Skip to main content

Advertisement

Log in

Utility of the trabecular bone score (TBS) in secondary osteoporosis

  • Endocrine Methods and Techniques
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Altered bone micro-architecture is an important factor in accounting for fragility fractures. Until recently, it has not been possible to gain information about skeletal microstructure in a way that is clinically feasible. Bone biopsy is essentially a research tool. High-resolution peripheral Quantitative Computed Tomography, while non-invasive, is available only sparsely throughout the world. The trabecular bone score (TBS) is an imaging technology adapted directly from the Dual Energy X-Ray Absorptiometry (DXA) image of the lumbar spine. Thus, it is potentially readily and widely available. In recent years, a large number of studies have demonstrated that TBS is significantly associated with direct measurements of bone micro-architecture, predicts current and future fragility fractures in primary osteoporosis, and may be a useful adjunct to BMD for fracture detection and prediction. In this review, we summarize its potential utility in secondary causes of osteoporosis. In some situations, like glucocorticoid-induced osteoporosis and in diabetes mellitus, the TBS appears to out-perform DXA. It also has apparent value in numerous other disorders associated with diminished bone health, including primary hyperparathyroidism, androgen-deficiency, hormone-receptor positive breast cancer treatment, chronic kidney disease, hemochromatosis, and autoimmune disorders like rheumatoid arthritis. Further research is both needed and warranted to more clearly establish the role of TBS in these and other disorders that adversely affect bone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Abbreviations

2D:

Two-dimensional

3D:

Three-dimensional

AUC:

Area under the curve

BMD:

Bone mineral density

BMI:

Body mass index

Conn.D:

Connectivity density

CT:

Computed tomography

DXA:

Dual energy X-ray absorptiometry

FEA:

Finite element analysis

FEXI:

Finite element analysis of X-ray images

FN:

Femoral neck

GC:

Glucocorticoids

LS:

Lumbar spine

MRI:

Magnetic resonance imaging

OR:

Odds ratio

ROC:

Receiver operating characteristic

SD:

Standard deviation

TBS:

Trabecular bone score

TH:

Total hip

Tb.N:

Trabecular number

Tb.Sp:

Trabecular spacing

Tb.Th:

Trabecular thickness

WHO:

World Health Organization

References

  1. E. Czerwiński, J.E. Badurski, E. Marcinowska-Suchowierska, J. Osieleniec, Current understanding of osteoporosis according to the position of the World Health Organization (WHO) and International Osteoporosis Foundation. Ortop. Traumatol. Rehabil. 9, 337–356 (2007)

    PubMed  Google Scholar 

  2. J.A. Kanis, O. Johnell, A. Oden, H. Johansson, E. McCloskey, FRAX and the assessment of fracture probability in men and women from the UK. Osteoporos. Int. 19, 385–397 (2008)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  3. P.J. Meunier, P.D. Delmas, R. Eastell, M.R. McClung, S. Papapoulos, R. Rizzoli, E. Seeman, R.D. Wasnich, Diagnosis and management of osteoporosis in postmenopausal women: clinical guidelines. International Committee for Osteoporosis Clinical Guidelines. Clin. Ther. 21, 1025–1044 (1999)

    Article  PubMed  CAS  Google Scholar 

  4. A.C. Looker, E.S. Orwoll, C.C. Johnston, R.L. Lindsay, H.W. Wahner, W.L. Dunn, M.S. Calvo, T.B. Harris, S.P. Heyse, Prevalence of low femoral bone density in older U.S. adults from NHANES III. J. Bone Miner. Res. 12, 1761–1768 (1997)

    Article  PubMed  CAS  Google Scholar 

  5. K. Walker-Bone, Recognizing and treating secondary osteoporosis. Nat. Rev. Rheumatol. 8, 480–492 (2012)

    Article  PubMed  CAS  Google Scholar 

  6. Department of Health and Human Services, R.: The frequency of bone disease in Bone health and Osteoporosis: a Report of the Surgeon General. Office of the Surgeon General (US) (2004)

  7. O. Johnell, J.A. Kanis, An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos. Int. 17, 1726–1733 (2006)

    Article  PubMed  CAS  Google Scholar 

  8. R. Burge, B. Dawson-Hughes, D.H. Solomon, J.B. Wong, A. King, A. Tosteson, Incidence and economic burden of osteoporosis-related fractures in the United States, 2005–2025. J. Bone Miner. Res. 22, 465–475 (2007)

    Article  PubMed  Google Scholar 

  9. K.M. Davies, M.R. Stegman, R.P. Heaney, R.R. Recker, Prevalence and severity of vertebral fracture: the Saunders County Bone Quality Study. Osteoporos. Int. 6, 160–165 (1996)

