Skip to main content

Advertisement

Log in

Adiponectin exerts its negative effect on bone metabolism via OPG/RANKL pathway: an in vivo study

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

To explore the effects of adiponectin on the bone metabolism in vivo. Bone mineral density (BMD), bone microstructure, serum adiponectin levels, and biochemical markers of the bone turnover were measured in 12-week-old male Adipo−/− and WT mice. In addition, the osteoclast formation, osteoprotegerin (OPG), and the receptor activator of nuclear factor-κB ligand (RANKL) expression were examined. The serum adiponectin levels were normal in the WT mice while undetectable in the Adipo−/− mice. Compared with the WT mice, the Adipo−/− mice had higher BMD, more trabecular bone, greater bone volume fraction, and trabecular thickness in the left femur. On the contrary, fewer osteoclasts were observed in the Adipo−/− mice when compared with the WT mice. Meanwhile, the Adipo−/− mice had a significantly decreased serum carboxyl-terminal telopeptide of type 1 collagen (CTX)/osteocalcin (OC) ratio. Interestingly, both the adiponectin and RANKL would cause a significant increase of CTX/OC ratio in the co-culture of the CD14+ peripheral blood mononuclear cells and the osteoblasts from Adipo−/− mice. Further, immunohistochemistry assays in tibias and both the RT-PCR and immunoblot analyses in the cultured osteoblasts showed the Adipo−/− mice expressed lower levels of RANKL but higher levels of OPG. Adiponectin had a negative effect on the bone metabolism, and this negative effect might be mediated, at least in part, by the OPG/RANKL pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. P.E. Scherer, S. Williams, M. Fogliano, G. Baldini, H.F. Lodish, A novel serum protein similar to C1q, produced exclusively in adipocytes. J. Biol. Chem. 270(45), 26746–26749 (1995)

    Article  CAS  PubMed  Google Scholar 

  2. K. Maeda, K. Okubo, I. Shimomura, T. Funahashi, Y. Matsuzawa, K. Matsubara, cDNA cloning and expression of a novel adipose specific collagen-like factor, apM1 (AdiPose most abundant gene transcript 1). Biochem. Biophys. Res. Commun. 221(2), 286–289 (1996)

    Article  CAS  PubMed  Google Scholar 

  3. Y. Nakano, T. Tobe, N.H. Choi-Miura, T. Mazda, M. Tomita, Isolation and characterization of GBP28, a novel gelatin-binding protein purified from human plasma. J. Biochem. 120(4), 803–812 (1996)

    Article  CAS  PubMed  Google Scholar 

  4. T. Yamauchi, J. Kamon, Y. Ito, A. Tsuchida, T. Yokomizo, S. Kita, T. Sugiyama, M. Miyagishi, K. Hara, M. Tsunoda, K. Murakami, T. Ohteki, S. Uchida, S. Takekawa, H. Waki, N.H. Tsuno, Y. Shibata, Y. Terauchi, P. Froguel, K. Tobe, S. Koyasu, K. Taira, T. Kitamura, T. Shimizu, R. Nagai, T. Kadowaki, Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature 423(6941), 762–769 (2003)

    Article  CAS  PubMed  Google Scholar 

  5. T.P. Combs, A.H. Berg, S. Obici, P.E. Scherer, L. Rossetti, Endogenous glucose production is inhibited by the adipose-derived protein Acrp30. J. Clin. Invest. 108(12), 1875–1881 (2001)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. J. Fruebis, T.S. Tsao, S. Javorschi, D. Ebbets-Reed, M.R. Erickson, F.T. Yen, B.E. Bihain, H.F. Lodish, Proteolytic cleavage product of 30-kDa adipocyte complement-related protein increases fatty acid oxidation in muscle and causes weight loss in mice. Proc. Natl. Acad. Sci. USA 98(4), 2005–2010 (2001)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. T. Yamauchi, J. Kamon, Y. Minokoshi, Y. Ito, H. Waki, S. Uchida, S. Yamashita, M. Noda, S. Kita, K. Ueki, K. Eto, Y. Akanuma, P. Froguel, F. Foufelle, P. Ferre, D. Carling, S. Kimura, R. Nagai, B.B. Kahn, T. Kadowaki, Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat. Med. 8(11), 1288–1295 (2002)

