Skip to main content

Advertisement

Log in

Prevalence of sarcopenia among healthy ambulatory subjects: the sarcopenia begins from 45 years

  • Original Article
  • Published:
Aging Clinical and Experimental Research Aims and scope Submit manuscript

Abstract

Background and aims

Sarcopenia has been indicated as a reliable marker of frailty and poor prognosis among the oldest individuals. There are only few data on sarcopenia in healthy general population. We evaluated the prevalence of sarcopenia and its association with functional and clinical status in a population of healthy ambulatory subjects over 45 years living at home, in Paris (France).

Methods

This study was conducted selecting all ambulatory participants (n = 1,445) aged 45 years and older from October 2008 to September 2011, consulting in the Institute of Physiology (Institut de Jaeger) from Paris (France) for a functional and muscular evaluation, and did not have limitations to moderate physical exercise. All were healthy people. All subjects performed a medical examination, associated with evaluation of muscle mass (body composition assessment using dual-energy X-ray absorptiometry) and of muscle function (by hand grip strength). Diagnosis of sarcopenia required the documentation of low muscle mass with low muscle strength according to the current international consensus definition of sarcopenia.

Results

From 1,421 participants (553 males and 868 females) definitively enrolled, 221 subjects (135 females and 86 males) (15.5 %) were identified as sarcopenic. Results from multivariate logistic regression models showed that sarcopenia was inversely associated with BMI with those participants with BMI higher than 22 kg/m2 showing a lower risk of sarcopenia relative to those with BMI less than 21 kg/m2 (OR 0.72; 95 % CI 0.60–0.91). Similarly, probability of sarcopenia was lower among subjects involved in leisure physical activities for 3 h or more per week (OR 0.45; 95 % CI 0.24–0.93). According to the category of age [45–54; 55–64; 65–74; 75–84 and 85 years or more], the prevalence of sarcopenia in women increase from 9.1; 12.7; 14.5; 19.4; to 33.3 %, respectively. For the men, the percentage of sarcopenia increase with aging from 8.6; 15.6; 13.6; 63.8 to 45.5 %, respectively.

Conclusions

The present study suggests that among healthy ambulatory subjects over 45 years living at home, sarcopenia is frequent, even to the youngest subjects of the studied population, taking place from 9 % from 45 years, until 64.3 % for the subjects over 85 years. Our findings support the hypothesis that muscle mass and function are associated with BMI and physical activity, whatever the age of the subject.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Rosenberg I (1989) Summary comments: epidemiological and methodological problems in determining nutritional status of older persons. Am J Clin Nutr 50:1231–1233

    Google Scholar 

  2. Rosenberg IH (1997) Sarcopenia: origins and clinical relevance. J Nutr 127:990S–991S

    CAS  PubMed  Google Scholar 

  3. Morley JE, Baumgartner RN, Roubenoff R et al (2001) Sarcopenia. J Lab Clin Med 137:231–243

    Article  CAS  PubMed  Google Scholar 

  4. Cruz-Jentoft AJ, Landi F, Topinková E, Michel JP (2010) Understanding sarcopenia as a geriatric syndrome. Curr Opin Clin Nutr Metab Care. 13:1–7

    Article  PubMed  Google Scholar 

  5. Morley JE, Kim MJ, Haren MT, Kevorkian R, Banks WA (2005) Frailty and the aging male. Aging Male. 8:135–140

    Article  CAS  PubMed  Google Scholar 

  6. Morley JE (2008) Sarcopenia: diagnosis and treatment. J Nutr Health Aging. 12:452–456

    Article  CAS  PubMed  Google Scholar 

  7. Baumgartner RN, Koehler KM, Gallagher D et al (1998) Epidemiology of sarcopenia among the elderly in New Mexico. Am J Epidemiol 147:755–763

    Article  CAS  PubMed  Google Scholar 

  8. Abellan van Kan G (2009) Epidemiology and consequences of sarcopenia. J Nutr Health Aging 13:708–712

    Article  CAS  PubMed  Google Scholar 

  9. Blake GM, Fogelman I (2010) An update on dual-energy X-ray absorptiometry. Semin Nucl Med 40:62–73

    Article  PubMed  Google Scholar 

  10. Guralnik JM, Simonsick EM, Ferrucci L, Glynn RJ, Berkman LF, Blazer DG et al (1994) A short physical performance battery assessing lower extremity function: association with self-reported disability and prediction of mortality and nursing home admission. J Gerontol. 49:M85–M94

    Article  CAS  PubMed  Google Scholar 

  11. Buchner DM, Larson EB, Wagner EH, Koepsell TD, de Lateur BJ (1996) Evidence for a non-linear relationship between leg strength and gait speed. Age Ageing 25:386–391