    Article  PubMed  CAS  Google Scholar 

  10. W.D. Leslie, L.M. Lix, L. Langsetmo, C. Berger, D. Goltzman, D.A. Hanley, J.D. Adachi, H. Johansson, A. Oden, E. McCloskey, J.A. Kanis, Construction of a FRAX® model for the assessment of fracture probability in Canada and implications for treatment. Osteoporos. Int. 22, 817–827 (2011)

    Article  PubMed  CAS  Google Scholar 

  11. R.A. Adler, The need for increasing awareness of osteoporosis in men. Clin. Cornerstone 8(Suppl 3), S7–S13 (2006)

    Article  PubMed  Google Scholar 

  12. R.A. Adler, Osteoporosis in men: recent progress. Endocrine 44, 40–46 (2013)

    Article  PubMed  CAS  Google Scholar 

  13. W.S. Browner, A.R. Pressman, M.C. Nevitt, S.R. Cummings, Mortality following fractures in older women. The study of osteoporotic fractures. Arch. Intern. Med. 156, 1521–1525 (1996)

    Article  PubMed  CAS  Google Scholar 

  14. E.L. Hannan, J. Magaziner, J.J. Wang, E.A. Eastwood, S.B. Silberzweig, M. Gilbert, R.S. Morrison, M.A. McLaughlin, G.M. Orosz, A.L. Siu, Mortality and locomotion 6 months after hospitalization for hip fracture: risk factors and risk-adjusted hospital outcomes. JAMA 285, 2736–2742 (2001)

    Article  PubMed  CAS  Google Scholar 

  15. A. Polymeris, K. Michalakis, V. Sarantopoulou, Secondary osteoporosis: an endocrinological approach focusing on underlying mechanisms. Endocr. Regulat. 47, 137–148 (2013)

    Article  CAS  Google Scholar 

  16. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. Report of a WHO Study Group. World Health Organization technical report series. 843, 1–129 (1994)

  17. L.D. Hordon, M. Raisi, J.E. Aaron, S.K. Paxton, M. Beneton, J.A. Kanis, Trabecular architecture in women and men of similar bone mass with and without vertebral fracture: I. Two-dimensional histology. Bone 27, 271–276 (2000)

    Article  PubMed  CAS  Google Scholar 

  18. O. Johnell, J.A. Kanis, A. Oden, H. Johansson, C. De Laet, P. Delmas, J.A. Eisman, S. Fujiwara, H. Kroger, D. Mellstrom, P.J. Meunier, L.J. Melton, T. O’Neill, H. Pols, J. Reeve, A. Silman, A. Tenenhouse, Predictive value of BMD for hip and other fractures. J. Bone Miner. Res. 20, 1185–1194 (2005)

    Article  PubMed  Google Scholar 

  19. T.M. Link, S. Majumdar, Current diagnostic techniques in the evaluation of bone architecture. Curr. Osteoporos. Rep. 2, 47–52 (2004)

    Article  PubMed  Google Scholar 

  20. C.D. Rubin, Emerging concepts in osteoporosis and bone strength. Curr. Med. Res. Opin. 21, 1049–1056 (2005)

    Article  PubMed  Google Scholar 

  21. H.K. Genant, K. Engelke, S. Prevrhal, Advanced CT bone imaging in osteoporosis. Rheumatology (Oxford, England) 47(Suppl 4), iv9–iv16 (2008)

    Google Scholar 

  22. M.A. Bredella, M. Misra, K.K. Miller, I. Madisch, A. Sarwar, A. Cheung, A. Klibanski, R. Gupta, Distal radius in adolescent girls with anorexia nervosa: trabecular structure analysis with high-resolution flat-panel volume CT. Radiology 249, 938–946 (2008)

    Article  PubMed  PubMed Central  Google Scholar 

  23. A.M. Cheung, J.D. Adachi, D.A. Hanley, D.L. Kendler, K.S. Davison, R. Josse, J.P. Brown, L.-G. Ste-Marie, R. Kremer, M.C. Erlandson, L. Dian, A.J. Burghardt, S.K. Boyd, High-resolution peripheral quantitative computed tomography for the assessment of bone strength and structure: a review by the Canadian Bone Strength Working Group. Curr. Osteoporos. Rep. 11, 136–146 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  24. R. Krug, J. Carballido-Gamio, S. Banerjee, A.J. Burghardt, T.M. Link, S. Majumdar, In vivo ultra-high-field magnetic resonance imaging of trabecular bone microarchitecture at 7 T. JMRI 27, 854–859 (2008)

