Res. 2004;95(11):1075–81.

    Article  CAS  PubMed  Google Scholar 

  37. Cheng F, Torzewski M, Degreif A, Rossmann H, Canisius A, Lackner KJ. Impact of glutathione peroxidase-1 deficiency on macrophage foam cell formation and proliferation: implications for atherogenesis. PLoS One. 2013;8(8):e72063.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Guo Z, Ran Q, Roberts LJ, Zhou L, Richardson A, Sharan C, et al. Suppression of atherogenesis by overexpression of glutathione peroxidase-4 in apolipoprotein E-deficient mice. Free Radic Biol Med. 2008;44(3):343–52.

    Article  CAS  PubMed  Google Scholar 

  39. Tward A, Xia Y, Wang X, Shi Y, Park C, Castellani LW, et al. Decreased atherosclerotic lesion formation in human serum paraoxonase transgenic mice. Circulation. 2002;106(4):484–90.

    Article  CAS  PubMed  Google Scholar 

  40. Ng CJ, Hama SY, Bourquard N, Navab M, Reddy ST. Adenovirus mediated expression of human paraoxonase 2 protects against the development of atherosclerosis in apolipoprotein E-deficient mice. Mol Genet Metab. 2006;89(4):368–73.

    Article  CAS  PubMed  Google Scholar 

  41. Marsillach J, Camps J, Beltran-Debón R, Rull A, Aragones G, Maestre-Martínez C, et al. Immunohistochemical analysis of paraoxonases-1 and 3 in human atheromatous plaques. Eur J Clin Investig. 2011;41(3):308–14.

    Article  CAS  Google Scholar 

  42. Shih DM, Yu JM, Vergnes L, Dali-Youcef N, Champion MD, Devarajan A, et al. PON3 Knockout mice are susceptible to obesity, gallstone formation, and atherosclerosis. FASEB J. 2015-4;29(4):1185–97.

    Article  CAS  PubMed  Google Scholar 

  43. Chen B, Wang W, Shen T, Qi R. Thioredoxin 1 downregulates oxidized low-density lipoprotein-induced adhesion molecule expression via Smad 3 protein. PLoS One. 2013;8(9):e76226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kirsch J, Schneider H, Pagel J, Rehberg M, Singer M, Hellfritsch J, et al. Endothelial dysfunction, and a Prothrombotic, Proinflammatory phenotype is caused by loss of mitochondrial Thioredoxin reductase in endothelium. Arterioscler Thromb Vasc Biol. 2016 Sep;36(9):1891–9.

    Article  CAS  PubMed  Google Scholar 

  45. Förstermann U, Sessa WC. Nitric oxide synthases: regulation and function. Eur Heart J. 2012;33(7):837d.

    Article  CAS  Google Scholar 

  46. Kuhlencordt PJ, Gyurko R, Han F, Scherrer-Crosbie M, Aretz TH, Hajjar R, et al. Accelerated atherosclerosis, aortic aneurysm formation, and ischemic heart disease in apolipoprotein E/endothelial nitric oxide synthase double-knockout mice. Circulation. 2001;104(4):448–54.

    Article  CAS  PubMed  Google Scholar 

  47. Pacher P, Beckman JS, Liaudet L. Nitric oxide and peroxynitrite in health and disease. Physiol Rev. 2007;87(1):315–424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Guzik TJ, Sadowski J, Guzik B, Jopek A, Kapelak B, Przybylowski P, et al. Coronary artery superoxide production and nox isoform expression in human coronary artery disease. Arterioscler Thromb Vasc Biol. 2006;26(2):333–9.

    Article  CAS  PubMed  Google Scholar 

  49. Steffen Y, Vuillaume G, Stolle K, Roewer K, Lietz M, Schueller J, et al. Cigarette smoke and LDL cooperate in reducing nitric oxide bioavailability in endothelial cells via effects on both eNOS and NADPH oxidase. Nitric Oxide. 2012;27(3):176–84.

    Article  CAS  PubMed  Google Scholar 

  50. Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circ Res. 2010;107(9):1058–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Li H, Förstermann U. Uncoupling of endothelial NO synthase in atherosclerosis and vascular disease. Curr Opin Pharmacol. 2013;13(2):161–7.

