Skip to main content
Log in

Beyond TNF Inhibitors: New Pathways and Emerging Treatments for Psoriatic Arthritis

  • Review Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Psoriatic arthritis (PsA) is a chronic inflammatory disease characterized by psoriasis, synovitis, enthesitis, spondylitis and association with other extra-articular manifestations. Chronic inflammation of involved tissues possibly leads to structural damage and to a reduction in function and quality of life. The treatment of PsA dramatically changed with the introduction of anti-tumor necrosis factor (TNF)-α drugs, which have been shown to reduce the symptoms and signs of the disease, and slow radiographic progression. However, some patients do not respond to anti-TNFα or have a loss of response. Recently, the discovery of new pathogenic mechanisms have made possible the development of new drugs that target pro-inflammatory cytokines, such as interleukin (IL)-12, IL-23 and IL-17, or interfere with cellular pathways involved in skin, joint and entheseal inflammation. New molecules, namely ustekinumab, secukinumab, and apremilast have shown efficacy and safety over the various components of the disease in randomized clinical trials. These drugs have been recently approved for the treatment of PsA and included in new treatment recommendations. Other molecules are currently being tested in phase III clinical trials and are potential new treatment options for PsA. The aim of this review is to update the new pathways involved in the development of the disease and the emerging treatments for PsA beyond TNFα inhibition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Gladman DD, Antoni C, Mease P, Clegg DO, Nash P. Psoriatic arthritis: epidemiology, clinical features, course and outcome. Ann Rheum Dis. 2005;64(2):14–7.

    Google Scholar 

  2. McHugh NJ, Balachrishnan C, Jones SM. Progression of peripheral joint disease in psoriatic arthritis: a 5-yr prospective study. Rheumatology (Oxford). 2003;42:778–83.

    Article  CAS  PubMed  Google Scholar 

  3. Veale D. Psoriatic arthritis: recent progress in pathophysiology and drug development. Arthritis Res Ther. 2013;15:224.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ritchlin CT, Kavanaugh A, Gladman DD, Group for Research and Assessment of Psoriasis and Psoriatic Arthritis (GRAPPA), et al. Treatment recommendations for psoriatic arthritis. Ann Rheum Dis. 2009;68:1387–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. D’Angelo S, Palazzi C, Olivieri I. Psoriatic arthritis: treatment strategies using biologic agents. Reumatismo. 2012;64:113–21.

    PubMed  Google Scholar 

  6. Atteno M, Peluso R, Costa L, et al. Comparison of effectiveness and safety of infliximab, etanercept, and adalimumab in psoriatic arthritis patients who experienced an inadequate response to previous disease-modifying antirheumatic drugs. Clin Rheumatol. 2010;29(4):399–403.

    Article  PubMed  Google Scholar 

  7. Fénix-Caballero S, Alegre-del Rey EJ, Castaño-Lara R, Puigventós-Latorre F, Borrero-Rubio JM, López-Vallejo JF. Direct and indirect comparison of the efficacy and safety of adalimumab, etanercept, infliximab and golimumab in psoriatic arthritis. J Clin Pharm Ther. 2013;38(4):286–93.

    Article  PubMed  Google Scholar 

  8. Gomez-Reino JJ, Carmona L, BIOBADASER Group. Switching TNFα antagonists in patients with chronic arthritis: an observational study of 488 patients over a four-year period. Arthritis Res Ther. 2006;8(1):R29.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Collamer AN, Guerrero KT, Henning JS, Battafarano DF. Psoriatic skin lesions induced by tumor necrosis factor antagonist therapy: a literature review and potential mechanisms of action. Arthritis Rheum. 2008;59(7):996–1001.

    Article  CAS  PubMed  Google Scholar 

  10. Dörner T, Kay J. Biosimilars in rheumatology: current perspectives and lessons learnt. Nat Rev Rheumatol. 2015;11(12):713–24.