    Article  PubMed  Google Scholar 

  25. P. Caligiuri, M.L. Giger, M.J. Favus, H. Jia, K. Doi, L.B. Dixon, Computerized radiographic analysis of osteoporosis: preliminary evaluation. Radiology 186, 471–474 (1993)

    Article  PubMed  CAS  Google Scholar 

  26. J. Samarabandu, R. Acharya, E. Hausmann, K. Allen, Analysis of bone X-rays using morphological fractals. IEEE Trans. Med. Imaging 12, 466–470 (1993)

    Article  PubMed  CAS  Google Scholar 

  27. S. Prouteau, G. Ducher, P. Nanyan, G. Lemineur, L. Benhamou, D. Courteix, Fractal analysis of bone texture: a screening tool for stress fracture risk? Eur. J. Clin. Invest. 34, 137–142 (2004)

    Article  PubMed  CAS  Google Scholar 

  28. J.S. Gregory, A. Stewart, P.E. Undrill, D.M. Reid, R.M. Aspden, Identification of hip fracture patients from radiographs using Fourier analysis of the trabecular structure: a cross-sectional study. BMC Med. Imaging 4, 4 (2004)

    Article  PubMed  PubMed Central  Google Scholar 

  29. D. Chappard, P. Guggenbuhl, E. Legrand, M.F. Baslé, M. Audran, Texture analysis of X-ray radiographs is correlated with bone histomorphometry. J. Bone Miner. Metab. 23, 24–29 (2005)

    Article  PubMed  Google Scholar 

  30. T.J. Vokes, M.L. Giger, M.R. Chinander, T.G. Karrison, M.J. Favus, L.B. Dixon, Radiographic texture analysis of densitometer-generated calcaneus images differentiates postmenopausal women with and without fractures. Osteoporos. Int. 17, 1472–1482 (2006)

    Article  PubMed  CAS  Google Scholar 

  31. S.L. Bonnick, Bone densitometry in clinical practice: application and interpretation (Humana Press, New Jersey, 2009)

    Google Scholar 

  32. H.K. Genant, C.Y. Wu, C. van Kuijk, M.C. Nevitt, Vertebral fracture assessment using a semiquantitative technique. J Bone Miner Res 8, 1137–1148 (1993)

    Article  PubMed  CAS  Google Scholar 

  33. F. Duboeuf, D.C. Bauer, R.D. Chapurlat, J.M.P. Dinten, P. Delmas, Assessment of vertebral fracture using densitometric morphometry. J. Clin. Densitom 8, 362–368 (2005)

    Article  PubMed  CAS  Google Scholar 

  34. K.G. Faulkner, S.R. Cummings, D. Black, L. Palermo, C.C. Glüer, H.K. Genant, Simple measurement of femoral geometry predicts hip fracture: the study of osteoporotic fractures. J. Bone Miner. Res. 8, 1211–1217 (1993)

    Article  PubMed  CAS  Google Scholar 

  35. T.J. Beck, C.B. Ruff, K.E. Warden, W.W. Scott, G.U. Rao, Predicting femoral neck strength from bone mineral data. A structural approach. Investig. Radiol. 25, 6–18 (1990)

    Article  CAS  Google Scholar 

  36. T. Nakamura, C.H. Turner, T. Yoshikawa, C.W. Slemenda, M. Peacock, D.B. Burr, Y. Mizuno, H. Orimo, Y. Ouchi, C.C. Johnston, Do variations in hip geometry explain differences in hip fracture risk between Japanese and white Americans? J. Bone Miner. Res. 9, 1071–1076 (1994)

    Article  PubMed  CAS  Google Scholar 

  37. C.M. Langton, S. Pisharody, J.H. Keyak, Comparison of 3D finite element analysis derived stiffness and BMD to determine the failure load of the excised proximal femur. Med. Eng. Phys. 31, 668–672 (2009)

    Article  PubMed  CAS  Google Scholar 

  38. H.F. Boehm, T. Vogel, A. Panteleon, D. Burklein, H. Bitterling, M. Reiser, Differentiation between post-menopausal women with and without hip fractures: enhanced evaluation of clinical DXA by topological analysis of the mineral distribution in the scan images. Osteoporos. Int. 18, 779–787 (2007)

    Article  PubMed  CAS  Google Scholar 

  39. D. Hans, N. Barthe, S. Boutroy, L. Pothuaud, R. Winzenrieth, M.-A. Krieg, Correlations between trabecular bone score, measured using anteroposterior dual-energy X-ray absorptiometry acquisition, and 3-dimensional parameters of bone microarchitecture: an experimental study on human cadaver vertebrae. J. Clin. Densitom. 14, 302–312 (2011)

