Skip to main content
Log in

Upregulation of long noncoding RNA TMEVPG1 enhances T helper type 1 cell response in patients with Sjögren syndrome

  • Original Article
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Long noncoding RNAs (lncRNA) play key roles in regulating autoimmunity and immunity balance. LncRNA TMEVPG1, which is encoded by a gene located near the Ifn gene, contributes to interferon gamma expression. We investigated the expression of TMEVPG1 in patients with Sjögren syndrome (SS) to determine its role in the pathogenesis of SS. In this study, we detected the relative expression of TMEVPG1 in CD4+ T cells of 25 SS patients and 25 healthy donors. Moreover, the proportion of Th1 cells and T-bet levels was also analyzed. Furthermore, we explored the correlation between the expression of TMEVPG1 and the level of autoantibodies, erythrocyte sedimentation rate (ESR) and IgG in SS patients. Our results indicated that the proportion of Th1 cells and the levels of TMEVPG1 and T-bet were increased in SS patients. In addition, the level of expression of TMEVPG1 was correlated with the level of SSA, ESR and IgG. Our data suggest that upregulation of lncRNA TMEVPG1 may be involved in the pathogenesis of Sjögren syndrome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Singh N, Cohen PL. The T cell in Sjögren’s syndrome: force majeure, not spectateur. J Autoimmun. 2012;39(3):229–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Fox RI, Kang HI, Ando D, et al. Cytokine mRNA expression in salivary gland biopsies of Sjögren’s syndrome. J Immunol. 1994;152:5532–9.

    CAS  PubMed  Google Scholar 

  3. Boumba D, Skopouli FN, Moutsopoulos HM. Cytokine mRNA expression in the labial salivary gland tissues from patients with primary Sjögren’s syndrome. Br J Rheumatol. 1995;34:326–33.

    Article  CAS  PubMed  Google Scholar 

  4. Kolkowski EC, Reth P, Pelusa F, et al. Th1 predominance and perforin expression in minor salivary glands from patients with primary Sjögren’s syndrome. J Autoimmun. 1999;13(1):155–62.

    Article  CAS  PubMed  Google Scholar 

  5. Li X, Xu B, Wang Y, et al. Anti-inflammatory effect of peroxisome proliferator-activated receptor-γ (PPAR-γ) on non-obese diabetic mice with Sjögren’s syndrome. Int J Clin Exp Pathol. 2014;7(8):4886–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Cha S, Brayer J, Gao J, et al. A dual role for interferon-gamma in the pathogenesis of Sjögren’s syndrome-like autoimmune exocrinopathy in the nonobese diabetic mouse. Scand J Immunol. 2004;60(6):552–65.

    Article  CAS  PubMed  Google Scholar 

  7. Lin X, Rui K, Deng J, et al. Th17 cells play a critical role in the development of experimental Sjögren’s syndrome. Ann Rheum Dis. 2015;74(6):1302–10.

    Article  PubMed  Google Scholar 

  8. Peng H, Liu Y, Tian J, et al. Decreased expression of microRNA-125a-3p upregulates interleukin-23 receptor in patients with Hashimoto’s thyroiditis. Immunol Res. 2015;62(2):129–36.

    Article  CAS  PubMed  Google Scholar 

  9. Chen J, Tian J, Tang X, et al. MiR-346 regulates CD4+ CXCR5+ T cells in the pathogenesis of Graves’ disease. Endocrine. 2015;49(3):752–60.

    Article  CAS  PubMed  Google Scholar 

  10. Pauley KM, Stewart CM, Gauna AE, et al. Altered miR-146a expression in Sjögren syndrome and its functional role in innate immunity. Eur J Immunol. 2011;41(7):2029–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Spierings DC, McGoldrick D, Hamilton-Easton AM, et al. Ordered progression of stage-specific miRNA profiles in the mouse B2 B-cell lineage. Blood. 2011;117(20):5340–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chiyomaru T, Fukuhara S, Saini S, et al. Long non-coding RNA HOTAIR is targeted and regulated by miR-141 in human cancer cells. J Biol Chem. 2014;289(18):12550–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Van Roosbroeck K, Pollet J, Calin GA. MiRNAs and long noncoding RNAs as biomarkers in human diseases. Expert Rev Mol Diagn. 2013;13(2):183–204.

    Article  PubMed  Google Scholar 

  14. Mourtada-Maarabouni M, Hasan AM, Farzaneh F, et al. Inhibition of human T-cell proliferation by mammalian target of rapamycin (mTOR) antagonists requires noncoding RNA growth-arrest-specific transcript 5 (GAS5). Mol Pharmacol. 2010;78(1):19–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gomez JA, Wapinski OL, Yang YW, et al. The NeST long ncRNA controls microbial susceptibility and epigenetic activation of the interferon-γ locus. Cell. 2013;152(4):743–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Collier SP, Collins PL, Williams CL, et al. Cutting edge: influence of TMEVPG1, a long intergenic noncoding RNA, on the expression of Ifng by Th1 cells. J Immunol. 2012;189(5):2084–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Collier SP, Henderson MA, Tossberg JT, et al. Regulation of the Th1 genomic locus from Ifn-g. through Tmevpg1 by T-bet. J Immunol. 2014;193(8):3959–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jonsson R, Vogelsang P, Volchenkov R, et al. The complexity of Sjögren’s syndrome: novel aspects on pathogenesis. Immunol Lett. 2011;141(1):1–9.