    Article  PubMed  Google Scholar 

  11. Smith JA, Colbert RA. Review: the interleukin-23/interleukin-17 axis in spondyloarthritis pathogenesis: Th17 and beyond. Arthritis Rheumatol. 2014;66(2):231–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Spadaro A, Montepaone M, Lubrano E. A novel biological target for the treatment of psoriatic arthritis. Immunotherapy. 2014;6(5):515–8.

    Article  CAS  PubMed  Google Scholar 

  13. Trinchieri G. Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat Rev Immunol. 2003;3(2):133–46.

    Article  CAS  PubMed  Google Scholar 

  14. Oppmann B, Lesley R, Blom B, et al. Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity. 2000;13(5):715–25.

    Article  CAS  PubMed  Google Scholar 

  15. Cargill M, Schrodi SJ, Chang M, et al. A large-scale genetic association study confirms IL12B and leads to the identification of IL23R as psoriasis-risk genes. Am J Hum Genet. 2007;80:273–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Barnas JL, Ritchlin CT. Etiology and pathogenesis of psoriatic arthritis. Rheum Dis Clin North Am. 2015;41(4):643–63.

    Article  PubMed  Google Scholar 

  17. Di Cesare A, Di Meglio P, Nestle FO. The IL-23/Th17 axis in the immunopathogenesis of psoriasis. J Invest Dermatol. 2009;129(6):1339–50.

    Article  PubMed  Google Scholar 

  18. Jandus C, Bioley G, Rivals JP, Dudler J, Speiser D, Romero P. Increased numbers of circulating polyfunctional Th17 memory cells in patients with seronegative spondylarthritides. Arthritis Rheum. 2008;58:2307–17.

    Article  PubMed  Google Scholar 

  19. Lee Y. The role of interleukin-17 in bone metabolism and inflammatory skeletal diseases. BMB Rep. 2013;46(10):479–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Toichi E, Torres G, McCormick TS, et al. An anti-IL-12p40 antibody down-regulates type 1 cytokines, chemokines, and IL-12/IL-23 in psoriasis. J Immunol. 2006;1177(7):4917–26.

    Article  Google Scholar 

  21. Davari P, Leo MS, Kamangar F, Fazel N. Ustekinumab for the treatment of psoriatic arthritis: an update. Clin Cosmet Investig Dermatol. 2014;7:243–9.

    PubMed  PubMed Central  Google Scholar 

  22. Griffiths CE, Strober BE, van de Kerkhof P, ACCEPT Study Group, et al. Comparison of ustekinumab and etanercept for moderate-to-severe psoriasis. N Engl J Med. 2010;362(2):118–28.

    Article  CAS  PubMed  Google Scholar 

  23. McInnes IB, Kavanaugh A, Gottlieb AB, et al. PSUMMIT 1 Study Group. Efficacy and safety of ustekinumab in patients with active psoriatic arthritis: 1 year results of the phase 3, multicentre, double-blind, placebo-controlled PSUMMIT 1 trial. Lancet. 2013;382(9894):780–9.

    Article  CAS  PubMed  Google Scholar 

  24. Ritchlin C, Rahman P, Kavanaugh A, PSUMMIT 2 Study Group, et al. Efficacy and safety of the anti-IL-12/23 p40 monoclonal antibody, ustekinumab, in patients with active psoriatic arthritis despite conventional non-biological and biological anti-tumour necrosis factor therapy: 6-month and 1-year results of the phase 3, multicentre, double-blind, placebo controlled, randomized PSUMMIT 2 trial. Ann Rheum Dis. 2014;73(6):990–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Papp K, Gottlieb AB, Naldi L, et al. Safety Surveillance for Ustekinumab and Other Psoriasis Treatments From the Psoriasis Longitudinal Assessment and Registry (PSOLAR). J Drugs Dermatol. 2015;14(7):706–14.