    Article  PubMed  Google Scholar 

  40. B.C. Silva, W.D. Leslie, H. Resch, O. Lamy, O. Lesnyak, N. Binkley, E.V. McCloskey, J.A. Kanis, J.P. Bilezikian, Trabecular bone score: a non-invasive analytical method based upon the DXA image. J. Bone Miner. Res. (2014)

  41. R. Winzenrieth, F. Michelet, D. Hans, Three-dimensional (3D) microarchitecture correlations with 2D projection image gray-level variations assessed by trabecular bone score using high-resolution computed tomographic acquisitions: effects of resolution and noise. J. Clin. Densitom. 16, 287–296 (2012)

    Article  PubMed  Google Scholar 

  42. J.P. Roux, J. Wegrzyn, S. Boutroy, M.L. Bouxsein, D. Hans, R. Chapurlat, The predictive value of trabecular bone score (TBS) on whole lumbar vertebrae mechanics: an ex vivo study. Osteoporos. Int. 24, 2455–2460 (2013)

    Article  PubMed  CAS  Google Scholar 

  43. D. Krueger, J. Libber, N. Binkley, Trabecular bone score (TBS) comparability between GE lunar prodigy and iDXA densitometers and short-term TBS precision. Osteoporos. Int. 24(1), S364 (2013)

    Google Scholar 

  44. C. Di Somma, M. Rubino, A. Faggiano, L. Vuolo, P. Contaldi, N. Tafuri, N. Tafuto, M. Andretti, S. Savastano, A. Colao, Spinal deformity index in patients with type 2 diabetes. Endocrine 43, 651–658 (2013)

    Article  PubMed  Google Scholar 

  45. M.R. Rubin, Type 2 diabetes and fractures: more information is needed. Endocrine 43, 469–471 (2013)

    Article  PubMed  CAS  Google Scholar 

  46. A. Scillitani, G. Mazziotti, C. Di Somma, S. Moretti, A. Stigliano, R. Pivonello, A. Giustina, A. Colao, Treatment of skeletal impairment in patients with endogenous hypercortisolism: when and how? Osteoporos. Int. 25, 441–446 (2014)

    Article  PubMed  CAS  Google Scholar 

  47. J.A. Kanis, H. Johansson, A. Oden, O. Johnell, C. de Laet, L.J. Melton III, A. Tenenhouse, J. Reeve, A.J. Silman, H.A.P. Pols, J.A. Eisman, E.V. McCloskey, D. Mellstrom, A meta-analysis of prior corticosteroid use and fracture risk. J. Bone Miner. Res. 19, 893–899 (2004)

    Article  PubMed  Google Scholar 

  48. E.S. Strotmeyer, J.A. Cauley, A.V. Schwartz, M.C. Nevitt, H.E. Resnick, D.C. Bauer, F.A. Tylavsky, N. de Rekeneire, T.B. Harris, A.B. Newman, Nontraumatic fracture risk with diabetes mellitus and impaired fasting glucose in older white and black adults: the health, aging, and body composition study. Arch. Intern. Med. 165, 1612–1617 (2005)

    Article  PubMed  Google Scholar 

  49. G. Mazziotti, J. Bilezikian, E. Canalis, D. Cocchi, A. Giustina, New understanding and treatments for osteoporosis. Endocrine 41, 58–69 (2012)

    Article  PubMed  CAS  Google Scholar 

  50. S.J. Silverberg, E. Shane, L. de la Cruz, D.W. Dempster, F. Feldman, D. Seldin, T.P. Jacobs, E.S. Siris, M. Cafferty, M.V. Parisien, Skeletal disease in primary hyperparathyroidism. J. Bone Miner. Res. 4, 283–291 (1989)

    Article  PubMed  CAS  Google Scholar 

  51. P. Vestergaard, L. Mosekilde, Fractures in patients with primary hyperparathyroidism: nationwide follow-up study of 1201 patients. World J. Surg. 27, 343–349 (2003)

    Article  PubMed  Google Scholar 

  52. E. Vignali, G. Viccica, D. Diacinti, F. Cetani, L. Cianferotti, E. Ambrogini, C. Banti, R. Del Fiacco, J.P. Bilezikian, A. Pinchera, C. Marcocci, Morphometric vertebral fractures in postmenopausal women with primary hyperparathyroidism. J. Clin. Endocrinol. Metab. 94, 2306–2312 (2009)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  53. E.M. Stein, B.C. Silva, S. Boutroy, B. Zhou, J. Wang, J. Udesky, C. Zhang, D.J. McMahon, M. Romano, E. Dworakowski, A.G. Costa, N. Cusano, D. Irani, S. Cremers, E. Shane, X.E. Guo, J.P. Bilezikian, Primary hyperparathyroidism is associated with abnormal cortical and trabecular microstructure and reduced bone stiffness in postmenopausal women. J. Bone Miner. Res. 28, 1029–1040 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  54. J.F. Griffith, H.K. Genant, New advances in imaging osteoporosis and its complications. Endocrine 42, 39–51 (2012)