    Article  CAS  PubMed  Google Scholar 

  8. K. Brochu-Gaudreau, C. Rehfeldt, R. Blouin, V. Bordignon, B.D. Murphy, M.F. Palin, Adiponectin action from head to toe. Endocrine 37(1), 11–32 (2010)

    Article  CAS  PubMed  Google Scholar 

  9. H.S. Berner, S.P. Lyngstadaas, A. Spahr, M. Monjo, L. Thommesen, C.A. Drevon, U. Syversen, J.E. Reseland, Adiponectin and its receptors are expressed in bone-forming cells. Bone 35(4), 842–849 (2004)

    Article  CAS  PubMed  Google Scholar 

  10. K.N. Ealey, J. Kaludjerovic, M.C. Archer, W.E. Ward, Adiponectin is a negative regulator of bone mineral and bone strength in growing mice. Exp. Biol. Med. (Maywood) 233(12), 1546–1553 (2008)

    Article  CAS  Google Scholar 

  11. G.A. Williams, Y. Wang, K.E. Callon, M. Watson, J.M. Lin, J.B. Lam, J.L. Costa, A. Orpe, N. Broom, D. Naot, I.R. Reid, J. Cornish, In vitro and in vivo effects of adiponectin on bone. Endocrinology 150(8), 3603–3610 (2009)

    Article  CAS  PubMed  Google Scholar 

  12. J. Jurimae, T. Jurimae, Plasma adiponectin concentration in healthy pre- and postmenopausal women: relationship with body composition, bone mineral, and metabolic variables. Am. J. Physiol. Endocrinol. Metab. 293(1), E42–E47 (2007)

    Article  CAS  PubMed  Google Scholar 

  13. X.D. Peng, H. Xie, Q. Zhao, X.P. Wu, Z.Q. Sun, E.Y. Liao, Relationships between serum adiponectin, leptin, resistin, visfatin levels and bone mineral density, and bone biochemical markers in Chinese men. Clin. Chim. Acta 387(1–2), 31–35 (2008)

    Article  CAS  PubMed  Google Scholar 

  14. B. Bozic, G. Loncar, N. Prodanovic, Z. Radojicic, V. Cvorovic, S. Dimkovic, V. Popovic-Brkic, Relationship between high circulating adiponectin with bone mineral density and bone metabolism in elderly males with chronic heart failure. J. Card Fail. 16(4), 301–307 (2010)

    Article  CAS  PubMed  Google Scholar 

  15. L. Basurto, R. Galvan, N. Cordova, R. Saucedo, C. Vargas, S. Campos, E. Halley, F. Avelar, A. Zarate, Adiponectin is associated with low bone mineral density in elderly men. Eur. J. Endocrinol. 160(2), 289–293 (2009)

    Article  CAS  PubMed  Google Scholar 

  16. X.H. Luo, L.J. Guo, L.Q. Yuan, H. Xie, H.D. Zhou, X.P. Wu, E.Y. Liao, Adiponectin stimulates human osteoblasts proliferation and differentiation via the MAPK signaling pathway. Exp. Cell Res. 309(1), 99–109 (2005)

    Article  CAS  PubMed  Google Scholar 

  17. H.W. Lee, S.Y. Kim, A.Y. Kim, E.J. Lee, J.Y. Choi, J.B. Kim, Adiponectin stimulates osteoblast differentiation through induction of COX2 in mesenchymal progenitor cells. Stem Cells 27(9), 2254–2262 (2009)

    Article  CAS  PubMed  Google Scholar 

  18. N. Yamaguchi, T. Kukita, Y.J. Li, J.G. Martinez Argueta, T. Saito, S. Hanazawa, Y. Yamashita, Adiponectin inhibits osteoclast formation stimulated by lipopolysaccharide from Actinobacillus actinomycetemcomitans. FEMS Immunol. Med. Microbiol. 49(1), 28–34 (2007)