    Article  CAS  PubMed  Google Scholar 

  12. Podsiadlo D, Richardson S (1991) The timed “up & go”: a test of basic functional mobility for frail elderly persons. J Am Geriatr Soc 39:142–148

    CAS  PubMed  Google Scholar 

  13. Bean JF, Kiely DK, LaRose S, Alian J, Frontera WR (2007) Is stair climb power a clinically relevant measure of leg power impairments in at-risk older adults? Arch Phys Med Rehabil 88:604–609

    Article  PubMed  Google Scholar 

  14. Patil R, Uusi-Rasi K, Pasanen M, Kannus P, Karinkanta S, Sievänen H (2012) Sarcopenia and osteopenia among 70–80-year-old home-dwelling Finnish women: prevalence and association with functional performance. Osteoporos Int (Epub ahead of print)

  15. Fielding RA, Vellas B, Evans WJ, Bhasin S, Morley JE, Newman AB, Abellan van Kan G, Andrieu S, Bauer J, Breuille D, Cederholm T, Chandler J, De Meynard C, Donini L, Harris T, Kannt A, Keime Guibert F, Onder G, Papanicolaou D, Rolland Y, Rooks D, Sieber C, Souhami E, Verlaan S, Zamboni M (2011) Sarcopenia: an undiagnosed condition in older adults. Current consensus definition: prevalence, etiology, and consequences. International working group on sarcopenia. J Am Med Dir Assoc 12:249–256

    Article  PubMed  Google Scholar 

  16. Cruz-Jentoft AJ, Baeyens JP, Bauer JM, European Working Group on Sarcopenia in Older People et al (2010) Sarcopenia: European con-sensus on definition and diagnosis: report of the European Working Group on Sarcopenia in Older People. Age Ageing 39:412–423

    Article  PubMed Central  PubMed  Google Scholar 

  17. Lohman TG, Roche AF, Martorell R (eds) (1988) Anthropometric standardization reference manual. Human Kinetics Inc., Champaign

    Google Scholar 

  18. Heymsfield SB, Smith R, Aulet M et al (1990) Appendicular skeletal muscle mass: measurement by dual-photon absorptiometry. Am J Clin Nutr 52:214–218

    CAS  PubMed  Google Scholar 

  19. Lauretani F, Russo CR, Bandinelli S, Bartali B, Cavazzini C, Di Iorio A et al (2003) Age-associated changes in skeletal muscles and their effect on mobility: an operational diagnosis of sarcopenia. J Appl Physiol 95:1851–1860

    PubMed  Google Scholar 

  20. Lukaski HC, Johnson PE, Bolonchuk WW et al (1985) Assessment of fat-free mass using bioelectrical impedance measurements of the human body. Am J Clin Nutr 41:810–817

    CAS  PubMed  Google Scholar 

  21. Janssen I, Heymsfield SB, Baumgartner RN et al (2000) Estimation of skeletal muscle mass by bioelectrical impedance analysis. J Appl Physiol 89:465–471

    CAS  PubMed  Google Scholar 

  22. Janssen I, Baumgartner RN, Ross R, Rosenberg IH, Roubenoff R (2004) Skeletal muscle cutpoints associated with elevated physical disability risk in older men and women. Am J Epidemiol 159:413–421

    Article  PubMed  Google Scholar 

  23. Gallagher D, Visser M, De Meersman RE et al (1997) Appendicular skeletal muscle mass: effects of age, gender, and ethnicity. J Appl Physiol 83:229–239

    CAS  PubMed  Google Scholar 

  24. Newman A, Kupelian V, Visser M et al (2003) Sarcopenia: alternative definitions and association with lower extremity function. J Am Geriatr Soc 51:1602–1609

    Article  PubMed  Google Scholar 

  25. Delmonico MJ, Harris TB, Lee JS et al (2007) Alternative definitions of sarcopenia, lower extremity performance, and functional impairment with aging in older men and women. J Am Geriatr Soc 55:769–774

    Article  PubMed  Google Scholar 

  26. Chien MY, Huang TY, Wu YT (2008) Prevalence of sarcopenia estimated using a bioelectrical impedance analysis prediction equation in community-dwelling elderly people in Taiwan. J Am Geriatr Soc 56:1710–1715

    Article  PubMed  Google Scholar 

  27. Janssen I, Heymsfield SB, Ross R (2002) Low relative skeletal muscle mass (sarcopenia) in older persons is associated with functional impairment and physical disability. J Am Geriatr Soc 50:889–896