    Article  PubMed  CAS  Google Scholar 

  55. L. Pothuaud, N. Barthe, M.-A. Krieg, N. Mehsen, P. Carceller, D. Hans, Evaluation of the potential use of trabecular bone score to complement bone mineral density in the diagnosis of osteoporosis: a preliminary spine BMD-matched, case–control study. J. Clin. Densitom. 12, 170–176 (2009)

    Article  PubMed  Google Scholar 

  56. B. Rabier, A. Héraud, C. Grand-Lenoir, R. Winzenrieth, D. Hans, A multicentre, retrospective case–control study assessing the role of trabecular bone score (TBS) in menopausal Caucasian women with low areal bone mineral density (BMDa): analysing the odds of vertebral fracture. Bone 46, 176–181 (2010)

    Article  PubMed  Google Scholar 

  57. R. Winzenrieth, R. Dufour, L. Pothuaud, D. Hans, A retrospective case–control study assessing the role of trabecular bone score in postmenopausal Caucasian women with osteopenia: analyzing the odds of vertebral fracture. Calcif. Tissue Int. 86, 104–109 (2010)

    Article  PubMed  CAS  Google Scholar 

  58. L.M. Del Rio, R. Winzenrieth, C. Cormier, S. Di Gregorio, Is bone microarchitecture status of the lumbar spine assessed by TBS related to femoral neck fracture? A Spanish case–control study. Osteoporos. Int. 24, 991–998 (2013)

    Article  PubMed  Google Scholar 

  59. E. Leib, R. Winzenrieth, B. Aubry-Rozier, D. Hans, Vertebral microarchitecture and fragility fracture in men: a TBS study. Bone 62, 51 (2013)

    Article  PubMed  Google Scholar 

  60. F. Colson, R. Winzenrieth, D. Hans, Assessment of osteopenic women microarchitecture with and without osteoporotic fracture by TBS on a new generation bone densitometer. J. Clin. Densitom. 14, 169 (2011)

    Article  Google Scholar 

  61. E. Leib, O. Lamy, R. Winzenrieth, D. Hans, Assessment of women microarchitecture with and without osteoporotic fracture by TBS on white non Hispanic US women. J. Clin. Densitom. 16, 268 (2013)

    Article  Google Scholar 

  62. J. Vasic, T. Petranova, V. Povoroznyuk, C.G. Barbu, M. Karadzic, F. Gojkovic, J. Elez, R. Winzenrieth, D. Hans, V. Culaficvojinovic, C. Poiana, N. Dzerovych, R. Rashkov, A. Dimic, Evaluating spine micro-architectural texture (via TBS) discriminates major osteoporotic fractures from controls both as well as and independent of site matched BMD: the Eastern European TBS study. J. Bone Miner. Metab. 60, 185 (2013)

    Google Scholar 

  63. O. Lamy, M. Metzger, M.-A. Krieg, B. Aubry-Rozier, D. Stoll, D. Hans, OsteoLaus: prediction of osteoporotic fractures by clinical risk factors and DXA, IVA and TBS. Revue médicale suisse. 7, 2130, 2132–4, 2136 (2011)

  64. D. Krueger, E. Fidler, J. Libber, B. Aubry-Rozier, D. Hans, N. Binkley, Spine trabecular bone score subsequent to bone mineral density improves fracture discrimination in women. J. Clin. Densitom. 16, 374 (2013)

    Article  Google Scholar 

  65. D. Hans, A.L. Goertzen, M.-A. Krieg, W.D. Leslie, Bone microarchitecture assessed by TBS predicts osteoporotic fractures independent of bone density: the Manitoba study. J. Bone Miner. Res. 26, 2762–2769 (2011)

    Article  PubMed  Google Scholar 

  66. S. Boutroy, D. Hans, E. Sornay-Rendu, N. Vilayphiou, R. Winzenrieth, R. Chapurlat, Trabecular bone score improves fracture risk prediction in non-osteoporotic women: the OFELY study. Osteoporos. Int. 24, 77–85 (2013)

    Article  PubMed  CAS  Google Scholar 

  67. A.W. Popp, S. Meer, M.-A. Krieg, R. Perrelet, D. Hans, K. Lippuner, Bone mineral density (BMD) combined with micro-architecture parameters (TBS) significantly improves the identification of women at high risk of fracture: the SEMOF cohort study. Osteoporos. Int. 23, S327–S328 (2012)