    Article  PubMed  CAS  Google Scholar 

  52. Jaimes EA, DeMaster EG, Tian R, Raij L. Stable compounds of cigarette smoke induce endothelial superoxide anion production via NADPH oxidase activation. Arterioscler Thromb Vasc Biol. 2004 Jun;24(6):1031–6.

    Article  CAS  PubMed  Google Scholar 

  53. Hwang J, Ing MH, Salazar A, Lassègue B, Griendling K, Navab M, et al. Pulsatile versus oscillatory shear stress regulates NADPH oxidase subunit expression: implication for native LDL oxidation. Circ Res. 2003;93(12):1225–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. De Keulenaer GW, Chappell DC, Ishizaka N, Nerem RM, Alexander RW, Griendling KK. Oscillatory and steady laminar shear stress differentially affect human endothelial redox state: role of a superoxide-producing NADH oxidase. Circ Res. 1998;82(10):1094–101.

    Article  PubMed  Google Scholar 

  55. Mehta JL. Oxidized or native low-density lipoprotein cholesterol⁎editorials published in the journal of American College of Cardiologyreflect the views of the authors and do not necessarily represent the views of JACCor the American College of Cardiology. J Am Coll Cardiol. 2006;48(5):980–2.

    Article  PubMed  Google Scholar 

  56. Goyal T, Mitra S, Khaidakov M, Wang X, Singla S, Ding Z, et al. Current concepts of the role of oxidized LDL receptors in atherosclerosis. Curr Atheroscler Rep. 2012;14(2):150-9.

  57. Mehta JL, Sanada N, Hu CP, Chen J, Dandapat A, Sugawara F, et al. Deletion of LOX-1 reduces atherogenesis in LDLR knockout mice fed high cholesterol diet. Circ Res. 2007;100(11):1634–42.

    Article  CAS  PubMed  Google Scholar 

  58. Xu S, Ogura S, Chen J, Little PJ, Moss J, Liu P. LOX-1 in atherosclerosis: biological functions and pharmacological modifiers. Cell Mol Life Sci. 2013;70(16):2859–72.

    Article  CAS  PubMed  Google Scholar 

  59. Sawamura T, Kume N, Aoyama T, Moriwaki H, Hoshikawa H, Aiba Y, et al. An endothelial receptor for oxidized low-density lipoprotein. Nature. 1997;386(6620):73–7.

    Article  CAS  PubMed  Google Scholar 

  60. Chen J, Zhou S, Tan Z. Aspirin and pravastatin reduce lectin-like oxidized low density lipoprotein receptor-1 expression, adhesion molecules and oxidative stress in human coronary artery endothelial cells. Chin Med J. 2010;123(12):1553–6.

    CAS  PubMed  Google Scholar 

  61. Li D, Mehta JL. Antisense to LOX-1 inhibits oxidized LDL-mediated upregulation of monocyte chemoattractant protein-1 and monocyte adhesion to human coronary artery endothelial cells. Circulation. 2000;101(25):2889–95.

    Article  CAS  PubMed  Google Scholar 

  62. Li D, Mehta JL. Intracellular signaling of LOX-1 in endothelial cell apoptosis. Circ Res. 2009;104(5):566–8.

    Article  CAS  PubMed  Google Scholar 

  63. Ryoo S, Bhunia A, Chang F, Shoukas A, Berkowitz DE, Romer LH. OxLDL-dependent activation of arginase II is dependent on the LOX-1 receptor and downstream rho a signaling. Atherosclerosis. 2011;214(2):279–87.

    Article  CAS  PubMed  Google Scholar 

  64. Shi Y, Cosentino F, Camici GG, Akhmedov A, Vanhoutte PM, Tanner FC, et al. Oxidized low-density lipoprotein activates p66Shc via lectin-like oxidized low-density lipoprotein receptor-1, protein kinase C-beta, and c-Jun N-terminal kinase kinase in human endothelial cells. Arterioscler Thromb Vasc Biol. 2011;31(9):2090–7.