    Article  CAS  PubMed  Google Scholar 

  19. K. Oshima, A. Nampei, M. Matsuda, M. Iwaki, A. Fukuhara, J. Hashimoto, H. Yoshikawa, I. Shimomura, Adiponectin increases bone mass by suppressing osteoclast and activating osteoblast. Biochem. Biophys. Res. Commun. 331(2), 520–526 (2005)

    Article  CAS  PubMed  Google Scholar 

  20. X.H. Luo, L.J. Guo, H. Xie, L.Q. Yuan, X.P. Wu, H.D. Zhou, E.Y. Liao, Adiponectin stimulates RANKL and inhibits OPG expression in human osteoblasts through the MAPK signaling pathway. J. Bone Miner. Res. 21(10), 1648–1656 (2006)

    Article  CAS  PubMed  Google Scholar 

  21. S. Khosla, Minireview: the OPG/RANKL/RANK system. Endocrinology 142(12), 5050–5055 (2001)

    Article  CAS  PubMed  Google Scholar 

  22. Q.P. Wang, L. Yang, X.P. Li, H. Xie, E.Y. Liao, M. Wang, X.H. Luo, Effects of 17beta-estradiol on adiponectin regulation of the expression of osteoprotegerin and receptor activator of nuclear factor-kappaB ligand. Bone 51(3), 515–523 (2012)

    Article  CAS  PubMed  Google Scholar 

  23. A. Geldyyev, N. Koleganova, G. Piecha, H. Sueltmann, K. Finis, M. Ruschaupt, A. Poustka, M.L. Gross, I. Berger, High expression level of bone degrading proteins as a possible inducer of osteolytic features in pigmented villonodular synovitis. Cancer Lett. 255(2), 275–283 (2007)

    Article  CAS  PubMed  Google Scholar 

  24. G. Musso, Non-alcoholic fatty liver, adipose tissue, and the bone: a new triumvirate on the block. Endocrine 42(2), 237–239 (2012)

    Article  CAS  PubMed  Google Scholar 

  25. H. Zhang, X. Chai, S. Li, Z. Zhang, L. Yuan, H. Xie, H. Zhou, X. Wu, Z. Sheng, E. Liao, Age-related changes in body composition and their relationship with bone mineral density decreasing rates in central south Chinese postmenopausal women. Endocrine 43(3), 643–650 (2013)

    Article  CAS  PubMed  Google Scholar 

  26. H. Li, H. Xie, W. Liu, R. Hu, B. Huang, Y.F. Tan, K. Xu, Z.F. Sheng, H.D. Zhou, X.P. Wu, X.H. Luo, A novel microRNA targeting HDAC5 regulates osteoblast differentiation in mice and contributes to primary osteoporosis in humans. J. Clin. Invest. 119(12), 3666–3677 (2009)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. P. Cheng, C. Chen, H.B. He, R. Hu, H.D. Zhou, H. Xie, W. Zhu, R.C. Dai, X.P. Wu, E.Y. Liao, X.H. Luo, miR-148a regulates osteoclastogenesis by targeting V-maf musculoaponeurotic fibrosarcoma oncogene homolog B. J. Bone Miner. Res. 28(5), 1180–1190 (2013)

    Article  CAS  PubMed  Google Scholar 

  28. K. Agbaht, A. Gurlek, J. Karakaya, M. Bayraktar, Circulating adiponectin represents a biomarker of the association between adiposity and bone mineral density. Endocrine 35(3), 371–379 (2009)

    Article  CAS  PubMed  Google Scholar 

  29. L. Lenchik, T.C. Register, F.C. Hsu, K. Lohman, B.J. Nicklas, B.I. Freedman, C.D. Langefeld, J.J. Carr, D.W. Bowden, Adiponectin as a novel determinant of bone mineral density and visceral fat. Bone 33(4), 646–651 (2003)