    Article  PubMed  Google Scholar 

  28. Janssen I (2006) Influence of sarcopenia on the development of physical disability: the cardiovascular health study. J Am Geriatr Soc 54:56–62

    Article  PubMed  Google Scholar 

  29. Rolland Y, Lauwers-Cances V, Cournot M, Nourhashémi F, Reynish W, Rivière D et al (2003) Sarcopenia, calf circumference, and physical function of elderly women: a cross-sectional study. J Am Geriatr Soc 51:1120–1124

    Article  PubMed  Google Scholar 

  30. Hwang B, Lim JY, Lee J, Choi JK, Ahn YO, Park BJ (2012) Prevalence rate and associated factors of sarcopenic obesity in Korean elderly population. J Korean Med Sci 27:748–755

    Article  PubMed Central  PubMed  Google Scholar 

  31. Reid KF, Naumova EN, Carabello RJ et al (2008) Lower extremity muscle mass predicts functional performance in mobility-limited elders. J Nutr Health Aging 12:493–498

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Rivas DA, Fielding RA (2011) Sarcopenia and other chronic conditions. In: Lynch GS (ed) Sarcopenia—age-related muscle wasting and weakness. Springer, Berlin

  33. Dufour AB, Hannan MT, Murabito JM, Kiel DP, McLean RR (2013) Sarcopenia definitions considering body size and fat mass are associated with mobility limitations: the Framingham study. J Gerontol A Biol Sci Med Sci 68(2):168–174

    Google Scholar 

  34. Li Z, Heber D (2012) Sarcopenic obesity in the elderly and strategies for weight management. Nutr Rev 70:57–64

    Article  CAS  PubMed  Google Scholar 

  35. Waters DL, Baumgartner RN (2011) Sarcopenia and obesity. Clin Geriatr Med 27:401–421

    Article  PubMed  Google Scholar 

  36. Rantanen T, Harris T, Leveille SG, Visser M, Foley D, Masaki K, Guralnik JM (2000) Muscle strength and body mass index as long-term predictors of mortality in initially healthy men. J Gerontol A Biol Sci Med Sci 55(3):M168–M173

    Article  CAS  PubMed  Google Scholar 

  37. Kimyagarov S, Klid R, Levenkrohn S, Fleissig Y, Kopel B, Arad M, Adunsky A (2010) Body mass index (BMI), body composition and mortality of nursing home elderly subjects. Arch Gerontol Geriatr 51:227–230

    Article  PubMed  Google Scholar 

  38. Janssen I, Shepard DS, Katzmarzyk PT, Roubenoff R (2004) The healthcare costs of sarcopenia in the United States. J Am Geriatr Soc 52:80–85

    Article  PubMed  Google Scholar 

  39. Ray NF, Chan JK, Thamer M, Melton LJ 3rd (1997) Medical expenditures for the treatment of osteoporotic fractures in the United States in 1995: report from the National Osteoporosis Foundation. J Bone Miner Res 12:24–35

    Article  CAS  PubMed  Google Scholar 

  40. Marcell TJ (2003) Sarcopenia: causes, consequences, and preventions. J Gerontol 58:M911–M916

    Article  Google Scholar 

  41. Alliance for Aging Research. The Silver Book: chronic disease and medical innovation in an Aging Nation. http://silverbook.org/fact/31. Accessed 29 Sept 2011

  42. Bunout D, de la Maza MP, Barrera G, Leiva L, Gattas V, Hirsch S (2007) Assessment of sarcopenia: longitudinal versus cross sectional body composition data. Aging Clin Exp Res. 19:295–299

    Article  PubMed  Google Scholar 

  43. Zamboni M, Zoico E, Scartezzini T, Mazzali G, Tosoni P, Zivelonghi A, Gallagher D, De Pergola G, Di Francesco V, Bosello O (2003) Body composition changes in stable-weight elderly subjects: the effect of sex. Aging Clin Exp Res. 15:321–327

    Article  PubMed  Google Scholar 

  44. Tengvall M, Ellegård L, Malmros V, Bosaeus N, Lissner L, Bosaeus I (2009) Body composition in the elderly: reference values and bioelectrical impedance spectroscopy to predict total body skeletal muscle mass. Clin Nutr. 28:52–58

    Article  PubMed  Google Scholar 

  45. Sayer AA, Dennison EM, Syddall HE, Jameson K, Martin HJ, Cooper C (2008) The developmental origins of sarcopenia: using peripheral quantitative computed tomography to assess muscle size in older people. J Gerontol A Biol Sci Med Sci 63:835–840