    Article  CAS  PubMed  Google Scholar 

  65. Spescha RD, Glanzmann M, Simic B, Witassek F, Keller S, Akhmedov A, et al. Adaptor protein p 66(Shc) mediates hypertension-associated, cyclic stretch-dependent, endothelial damage. Hypertension. 2014;64(2):347–53.

    Article  CAS  PubMed  Google Scholar 

  66. Schaeffer DF, Riazy M, Parhar KS, Chen JH, Duronio V, Sawamura T, et al. LOX-1 augments oxLDL uptake by lysoPC-stimulated murine macrophages but is not required for oxLDL clearance from plasma. J Lipid Res. 2009;50(8):1676–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Pirillo A, Norata GD, Catapano AL. LOX-1, OxLDL, and atherosclerosis. Mediat Inflamm. 2013;2013. https://doi.org/10.1155/2013/152786.

  68. Hinagata J, Kakutani M, Fujii T, Naruko T, Inoue N, Fujita Y, et al. Oxidized LDL receptor LOX-1 is involved in neointimal hyperplasia after balloon arterial injury in a rat model. Cardiovasc Res. 2006;69(1):263–71.

    Article  CAS  PubMed  Google Scholar 

  69. Hu C, Dandapat A, Sun L, Chen J, Marwali MR, Romeo F, et al. LOX-1 deletion decreases collagen accumulation in atherosclerotic plaque in low-density lipoprotein receptor knockout mice fed a high-cholesterol diet. Cardiovasc Res. 2008;79(2):287–93.

    Article  CAS  PubMed  Google Scholar 

  70. Li D, Liu L, Chen H, Sawamura T, Ranganathan S, Mehta JL. LOX-1 mediates oxidized low-density lipoprotein-induced expression of matrix metalloproteinases in human coronary artery endothelial cells. Circulation. 2003;107(4):612–7.

    Article  CAS  PubMed  Google Scholar 

  71. Li L, Renier G. The oral anti-diabetic agent, gliclazide, inhibits oxidized LDL-mediated LOX-1 expression, metalloproteinase-9 secretion and apoptosis in human aortic endothelial cells. Atherosclerosis. 2009;204(1):40–6.

    Article  CAS  PubMed  Google Scholar 

  72. Hsieh CC, Yen MH, Yen CH, Lau YT. Oxidized low density lipoprotein induces apoptosis via generation of reactive oxygen species in vascular smooth muscle cells. Cardiovasc Res. 2001;49(1):135–45.

    Article  CAS  PubMed  Google Scholar 

  73. Kume N, Kita T. Apoptosis of vascular cells by oxidized LDL: involvement of caspases and LOX-1 and its implication in atherosclerotic plaque rupture. Circ Res. 2004;94(3):269–70.

    Article  CAS  PubMed  Google Scholar 

  74. Marwali MR, Hu C, Mohandas B, Dandapat A, Deonikar P, Chen J, et al. Modulation of ADP-induced platelet activation by aspirin and pravastatin: role of lectin-like oxidized low-density lipoprotein receptor-1, nitric oxide, oxidative stress, and inside-out integrin signaling. J Pharmacol Exp Ther. 2007;322(3):1324–32.

    Article  CAS  PubMed  Google Scholar 

  75. Sakurai K, Cominacini L, Garbin U, Fratta Pasini A, Sasaki N, Takuwa Y, et al. Induction of endothelin-1 production in endothelial cells via co-operative action between CD40 and lectin-like oxidized LDL receptor (LOX-1). J Cardiovasc Pharmacol. 2004;44(Suppl 1):173.

    Article  Google Scholar 

  76. Cominacini L, Fratta Pasini A, Garbin U, Pastorino A, Rigoni A, Nava C, et al. The platelet-endothelium interaction mediated by lectin-like oxidized low-density lipoprotein receptor-1 reduces the intracellular concentration of nitric oxide in endothelial cells. J Am Coll Cardiol. 2003;41(3):499–507.

    Article  CAS  PubMed  Google Scholar 

  77. Wyche KE, Wang SS, Griendling KK, Dikalov SI, Austin H, Rao S, et al. C242T CYBA polymorphism of the NADPH oxidase is associated with reduced respiratory burst in human neutrophils. Hypertension. 2004;43(6):1246–51.