    CAS  PubMed  Google Scholar 

  26. Kavanaugh A, Ritchlin C, Rahman P, PSUMMIT-1 and 2 Study Groups, et al. Ustekinumab, an anti-IL-12/23 p40 monoclonal antibody, inhibits radiographic progression in patients with active psoriatic arthritis: results of an integrated analysis of radiographic data from the phase 3, multicentre, randomised, double-blind, placebo-controlled PSUMMIT-1 and PSUMMIT-2 trials. Ann Rheum Dis. 2014;73(6):1000–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kavanaugh A, Puig L, Gottlieb AB, PSUMMIT I Study Group, et al. Maintenance of clinical efficacy and radiographic benefit through 2 years of ustekinumab therapy in patients with active psoriatic arthritis: results from the PSUMMIT 1 trial. Arthritis Care Res Hoboken. 2015;19:26097039 (Epub ahead of print).

    Google Scholar 

  28. Gordon KB, Langley RG, Gottlieb AB, et al. A phase III, randomized, controlled trial of the fully human IL-12/23 mAb briakinumab in moderate-to-severe psoriasis. J Invest Dermatol. 2012;132(2):304–14.

    Article  CAS  PubMed  Google Scholar 

  29. McInnes IB, Mease PJ, Kirkham B, FUTURE 2 Study Group, et al. Secukinumab, a human anti-interleukin-17A monoclonal antibody, in patients with psoriatic arthritis (FUTURE 2): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2015;386(9999):1137–4630.

    Article  CAS  PubMed  Google Scholar 

  30. Mease PJ, McInnes IB, Kirkham B, FUTURE 1 Study Group, et al. Secukinumab inhibition of interleukin-17A in patients with psoriatic arthritis. N Engl J Med. 2015;373(14):1329–39.

    Article  CAS  PubMed  Google Scholar 

  31. Gossec L, Smolen JS, Ramiro S, et al. European League Against Rheumatism (EULAR) recommendations for the management of psoriatic arthritis with pharmacological therapies: 2015 update. Ann Rheum Dis. 2016;75(3):499–510.

    Article  CAS  PubMed  Google Scholar 

  32. Coates LC, Kavanaugh A, Mease PJ, et al. Group for research and assessment of psoriasis and psoriatic arthritis: treatment recommendations for psoriatic arthritis 2015. Arthritis Rheumatol. 2016. doi:10.1002/art.39573.

  33. Papp KA, Leonardi C, Menter A, et al. Brodalumab, an anti–interleukin-17-receptor antibody for psoriasis. N Engl J Med. 2012;366:1181–9.

    Article  CAS  PubMed  Google Scholar 

  34. Mease PJ, Genovese MC, Greenwald MW, et al. Brodalumab, an anti-IL17RA monoclonal antibody, in psoriatic arthritis. N Engl J Med. 2014;370(24):2295–306.

    Article  PubMed  Google Scholar 

  35. Leonardi C, Matheson R, Zachariae C, et al. Anti-interleukin-17 monoclonal antibody ixekizumab in chronic plaque psoriasis. N Engl J Med. 2012;366:1190–9.

    Article  CAS  PubMed  Google Scholar 

  36. Conti M, Beavo J. Biochemistry and physiology of cyclic nucleotide phosphodiesterases: essential components in cyclic nucleotide signaling. Annu Rev Biochem. 2007;76:481–511.

    Article  CAS  PubMed  Google Scholar 

  37. Houslay MD, Adams DR. PDE4 cAMP phosphodiesterases: modular enzymes that orchestrate signalling cross-talk, desensitization and compartmentalization. Biochem J. 2003;370(1):1–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Houslay MD, Schafer P, Zhang KY. Keynote review: phosphodiesterase-4 as a therapeutic target. Drug Discov Today. 2005;10(22):1503–19.

    Article  CAS  PubMed  Google Scholar 

  39. Jin SL, Ding SL, Lin SC. Phosphodiesterase 4 and its inhibitors in inflammatory diseases. Chang Gung Med J. 2012;35(3):197–210.