    Article  CAS  PubMed  Google Scholar 

  30. J.B. Richards, A.M. Valdes, K. Burling, U.C. Perks, T.D. Spector, Serum adiponectin and bone mineral density in women. J. Clin. Endocrinol. Metab. 92(4), 1517–1523 (2007)

    Article  CAS  PubMed  Google Scholar 

  31. E. Biver, C. Salliot, C. Combescure, L. Gossec, P. Hardouin, I. Legroux-Gerot, B. Cortet, Influence of adipokines and ghrelin on bone mineral density and fracture risk: a systematic review and meta-analysis. J. Clin. Endocrinol. Metab. 96(9), 2703–2713 (2011)

    Article  CAS  PubMed  Google Scholar 

  32. P. Szulc, P.D. Delmas, Biochemical markers of bone turnover: potential use in the investigation and management of postmenopausal osteoporosis. Osteoporos. Int. 19(12), 1683–1704 (2008)

    Article  CAS  PubMed  Google Scholar 

  33. S.L. Teitelbaum, Bone resorption by osteoclasts. Science 289(5484), 1504–1508 (2000)

    Article  CAS  PubMed  Google Scholar 

  34. J.M. Blair, H. Zhou, M.J. Seibel, C.R. Dunstan, Mechanisms of disease: roles of OPG, RANKL and RANK in the pathophysiology of skeletal metastasis. Nat. Clin. Pract. Oncol. 3(1), 41–49 (2006)

    Article  CAS  PubMed  Google Scholar 

  35. L.C. Hofbauer, C.A. Kuhne, V. Viereck, The OPG/RANKL/RANK system in metabolic bone diseases. J. Musculoskelet. Neuronal Interact. 4(3), 268–275 (2004)

    CAS  PubMed  Google Scholar 

  36. A. Rogers, R. Eastell, Circulating osteoprotegerin and receptor activator for nuclear factor kappaB ligand: clinical utility in metabolic bone disease assessment. J. Clin. Endocrinol. Metab. 90(11), 6323–6331 (2005)

    Article  CAS  PubMed  Google Scholar 

  37. E.M. Lewiecki, RANK ligand inhibition with denosumab for the management of osteoporosis. Expert. Opin. Biol. Ther. 6(10), 1041–1050 (2006)

    Article  CAS  PubMed  Google Scholar 

  38. G. Schett, S. Hayer, J. Zwerina, K. Redlich, J.S. Smolen, Mechanisms of disease: the link between RANKL and arthritic bone disease. Nat. Clin. Pract. Rheumatol. 1(1), 47–54 (2005)

    Article  CAS  PubMed  Google Scholar 

  39. S. Kudlacek, B. Schneider, W. Woloszczuk, P. Pietschmann, R. Willvonseder, Serum levels of osteoprotegerin increase with age in a healthy adult population. Bone 32(6), 681–686 (2003)

    Article  CAS  PubMed  Google Scholar 

  40. Y. Shinoda, M. Yamaguchi, N. Ogata, T. Akune, N. Kubota, T. Yamauchi, Y. Terauchi, T. Kadowaki, Y. Takeuchi, S. Fukumoto, T. Ikeda, K. Hoshi, U.I. Chung, K. Nakamura, H. Kawaguchi, Regulation of bone formation by adiponectin through autocrine/paracrine and endocrine pathways. J. Cell. Biochem. 99(1), 196–208 (2006)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Prof. X. H. Luo (the Second XiangYa Hospital of Central South University, Changsha, Hunan, 410011, China) for reading of the manuscript and numerous valuable comments, Prof. Z. G. Wang and Dr. C. G. Deng (Shanghai Research Center for Model Organs) for kindly providing the Adipo−/− mice.

Conflict of interest

None declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Wang.

Additional information

Qing-ping Wang and Xian-ping Li are contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Qp., Li, Xp., Wang, M. et al. Adiponectin exerts its negative effect on bone metabolism via OPG/RANKL pathway: an in vivo study. Endocrine 47, 845–853 (2014). https://doi.org/10.1007/s12020-014-0216-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-014-0216-z

Keywords

Navigation