    Article  CAS  PubMed  Google Scholar 

  78. Xu Q, Yuan F, Shen X, Wen H, Li W, Cheng B, et al. Polymorphisms of C242T and A640G in CYBA gene and the risk of coronary artery disease: a meta-analysis. PLoS One. 2014;9(1):e84251.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Neves AL, Mohammedi K, Emery N, Roussel R, Fumeron F, Marre M, et al. Allelic variations in superoxide dismutase-1 (SOD1) gene and renal and cardiovascular morbidity and mortality in type 2 diabetic subjects. Mol Genet Metab. 2012;106(3):359–65.

    Article  CAS  PubMed  Google Scholar 

  80. Fujimoto H, Taguchi J, Imai Y, Ayabe S, Hashimoto H, Kobayashi H, et al. Manganese superoxide dismutase polymorphism affects the oxidized low-density lipoprotein-induced apoptosis of macrophages and coronary artery disease. Eur Heart J. 2008;29(10):1267–74.

    Article  CAS  PubMed  Google Scholar 

  81. Juul K, Tybjaerg-Hansen A, Marklund S, Heegaard NHH, Steffensen R, Sillesen H, et al. Genetically reduced antioxidative protection and increased ischemic heart disease risk: the Copenhagen City heart study. Circulation. 2004;109(1):59–65.

    Article  CAS  PubMed  Google Scholar 

  82. Zhang J, Wang Z, Zhang J, Zhu L, Gao X, Chen S. Association of glutathione peroxidase-1 (GPx-1) rs1050450 Pro198Leu and Pro197Leu polymorphisms with cardiovascular risk: a meta-analysis of observational studies. J Geriatr Cardiol. 2014;11(2):141–50.

    PubMed  PubMed Central  Google Scholar 

  83. Souiden Y, Mallouli H, Meskhi S, Chaabouni Y, Rebai A, Chéour F, et al. MnSOD and GPx1 polymorphism relationship with coronary heart disease risk and severity. Biol Res. 2016;49:22.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Forsberg L, de Faire U, Marklund SL, Andersson PM, Stegmayr B, Morgenstern R. Phenotype determination of a common pro-Leu polymorphism in human glutathione peroxidase 1. Blood Cells Mol Dis. 2000;26(5):423–6.

    Article  CAS  PubMed  Google Scholar 

  85. Hornig B, Landmesser U, Kohler C, Ahlersmann D, Spiekermann S, Christoph A, et al. Comparative effect of ace inhibition and angiotensin II type 1 receptor antagonism on bioavailability of nitric oxide in patients with coronary artery disease: role of superoxide dismutase. Circulation. 2001;103(6):799–805.

    Article  CAS  PubMed  Google Scholar 

  86. Oak J, Cai H. Attenuation of angiotensin II signaling recouples eNOS and inhibits nonendothelial NOX activity in diabetic mice. Diabetes. 2007;56(1):118–26.

    Article  CAS  PubMed  Google Scholar 

  87. Wenzel P, Schulz E, Oelze M, Müller J, Schuhmacher S, Alhamdani MSS, et al. AT1-Receptor blockade by telmisartan upregulates GTP-cyclohydrolase I and protects eNOS in diabetic rats. Free Radic Biol Med. 2008;45(5):619–26.

    Article  CAS  PubMed  Google Scholar 

  88. Imanishi T, Ikejima H, Tsujioka H, Kuroi A, Kobayashi K, Muragaki Y, et al. Addition of eplerenone to an angiotensin-converting enzyme inhibitor effectively improves nitric oxide bioavailability. Hypertension. 2008;51(3):734–41.

    Article  CAS  PubMed  Google Scholar 

  89. Chen B, Zhao J, Zhang S, Wu W, Qi R. Aspirin inhibits the production of reactive oxygen species by downregulating Nox4 and inducible nitric oxide synthase in human endothelial cells exposed to oxidized low-density lipoprotein. J Cardiovasc Pharmacol. 2012;59(5):405–12.