    PubMed  Google Scholar 

  40. Jimenez JL, Punzón C, Navarro J, Muñoz-Fernández MA, Fresno M. Phosphodiesterase 4 inhibitors prevent cytokine secretion by T lymphocytes by inhibiting nuclear factor-kappaB and nuclear factor of activated T cells activation. J Pharmacol Exp Ther. 2001;299(2):753–9.

    CAS  PubMed  Google Scholar 

  41. Schett G, Sloan VS, Stevens RM, Schafer P. Apremilast: a novel PDE4 inhibitor in the treatment of autoimmune and inflammatory diseases. Ther Adv Musculoskelet Dis. 2010;2(5):271–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Liu J, Chen M, Wang X. Calcitonin gene-related peptide inhibits lipopolysaccharide-induced interleukin-12 release from mouse peritoneal macrophages, mediated by the cAMP pathway. Immunology. 2000;101(1):61–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Schafer PH, Parton A, Gandhi AK, et al. Apremilast, a cAMP phosphodiesterase-4 inhibitor, demonstrates anti-inflammatory activity in vitro and in a model of psoriasis. Br J Pharmacol. 2010;159(4):842–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Papp K, Reich K, Leonardi CL, et al. Apremilast, an oral phosphodiesterase 4 (PDE4) inhibitor, in patients with moderate to severe plaque psoriasis: results of a phase III, randomized, controlled trial (Efficacy and Safety Trial Evaluating the Effects of Apremilast in Psoriasis [ESTEEM] 1). J Am Acad Dermatol. 2015;73(1):37–49.

    Article  CAS  PubMed  Google Scholar 

  45. Paul C, Cather J, Gooderham M, et al. Efficacy and safety of apremilast, an oral phosphodiesterase 4 inhibitor, in patients with moderate to severe plaque psoriasis over 52 weeks: a phase III, randomized, controlled trial (ESTEEM 2). Br J Dermatol. 2015 (Epub ahead of print).

  46. Kavanaugh A, Mease PJ, Gomez-Reino JJ, et al. Treatment of psoriatic arthritis in a phase 3 randomised, placebo-controlled trial with apremilast, an oral phosphodiesterase 4 inhibitor. Ann Rheum Dis. 2014;73(6):1020–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kavanaugh A, Mease PJ, Gomez-Reino JJ, et al. Longterm (52-week) results of a phase III randomized, controlled trial of apremilast in patients with psoriatic arthritis. J Rheumatol. 2015;42(3):479–88.

    Article  CAS  PubMed  Google Scholar 

  48. Ungprasert P, Thongprayoon C, Davis JM 3rd. Indirect comparisons of the efficacy of subsequent biological agents in patients with psoriatic arthritis with an inadequate response to tumor necrosis factor inhibitors: a meta-analysis. Clin Rheumatol. 2016 (Epub ahead of print).

  49. Mease PJ. Psoriatic arthritis treatment update. Bull NYU Hosp Joint Dis. 2012;70:167–71.

    Google Scholar 

  50. Cohen JD. Successful treatment of psoriatic arthritis with rituximab. Ann Rheum Dis. 2008;67(11):1647–8.

    Article  CAS  PubMed  Google Scholar 

  51. Sarzi-Puttini P, Atzeni F. New biological treatments for psoriatic arthritis. Isr Med Assoc J. 2014;16(10):643–5.

    PubMed  Google Scholar 

  52. Ogata A, Kumanogoh A, Tanaka T. Pathological role of interleukin-6 in psoriatic arthritis. Arthritis. 2012;2012:713618.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Mease PJ, Gottlieb AB, Berman A et al. A phase IIb, randomized, double-blind, placebo-controlled, dose-ranging, multicenter study to evaluate the efficacy and safety of clazakizumab, an anti-IL-6 monoclonal antibody, in adults with active psoriatic arthritis. ACR/ARHP 2014 Annual Meeting. Abstract Number: 952.