    Article  Google Scholar 

  68. M. Iki, J. Tamaki, E. Kadowaki, Y. Sato, N. Dongmei, R. Winzenrieth, S. Kagamimori, Y. Kagawa, H. Yoneshima, Trabecular bone score (TBS) predicts vertebral fractures in Japanese women over 10 years independently of bone density and prevalent vertebral deformity: the Japanese population-based osteoporosis (JPOS) cohort study. J. Bone Miner. Res. 29, 399 (2013)

    Article  Google Scholar 

  69. M.A. Krieg, B. Aubry-Rozier, D. Hans, W.D. Leslie, Effects of anti-resorptive agents on trabecular bone score (TBS) in older women. Osteoporos. Int. 24, 1073–1078 (2013)

    Article  PubMed  CAS  Google Scholar 

  70. A.W. Popp, S. Guler, O. Lamy, C. Senn, H. Buffat, R. Perrelet, D. Hans, K. Lippuner, Effects of zoledronate versus placebo on spine bone mineral density and microarchitecture assessed by the trabecular bone score in postmenopausal women with osteoporosis: a three-year study. J. Bone Miner. Res. 28, 449–454 (2013)

    Article  PubMed  CAS  Google Scholar 

  71. D. Hans, M.-A. Krieg, O. Lamy, D. Felsenberg, Beneficial effects of strontium ranelate compared to alendronate on trabecular bone score in post menopausal osteoporotic women. a 2-year study. Osteoporos. Int. 23, S266–S267 (2012)

    Google Scholar 

  72. B. Günther, A.W. Popp, D. Stoll, Beneficial effect of PTH on spine BMD and microarchitecture (TBS) parameters in postmenopausal women with osteoporosis. A 2-year study. Osteoporos. Int. 23, s85–s386 (2012)

    Article  Google Scholar 

  73. M.R. McClung, K. Lippuner, M.L. Brandi, J.-M. Kaufman, J.R. Zanchetta, M.-A. Krieg, H.G. Bone, R. Chapurlat, D. Hans, A. Wang, J. Yun, C. Zapalowski, C. Libanati, In postmenopausal women with osteoporosis, denosumab significantly improved trabecular bone score (TBS), an index of trabecular microarchitecture. Arthritis Rheum. 64, S832–S832 (2012)

    Google Scholar 

  74. R. Rizzoli, R.D. Chapurlat, J.-M. Laroche, M.A. Krieg, T. Thomas, I. Frieling, S. Boutroy, A. Laib, O. Bock, D. Felsenberg, Effects of strontium ranelate and alendronate on bone microstructure in women with osteoporosis. Results of a 2-year study. Osteoporos. Int. 23, 305–315 (2012)

    Article  PubMed  CAS  Google Scholar 

  75. D. Chappard, E. Legrand, M.F. Basle, P. Fromont, J.L. Racineux, A. Rebel, M. Audran, Altered trabecular architecture induced by corticosteroids: a bone histomorphometric study. J. Bone Miner. Res. 11, 676–685 (1996)

    Article  PubMed  CAS  Google Scholar 

  76. R. Eastell, D.M. Reid, J. Compston, C. Cooper, I. Fogelman, R.M. Francis, D.J. Hosking, D.W. Purdie, S.H. Ralston, J. Reeve, R.G. Russell, J.C. Stevenson, D.J. Torgerson, A UK Consensus Group on management of glucocorticoid-induced osteoporosis: an update. J. Int. Med. 244, 271–292 (1998)

    Article  CAS  Google Scholar 

  77. R.S. Weinstein, Glucocorticoid-induced bone disease. New Engl. J. Med. 365, 62–70 (2011)

    Article  PubMed  CAS  Google Scholar 

  78. R.S. Weinstein, Glucocorticoids, osteocytes, and skeletal fragility: the role of bone vascularity. Bone 46, 564–570 (2010)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  79. C.A. O’Brien, D. Jia, L.I. Plotkin, T. Bellido, C.C. Powers, S.A. Stewart, S.C. Manolagas, R.S. Weinstein, Glucocorticoids act directly on osteoblasts and osteocytes to induce their apoptosis and reduce bone formation and strength. Endocrinology 145, 1835–1841 (2004)

    Article  PubMed  Google Scholar 

  80. L.C. Hofbauer, C. Hamann, P.R. Ebeling, Approach to the patient with secondary osteoporosis. Eur. J. Endocrinol. 162, 1009–1020 (2010)

    Article  PubMed  CAS  Google Scholar 

  81. F. Colson, B. Rabier, E. Vignon, Trabecular bone microarchitecture alteration in glucocorticoid treated women in clinical routine: a TBS evaluation. J. Bone Miner. Res. 25, 452 (2009)