    Article  CAS  PubMed  Google Scholar 

  90. Mehta JL, Chen J, Yu F, Li DY. Aspirin inhibits ox-LDL-mediated LOX-1 expression and metalloproteinase-1 in human coronary endothelial cells. Cardiovasc Res. 2004;64(2):243–9.

    Article  CAS  PubMed  Google Scholar 

  91. Antonopoulos AS, Margaritis M, Lee R, Channon K, Antoniades C. Statins as anti-inflammatory agents in atherogenesis: molecular mechanisms and lessons from the recent clinical trials. Curr Pharm Des. 2012;18(11):1519–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Landmesser U, Bahlmann F, Mueller M, Spiekermann S, Kirchhoff N, Schulz S, et al. Simvastatin versus ezetimibe: pleiotropic and lipid-lowering effects on endothelial function in humans. Circulation. 2005;111(18):2356–63.

    Article  CAS  PubMed  Google Scholar 

  93. Carrepeiro MM, Rogero MM, Bertolami MC, Botelho PB, Castro N, Castro IA. Effect of n-3 fatty acids and statins on oxidative stress in statin-treated hypercholestorelemic and normocholesterolemic women. Atherosclerosis. 2011;217(1):171–8.

    Article  CAS  PubMed  Google Scholar 

  94. Antoniades C, Bakogiannis C, Tousoulis D, Reilly S, Zhang M, Paschalis A, et al. Preoperative atorvastatin treatment in CABG patients rapidly improves vein graft redox state by inhibition of Rac1 and NADPH-oxidase activity. Circulation. 2010;122(11 Suppl):66.

    Article  CAS  Google Scholar 

  95. Oppermann M, Balz V, Adams V, Dao VT, Bas M, Suvorava T, et al. Pharmacological induction of vascular extracellular superoxide dismutase expression in vivo. J Cell Mol Med. 2009;13(7):1271–8.

    Article  CAS  PubMed  Google Scholar 

  96. Schuhmacher S, Oelze M, Bollmann F, Kleinert H, Otto C, Heeren T, et al. Vascular dysfunction in experimental diabetes is improved by pentaerithrityl tetranitrate but not isosorbide-5-mononitrate therapy. Diabetes. 2011;60(10):2608–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Li H, Xia N, Förstermann U. Cardiovascular effects and molecular targets of resveratrol. Nitric Oxide. 2012;26(2):102–10.

    Article  PubMed  CAS  Google Scholar 

  98. Csiszar A, Labinskyy N, Pinto JT, Ballabh P, Zhang H, Losonczy G, et al. Resveratrol induces mitochondrial biogenesis in endothelial cells. Am J Physiol Heart Circ Physiol. 2009;297(1):13.

    Article  CAS  Google Scholar 

  99. Xia N, Daiber A, Habermeier A, Closs EI, Thum T, Spanier G, et al. Resveratrol reverses endothelial nitric-oxide synthase uncoupling in apolipoprotein E knockout mice. J Pharmacol Exp Ther. 2010;335(1):149–54.

    Article  CAS  PubMed  Google Scholar 

  100. Price NL, Gomes AP, Ling AJY, Duarte FV, Martin-Montalvo A, North BJ, et al. SIRT1 Is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function. Cell Metab. 2012;15(5):675–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Oelze M, Daiber A, Brandes RP, Hortmann M, Wenzel P, Hink U, et al. Nebivolol inhibits superoxide formation by NADPH oxidase and endothelial dysfunction in angiotensin II-treated rats. Hypertension. 2006;48(4):677–84.

    Article  CAS  PubMed  Google Scholar 

  102. Mollnau H, Schulz E, Daiber A, Baldus S, Oelze M, August M, et al. Nebivolol prevents vascular NOS III uncoupling in experimental hyperlipidemia and inhibits NADPH oxidase activity in inflammatory cells. Arterioscler Thromb Vasc Biol. 2003;23(4):615–21.

    Article  CAS  PubMed  Google Scholar 

  103. Münzel T, Gori T. Nebivolol: the somewhat-different beta-adrenergic receptor blocker. J Am Coll Cardiol. 2009;54(16):1491–9.