  54. Shetty A, Hanson R, Korsten P, et al. Tocilizumab in the treatment of rheumatoid arthritis and beyond. Drug Des Devel Ther. 2014;8:349–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Murakami M, Nishimoto N. The value of blocking IL-6 outside of rheumatoid arthritis: current perspective. Curr Opin Rheumatol. 2011;23(3):273–7.

    Article  CAS  PubMed  Google Scholar 

  56. Nishimoto N. Clinical studies in patients with Castleman’s disease, Crohn’s disease, and rheumatoid arthritis in Japan. Clin Rev Allergy Immunol. 2005;28(3):221–30.

    Article  CAS  PubMed  Google Scholar 

  57. Ogata A, Umegaki N, Katayama I, Kumanogoh A, Tanaka T. Psoriatic arthritis in two patients with an inadequate response to treatment with tocilizumab. Joint Bone Spine. 2012;79(1):85–7.

    Article  PubMed  Google Scholar 

  58. Sieper J, Porter-Brown B, Thompson L, Harari O, Dougados M. Assessment of short-term symptomatic efficacy of tocilizumab in ankylosing spondylitis: results of randomised, placebo-controlled trials. Ann Rheum Dis. 2014;3(1):95–100.

    Article  Google Scholar 

  59. Lekpa FK, Poulain C, Wendling D, Club Rhumatismes et Inflammation, et al. Is IL-6 an appropriate target to treat spondyloarthritis patients refractory to anti-TNF therapy? A multicenter retrospective observational study. Arthritis Res Ther. 2012;14(2):R53.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Pieper J, Herrath J, Raghavan S, Muhammad K, Vollenhoven Rv, Malmström V. CTLA4-Ig (abatacept) therapy modulates T cell effector functions in autoantibody-positive rheumatoid arthritis patients. BMC Immunol. 2013;14:34.

    Article  PubMed  PubMed Central  Google Scholar 

  61. VicenteRabaneda EF, Herrero-Beaumont G, Castañeda S. Update on the use of abatacept for the treatment of rheumatoid arthritis. Expert Rev Clin Immunol. 2013;9(7):599–621.

    Article  CAS  Google Scholar 

  62. Mease P, Genovese MC, Gladstein G, et al. Abatacept in the treatment of patients with psoriatic arthritis: results of a six-month, multicenter, randomized, double-blind, placebo-controlled, phase II trial. Arthritis Rheum. 2011;63(4):939–48.

    Article  CAS  PubMed  Google Scholar 

  63. Ghoreschi K, Laurence A, O’She J. Janus kinases in immune cell signaling. Immunol Rev. 2009;228:273–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Eriksen KW, Lovato P, Skov L, et al. Increased sensitivity to interferon-alpha in psoriatic T cells. J Invest Dermatol. 2005;125(5):936–44.

    Article  CAS  PubMed  Google Scholar 

  65. Rácz E, Prens EP, Kurek D, et al. Effective treatment of psoriasis with narrow-band UVB phototherapy is linked to suppression of the IFN and Th17 pathways. J Invest Dermatol. 2011;131(7):1547–58.

    Article  PubMed  Google Scholar 

  66. Kontzias A, Kotlyar A, Laurence A, Changelian P, O’Shea JJ. Jakinibs: a new class of kinase inhibitors in cancer and autoimmune disease. Curr Opin Pharmacol. 2012;12(4):464–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Burmester GR, Blanco R, Charles-Schoeman C, ORAL Step investigators, et al. Tofacitinib (CP-690,550) in combination with methotrexate in patients with active rheumatoid arthritis with an inadequate response to tumour necrosis factor inhibitors: a randomised phase 3 trial. Lancet. 2013;381(9865):451–60.

    Article  CAS  PubMed  Google Scholar 

  68. Lubrano E, Perrotta FM, Marchesoni A, et al. Remission in non radiographic axial spondyloarthritis treated with anti-tumor necrosis factor-α drugs: an Italian multicenter study. J Rheumatol. 2015;42:258–63.