    Google Scholar 

  82. M. Paggiosi, R. Eastell, The impact of glucocorticoid therapy on trabecular bone score in older women. J. Bone Miner. Res. 27, 21 (2012)

    Google Scholar 

  83. I. Chiodini, V. Carnevale, M. Torlontano, S. Fusilli, G. Guglielmi, M. Pileri, S. Modoni, A. Di Giorgio, A. Liuzzi, S. Minisola, M. Cammisa, V. Trischitta, A. Scillitani, Alterations of bone turnover and bone mass at different skeletal sites due to pure glucocorticoid excess: study in eumenorrheic patients with Cushing’s syndrome. J. Clin. Endocrinol. Metab. 83, 1863–1867 (1998)

    PubMed  CAS  Google Scholar 

  84. C. Kristo, R. Jemtland, T. Ueland, K. Godang, J. Bollerslev, Restoration of the coupling process and normalization of bone mass following successful treatment of endogenous Cushing’s syndrome: a prospective, long-term study. Eur. J. Endocrinol. 154, 109–118 (2006)

    Article  PubMed  CAS  Google Scholar 

  85. P. Vestergaard, J. Lindholm, J.O.L. Jørgensen, C. Hagen, H.C. Hoeck, P. Laurberg, L. Rejnmark, K. Brixen, L.Ø. Kristensen, U. Feldt-Rasmussen, L. Mosekilde, Increased risk of osteoporotic fractures in patients with Cushing’s syndrome. Eur. J. Endocrinol. 146, 51–56 (2002)

    Article  PubMed  CAS  Google Scholar 

  86. G. Luisetto, M. Zangari, V. Camozzi, M. Boscaro, N. Sonino, F. Fallo, Recovery of bone mineral density after surgical cure, but not by ketoconazole treatment, in Cushing’s syndrome. Osteoporos. Int. 12, 956–960 (2001)

    Article  PubMed  CAS  Google Scholar 

  87. E. Koumakis, R. Winzenrieth, L. Guignat, C. Cormier, Cushing disease: restoration of bone mass and microarchitecture after hypercortisolism normalization. Osteoporos. Int. 23, S691 (2012)

    Google Scholar 

  88. C. Eller-Vainicher, V. Morelli, F.M. Ulivieri, S. Palmieri, V.V. Zhukouskaya, E. Cairoli, R. Pino, A. Naccarato, A. Scillitani, P. Beck-Peccoz, I. Chiodini, Bone quality, as measured by trabecular bone score in patients with adrenal incidentalomas with and without subclinical hypercortisolism. J. Bone Miner. Res. 27, 2223–2230 (2012)

    Article  PubMed  CAS  Google Scholar 

  89. G. Guglielmi, M. Nasuto, R. Winzenrieth, D. Hans, Evaluation of adrenal incidentaloma effects at axial skeleton on bone mass (BMD) and bone microarchitectural texture (TBS). Osteoporos. Int. 24, S315 (2013)

    Google Scholar 

  90. S. Hansen, J.-E. BeckJensen, L. Rasmussen, E.M. Hauge, K. Brixen, Effects on bone geometry, density, and microarchitecture in the distal radius but not the tibia in women with primary hyperparathyroidism: a case–control study using HR-pQCT. J. Bone Miner. Res. 25, 1941–1947 (2010)

    Article  PubMed  Google Scholar 

  91. E. Romagnoli, C. Cipriani, I. Nofroni, C. Castro, M. Angelozzi, A. Scarpiello, J. Pepe, D. Diacinti, S. Piemonte, V. Carnevale, S. Minisola, “Trabecular Bone Score” (TBS): an indirect measure of bone micro-architecture in postmenopausal patients with primary hyperparathyroidism. Bone 53, 154–159 (2013)

    Article  PubMed  Google Scholar 

  92. B.C. Silva, S. Boutroy, C. Zhang, D.J. McMahon, B. Zhou, J. Wang, J. Udesky, S. Cremers, M. Sarquis, X.-D.E. Guo, D. Hans, J.P. Bilezikian, Trabecular bone score (TBS): a novel method to evaluate bone microarchitectural texture in patients with primary hyperparathyroidism. J. Clin. Endocrinol. Metab. 98, 1963–1970 (2013)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  93. C. Eller-Vainicher, M. Filopanti, S. Palmieri, F.M. Ulivieri, V. Morelli, V.V. Zhukouskaya, E. Cairoli, R. Pino, A. Naccarato, U. Verga, A. Scillitani, P. Beck-Peccoz, I. Chiodini, Bone quality, as measured by trabecular bone score, in patients with primary hyperparathyroidism. Eur. J. Endocrinol. 169, 155–162 (2013)