    Article  PubMed Central  PubMed  Google Scholar 

  46. Kyle UG, Genton L, Karsegard L et al (2001) Single prediction equation for bioelectrical impedance analysis in adults aged 20–94 years. Nutrition. 17:248–253

    Article  CAS  PubMed  Google Scholar 

  47. Hicks GE, Shardell M, Alley DE, Miller RR, Bandinelli S, Guralnik J, Lauretani F, Simonsick EM, Ferrucci L (2012) Absolute strength and loss of strength as predictors of mobility decline in older adults: the InCHIANTI Study. J Gerontol A Biol Sci Med Sci 67:66–73

    Article  PubMed  Google Scholar 

  48. Al Snih S, Markides K, Ottenbacher K et al (2004) Hand grip strength and incident ADL disability in elderly Mexican Americans over a seven-year period. Aging Clin Exp Res 16:481–486

    Article  PubMed  Google Scholar 

  49. Rantanen T, Guralnik JM, Foley D, Masaki K, Leveille S, Curb JD, White L (1999) Midlife hand grip strength as a predictor of old age disability. JAMA 281:558–560

    Article  CAS  PubMed  Google Scholar 

  50. Taekema DG, Gussekloo J, Maier AB, Westendorp RGJ, De Craen AJM (2010) Handgrip strength as a predictor of functional, psychological and social health. A prospective population-based study among the oldest old. Age Ageing 39:331–337

    Article  PubMed  Google Scholar 

  51. Landi F, Liperoti R, Fusco D, Mastropaolo S, Quattrociocchi D, Proia A, Russo A, Bernabei R, Onder G (2012) Prevalence and risk factors of sarcopenia among nursing home older residents. J Gerontol A Biol Sci Med Sci 67:48–55

    Article  PubMed  Google Scholar 

  52. Bauer JM, Kaiser MJ, Sieber CC (2008) Sarcopenia in nursing home residents. J Am Med Dir Assoc. 9:545–551

    Article  PubMed  Google Scholar 

  53. von Haehling S, Anker SD (2010) Cachexia as a major underestimated and unmet medical need: facts and numbers. J Cachexia Sarcopenia Muscle. 1:1–5

    Article  Google Scholar 

  54. Shaver HJ, Loper JA, Lutes RA (1980) Nutritional status of nursing home patients. J Parenter Enteral Nutr. 4:367–370

    Article  CAS  Google Scholar 

  55. Alhamdan AA (2004) Nutritional status of Saudi males living in the Riyadh nursing home. Asia Pac J Clin Nutr. 13:372–376

    PubMed  Google Scholar 

  56. Bahat G, Saka B, Tufan F, Akin S, Sivrikaya S, Yucel N, Erten N, Karan MA (2010) Prevalence of sarcopenia and its association with functional and nutritional status among male subjects in a nursing home in Turkey. Aging Male. 13:211–214

    Article  PubMed  Google Scholar 

  57. Masanes F, Culla A, Navarro-Gonzalez M, Navarro-Lopez M, Sacanella E, Torres B, Lopez-Soto A (2012) Prevalence of sarcopenia in healthy community-dwelling elderly in an urban area of Barcelona (Spain). J Nutr Health Aging. 16:184–187

    Article  CAS  PubMed  Google Scholar 

  58. Tichet J, Vol S, Goxe D, Salle A, Berrut G, Ritz P (2008) Prevalence of sarcopenia in the French senior population. J Nutr Health Aging. 12:202–206

    Article  CAS  PubMed  Google Scholar 

  59. Bastiaanse LP, Hilgenkamp TI, Echteld MA, Evenhuis HM (2012) Prevalence and associated factors of sarcopenia in older adults with intellectual disabilities. Res Dev Disabil 33:2004–2012

    Article  PubMed  Google Scholar 

  60. Reid KF, Callahan DM, Carabello RJ, Phillips EM, Frontera WR, Fielding RA (2008) Lower extremity power training in elderly subjects with mobility limitations: a randomized controlled trial. Aging Clin Exp Res. 20:337–343

    Article  PubMed Central  PubMed  Google Scholar 

  61. Abe T, Mitsukawa N, Thiebaud RS, Loenneke JP, Loftin M, Ogawa M (2012) Lower body site-specific sarcopenia and accelerometer-determined moderate and vigorous physical activity: the HIREGASAKI study. Aging Clin Exp Res. 24:657–662

    PubMed  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Cherin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cherin, P., Voronska, E., Fraoucene, N. et al. Prevalence of sarcopenia among healthy ambulatory subjects: the sarcopenia begins from 45 years. Aging Clin Exp Res 26, 137–146 (2014). https://doi.org/10.1007/s40520-013-0132-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40520-013-0132-8

Keywords

Navigation