    Article  PubMed  CAS  Google Scholar 

  104. Smith RAJ, Murphy MP. Animal and human studies with the mitochondria-targeted antioxidant MitoQ. Ann N Y Acad Sci. 2010;1201:96–103.

    Article  CAS  PubMed  Google Scholar 

  105. • Mercer JR, Yu E, Figg N, Cheng K, Prime TA, Griffin JL, et al. The mitochondria-targeted antioxidant MitoQ decreases features of the metabolic syndrome in ATM+/−/ApoE−/− mice. Free Radic Biol Med. 2012;52(5):841–9. This study demonstrates the effect of MitoQ on atherosclerotic plaque and in inhibition of features of metabolic syndrome, hence suggesting a therapeutic role for mitochondria-targeted antioxidants.

    Article  CAS  PubMed  Google Scholar 

  106. • Deshpande D, Kethireddy S, Janero DR, Amiji MM. Therapeutic efficacy of an ω-3-fatty acid-containing 17-β estradiol Nano-delivery system against experimental atherosclerosis. PLoS One. 2016;11(2):e0147337. This study demonstrates the therapeutic potential of a novel, 17-βE-loaded, CREKA-peptide-modified nano emulsion system against atherosclerosis. It was shown to reduce lesion size, lower the levels of circulating plasma lipids and decrease the gene expression of inflammatory markers associated with atherosclerosis

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Bräsen JH, Leppänen O, Inkala M, Heikura T, Levin M, Ahrens F, et al. Extracellular superoxide dismutase accelerates endothelial recovery and inhibits in-stent restenosis in stented atherosclerotic Watanabe heritable hyperlipidemic rabbit aorta. J Am Coll Cardiol. 2007;50(23):2249–53.

    Article  PubMed  CAS  Google Scholar 

  108. Alp NJ, McAteer MA, Khoo J, Choudhury RP, Channon KM. Increased endothelial tetrahydrobiopterin synthesis by targeted transgenic GTP-cyclohydrolase I overexpression reduces endothelial dysfunction and atherosclerosis in ApoE-knockout mice. Arterioscler Thromb Vasc Biol. 2004;24(3):445–50.

    Article  CAS  PubMed  Google Scholar 

  109. • Wang B, Qian H, Yang H, Xu L, Xu W, Yan J. Regression of atherosclerosis plaques in apolipoprotein E−/− mice after lentivirus-mediated RNA interference of CD40. Int J Cardiol. 2013;163(1):34–9. This study demonstrated the ability of lentivirus-mediated RNA interference technique in decreasing lipid content and increasing collagen content of atherosclerotic plaques, thereby decreasing lumen stenosis .

    Article  PubMed  Google Scholar 

  110. Kowalski PS, Lintermans LL, Morselt HWM, Leus NGJ, Ruiters MHJ, Molema G, et al. Anti-VCAM-1 and anti-E-selectin SAINT-O-Somes for selective delivery of siRNA into inflammation-activated primary endothelial cells. Mol Pharm. 2013;10(8):3033–44.

    Article  CAS  PubMed  Google Scholar 

  111. •• Pothineni NVK, Karathanasis SK, Ding Z, Arulandu A, Varughese KI, Mehta JL. LOX-1 in atherosclerosis and myocardial ischemia: biology, genetics, and modulation. J Am Coll Cardiol. 2017;69(22):2759–68. This review discusses the discovery and genetics of LOX-1, describes existing evidence supporting the role of LOX-1 in atherogenesis and summarizes LOX-1 modulation by natural and synthetic biologic compounds that could be of therapeutic use

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jawahar L. Mehta.

Ethics declarations

Conflict of Interest

Ajoe John Kattoor, Naga Venkata K Pothineni, Deepak Palagiri, and Jawahar L. Mehta declare no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Genetics and Genomics

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kattoor, A.J., Pothineni, N.V.K., Palagiri, D. et al. Oxidative Stress in Atherosclerosis. Curr Atheroscler Rep 19, 42 (2017). https://doi.org/10.1007/s11883-017-0678-6

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11883-017-0678-6

Keywords

Navigation