    Article  PubMed  CAS  Google Scholar 

  94. E. Maury, R. Winzenrieth, J. Souberbielle, C. Cormier, BMD and TBS micro architecture parameters assessment at spine in patients with primary hyperparathyroidism (PHPT) before and one year after parathyroidectomy. J. Bone Miner. Res. 25, S82–S135 (2010)

    Article  Google Scholar 

  95. L. Rolighed, L. Rejnmark, T. Sikjaer, L. Heickendorff, P. Vestergaard, L. Mosekilde, P. Christiansen, Vitamin D treatment in primary hyperparathyroidism: a randomized placebo controlled trial. J. Clin. Endocrinol. Metab. [Epub ahead of print] (2014)

  96. T. Becker, L. Lipscombe, S. Narod, C. Simmons, G.M. Anderson, P.A. Rochon, Systematic review of bone health in older women treated with aromatase inhibitors for early-stage breast cancer. J. Am. Geriatr. Soc. 60, 1761–1767 (2012)

    Article  PubMed  Google Scholar 

  97. M. Kalder, D. Hans, I. Kyvernitakis, O. Lamy, M. Bauer, P. Hadji, Effects of exemestane and tamoxifen treatment on bone texture analysis assessed by tbs in comparison with bone mineral density assessed by DXA in women with breast cancer. J. Clin. Densitom [Article in Press] (2013)

  98. S. Bréban, K. Briot, S. Kolta, S. Paternotte, M. Ghazi, J. Fechtenbaum, C. Roux, Identification of rheumatoid arthritis patients with vertebral fractures using bone mineral density and trabecular bone score. J. Clin. Densitom. 15, 260–266 (2012)

    Article  PubMed  Google Scholar 

  99. E. Toussirot, L. Mourot, D. Wendling, G. Dumoulin, Trabecular bone score in rheumatoid arthritis and ankylosing spondylitis and changes during long term treatment with TNFa blocking agents. J. Bone Miner. Res. 27, 381 (2012)

    Google Scholar 

  100. M.R. Mascarenhas, A.P. Barbosa, A. Goncnullalves, V. Simoes, A.G. De Oliveira, M. Bicho, D. Hans, I. Do Carmo, Male hypogonadism impact in bone quality assessed by trabecular bone score (TBS). Osteoporos. Int. 23, S298–S299 (2012)

    Google Scholar 

  101. A.M. Alem, D.J. Sherrard, D.L. Gillen, N.S. Weiss, S.A. Beresford, S.R. Heckbert, C. Wong, C. Stehman-Breen, Increased risk of hip fracture among patients with end-stage renal disease. Kidney Int. 58, 396–399 (2000)

    Article  PubMed  CAS  Google Scholar 

  102. J.S. Lindberg, S.M. Moe, Osteoporosis in end-state renal disease. Semin. Nephrol. 19, 115–122 (1999)

    PubMed  CAS  Google Scholar 

  103. C.O. Stehman-Breen, D.J. Sherrard, A.M. Alem, D.L. Gillen, S.R. Heckbert, C.S. Wong, A. Ball, N.S. Weiss, Risk factors for hip fracture among patients with end-stage renal disease. Kidney Int. 58, 2200–2205 (2000)

    Article  PubMed  CAS  Google Scholar 

  104. E. Leib, D. Stoll, R. Winzenrieth, D. Hans, Lumbar spine microarchitecture impairment evaluation in chronic kidney disease: a TBS study. J. Clin. Densitom. 16, 266 (2013)

    Article  Google Scholar 

  105. L. Chapuis, R. Winzenrieth, D. Hans, J.-L. Paitier, In vivo evaluation of genetical hematochromatosis impact on quality bone: a TBS preliminary study. Osteoporos. Int. 24, S323–S324 (2013)

    Google Scholar 

  106. W.D. Leslie, B. Aubry-Rozier, O. Lamy, D. Hans, TBS (trabecular bone score) and diabetes-related fracture risk. J. Clin. Endocrinol. Metabol. 98, 602–609 (2013)

    Article  CAS  Google Scholar 

Download references

Conflict of interest

Didier Hans is co-owner of the TBS patent and has corresponding ownership shares in medimaps group. All the other authors have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Didier Hans.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ulivieri, F.M., Silva, B.C., Sardanelli, F. et al. Utility of the trabecular bone score (TBS) in secondary osteoporosis. Endocrine 47, 435–448 (2014). https://doi.org/10.1007/s12020-014-0280-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-014-0280-4

Keywords

Navigation