    Article  CAS  PubMed  Google Scholar 

  69. Spadaro A, Lubrano E, Marchesoni A, et al. Remission in ankylosing spondylitis treated with anti-TNF-α drugs: a national multicentre study. Rheumatology (Oxford). 2013;52:1914–9.

    Article  CAS  PubMed  Google Scholar 

  70. Lubrano E, Perrotta FM, Kavanaugh A. An overview of low disease activity and remission in psoriatic arthritis. Clin Exp Rheumatol. 2015;33(5):51–4.

    Google Scholar 

  71. Lubrano E, Soriano E, FitzGerald O. Can traditional disease-modifying anti-rheumatic drugs be withdrawn or tapered in psoriatic arthritis? Clin Exp Rheumatol. 2013;31:S54–8.

    PubMed  Google Scholar 

  72. Antoni CE, Kavanaugh A, Kirkham B, et al. Sustained benefits of infliximab therapy for dermatologic and articular manifestations of psoriatic arthritis: results from the infliximab multinational psoriatic arthritis controlled trial (IMPACT). Arthritis Rheum. 2005;52(4):1227–36.

    Article  CAS  PubMed  Google Scholar 

  73. Mease PJ, Kivitz AJ, Burch FX, et al. Etanercept treatment of psoriatic arthritis: safety, efficacy, and effect on disease progression. Arthritis Rheum. 2004;50(7):2264–72.

    Article  CAS  PubMed  Google Scholar 

  74. Mease PJ, Gladman DD, Ritchlin CT, Adalimumab Effectiveness in Psoriatic Arthritis Trial Study Group, et al. Adalimumab for the treatment of patients with moderately to severely active psoriatic arthritis: results of a double-blind, randomized, placebo-controlled trial. Arthritis Rheum. 2005;52(10):3279–89.

    Article  CAS  PubMed  Google Scholar 

  75. Kavanaugh A, McInnes I, Mease P, et al. Golimumab, a new human tumor necrosis factor alpha antibody, administered every four weeks as a subcutaneous injection in psoriatic arthritis: twenty-four-week efficacy and safety results of a randomized, placebo-controlled study. Arthritis Rheum. 2009;60(4):976–86.

    Article  CAS  PubMed  Google Scholar 

  76. Mease PJ, Fleischmann R, Deodhar AA, et al. Effect of certolizumab pegol on signs and symptoms in patients with psoriatic arthritis: 24-week results of a Phase 3 double-blind randomised placebo-controlled study (RAPID-PsA). Ann Rheum Dis. 2014;73(1):48–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Maska L, Anderson J, Michaud K. Measures of functional status and quality of life in rheumatoid arthritis: Health Assessment Questionnaire Disability Index (HAQ), Modified Health Assessment Questionnaire (MHAQ), Multidimensional Health Assessment Questionnaire (MDHAQ), Health Assessment Questionnaire II (HAQ-II), Improved Health Assessment Questionnaire (Improved HAQ), and Rheumatoid Arthritis Quality of Life (RAQoL). Arthritis Care Res (Hoboken). 2011;63(11):S4–13.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ennio Lubrano.

Ethics declarations

Dr. Ennio Lubrano has received fees or honoraria from Pfizer, Abbvie, and MSD for attending conferences and advisory boards. Dr. Fabio Massimo Perrotta has received fees from Abbvie and MSD for attending conferences.

Funding

The authors declare that no funding was received to conduct the study described in the manuscript, or used to assist with the preparation of the manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lubrano, E., Perrotta, F.M. Beyond TNF Inhibitors: New Pathways and Emerging Treatments for Psoriatic Arthritis. Drugs 76, 663–673 (2016). https://doi.org/10.1007/s40265-016-0557-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40265-016-0557-4

Keywords

Navigation