    Article  CAS  PubMed  Google Scholar 

  19. Vitali C, Bombardieri S, Jonsson R, et al. Classification criteria for Sjögren’s syndrome: a revised version of the European criteria proposed by the American- European Consensus Group. Ann Rheum Dis. 2002;61(6):554–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Vasudevan A, Bhide PG. Angiogenesis in the embryonic CNS: a new twist on an old tale. Cell Adh Migr. 2008;2(3):167–9.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Hernandez-Molina G, Leal-Alegre G, Michel-Peregrina M. The meaning of anti-Ro and anti-La antibodies in primary Sjögren’s syndrome. Autoimmun Rev. 2011;10(3):123–5.

    Article  CAS  PubMed  Google Scholar 

  22. Khalil AM, Guttman M, Huarte M, et al. Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc Natl Acad Sci USA. 2009;106(28):11667–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Guttman M, Amit I, Garber M, et al. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature. 2009;458(7235):223–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mattick JS, Makunin IV. Non-coding RNA. Hum Mol Genet. 2006; 15 Spec No 1:R17-29.

  25. Jimenez SA, Piera-Velazquez S. Potential role of human-specific genes, human-specific microRNAs and human-specific non-coding regulatory RNAs in the pathogenesis of systemic sclerosis and Sjögren syndrome. Autoimmun Rev. 2013;12(11):1046–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Vigneau S, Rohrlich PS, Brahic M, et al. Tmevpg1, a candidate gene for the control of Theiler’s virus persistence, could be implicated in the regulation of gamma interferon. J Virol. 2003;77(10):5632–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gonzalez-Navajas JM, Lee J, David M, et al. Immunomodulatory functions of type I interferons. Nat Rev Immunol. 2012;12(2):125–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Li H, Ice JA, Lessard CJ, et al. Interferons in Sjögren’s syndrome: genes, mechanisms, and effects. Front Immunol. 2013;4:290.

    PubMed  PubMed Central  Google Scholar 

  29. Hjelmervik TO, Petersen K, Jonassen I, et al. Gene expression profiling of minor salivary glands clearly distinguishes primary Sjögren’s syndrome patients from healthy control subjects. Arthritis Rheum. 2005;52(5):1534–44.

    Article  CAS  PubMed  Google Scholar 

  30. Hall JC, Baer AN, Shah AA, et al. Molecular subsetting of interferon pathways in Sjögren’s syndrome. Arthriti Rheumatol. 2015;67(9):2437–46.

    Article  CAS  Google Scholar 

  31. Nguyen CQ, Peck AB. The interferon-signature of Sjögren’s syndrome: how unique biomarkers can identify underlying inflammatory and immunopathological mechanisms of specific diseases. Front Immunol. 2013;4:142.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Hall JC, Casciola-Rosen L, Berger AE, et al. Precise probes of type II interferon activity define the origin of interferon signatures in target tissues in rheumatic diseases. Proc Natl Acad Sci USA. 2012;109(43):17609–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hertzog P, Forster S, Samarajiwa S. Systems biology of interferon responses. J Interferon Cytokine Res. 2011;31(1):5–11.

    Article  CAS  PubMed  Google Scholar 

  34. Nezos A, Gravani F, Tassidou A, et al. Type I and II interferon signatures in Sjögren’s syndrome pathogenesis: contributions in distinct clinical phenotypes and Sjögren’s related lymphomagenesis. J Autoimmun. 2015;S0896–8411(15):30006–8.

    Google Scholar 

  35. Ogawa N, Li P, Li Z, et al. Involvement of the interferon-gamma-induced T cell-attracting chemokines, interferon-gamma-inducible 10-kd protein (CXCL10) and monokine induced by interferon-gamma (CXCL9), in the salivary gland lesions of patients with Sjögren’s syndrome. Arthritis Rheum. 2002;46:2730–41.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. 31470881, 31270947), Natural Science Foundation of Jiangsu (Grant No. BK20150533), Specialized Project for Clinical Medicine of Jiangsu Province (Grant No. BL2014065), Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 20133227110008), Health Department Foundation of Jiangsu Province (Grant No. Z201312), Science and Technology Support Program (Social Development) of Zhenjiang (Grant Nos. SH2014039, SH2013040), Jiangsu Province “333” Project (Grant No. BRA2015197), Summit of the Six Top Talents Program of Jiangsu Province (Grant No. 2015-WSN-116), Jiangsu University Initial Founding for Advanced Talents (Grant Nos. 15JDG070, 11JDG093) and Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jie Tian or Shengjun Wang.

Ethics declarations

Conflict of interest

The authors have no financial conflicts of interest.

Additional information

Juan Wang, Huiyong Peng, and Jie Tian have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Peng, H., Tian, J. et al. Upregulation of long noncoding RNA TMEVPG1 enhances T helper type 1 cell response in patients with Sjögren syndrome. Immunol Res 64, 489–496 (2016). https://doi.org/10.1007/s12026-015-8715-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-015-8715-4

Keywords

Navigation