Skip to main content
Log in

Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper – Excel-based tool using pair-wise correlations

  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

The stability of standard gene expression is an elementary prerequisite for internal standardisation of target gene expression data and many so called housekeeping genes with assumed stable expression can exhibit either up- or down-regulation under some experimental conditions. The developed, and herein presented, software called BestKeeper determines the best suited standards, out of ten candidates, and combines them into an index. The index can be compared with further ten target genes to decide, whether they are differentially expressed under an applied treatment. All data processing is based on crossing points. The BestKeeper software tool was validated on four housekeeping genes and 10 members of the somatotropic axis differentially expressed in bovine corpora lutea total RNA. The BestKeeper application and necessary information about data processing and handling can be downloaded on http://www.wzw.tum.de/gene-quantification/bestkeeper.html

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Chomczynski PA (1993) Reagent for single-step simultaneous isolation of RNA. BioTechniques 15: 532–536.

    Google Scholar 

  • Foss DL, Baarsch MJ, Murtaugh MP (1998) Regulation of hypoxanthine phosphoribosyltransferase, glyceraldehyde-3-phosphate dehydrogenase and beta-actin mRNA expression in porcine immune cells and tissues. Anim. Biotechnol. 9: 67–78.

    Google Scholar 

  • Liu W, Saint DA (2002) A new quantitative method of real time reverse transcription polymerase chain reaction assay based on simulation of polymerase chain reaction kinetics. Anal. Biochem. 302: 52–59.

    Google Scholar 

  • Livak KJ (1997 & 2001) ABI Prism 7700 Sequence Detection System User Bulletin #2 Relative Quantification of Gene Expression.

  • Muller PY, Janovjak H, Miserez R, Dobbie Z (2002) Processing of gene expression data generated by quantitative real-time RT-PCR. BioTechniques 32: 2–7.

    Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucl. Acids Res. 29: e45.

    Google Scholar 

  • Pfaffl MW, Hageleit M (2001) Validities of mRNA quantification using recombinant RNA and recombinant DNA external calibration curves in real-time RT-PCR. Biotechnol. Lett. 23: 275–282.

    Google Scholar 

  • Pfaffl MW, Horgan GW, Dempfle L (2002) Relative Expression Software Tool (REST©) for group wise comparison and statistical analysis of relative expression results in real-time PCR. Nucl. Acids Res. 30: e36.

    Google Scholar 

  • Pfaffl MW, Mircheva Georgieva T, Penchev Georgiev I, Ontsouka E, Hageleit M, Blum JW (2002) Real-time RT-PCR quantification of insulin-like growth factor (IGF)-1, IGF-1 receptor, IGF-2, IGF-2 receptor, insulin receptor, growth hormone receptor, IGF-binding proteins 1, 2 and 3 in the bovine species. Domest. Anim. Endocrinol. 22: 91–102.

    Google Scholar 

  • Rasmussen R (2001) Quantification on the LightCycler instrument. In: Meuer S, Wittwer C, Nakagawara K, eds. Rapid Cycle Real-Time PCR: Methods and Applications. Heidelberg: Springer-Verlag Press, pp. 21–34.

    Google Scholar 

  • Schmittgen TD, Zakrajsek BA (2000) Effect of experimental treatment on housekeeping gene expression: validation by real-time, quantitative RT-PCR. J. Biochem. Biophys. Meth. 46: 69–81.

    Google Scholar 

  • Schuchhardt J, Beule D, Malik A, Wolski E, Eickhoff H, Lehrach H, Herzel H (2000) Normalisation strategies for cDNA microarrays. Nucl. Acids Res. 28: e47.

    Google Scholar 

  • Serazin-Leroy V, Denis-Henriot D, Morot M, de Mazancourt P, Giudicelli Y (1998) Semi-quantitative RT-PCR for comparison of mRNAs in cells with different amounts of housekeeping gene transcripts. Mol. Cell. Probes 12: 283–291.

    Google Scholar 

  • Suzuki T, Higgins PJ, Crawford DR (2000) Control selection for RNA quantitation. BioTechniques 29: 332–337.

    Google Scholar 

  • Thellin O, Zorzi W, Lakaye B, De Borman B, Coumans B, Hennen G, Grisar T, Igout A, Heinen E (1999) Housekeeping genes as internal standards: use and limits. J. Biotechnol. 75: 291–295.

    Google Scholar 

  • Tichopad A, Dilger M, Schwarz G, Pfaffl MW (2003) Standardized determination of real-time PCR efficiency from a single reaction set-up. Nucl. Acids Res. 31: e122.

    Google Scholar 

  • Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalisation of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Gen. Biol. 3: 1–12.

    Google Scholar 

  • Wittwer CT, Ririe KM, Andrew RV, David DA, Gundry RA, Balis UJ (1997) The Light Cycler: a microvolume multisample fluorimeter with rapid temperature control. Biotechniques 22: 176–181.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pfaffl, M.W., Tichopad, A., Prgomet, C. et al. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper – Excel-based tool using pair-wise correlations. Biotechnology Letters 26, 509–515 (2004). https://doi.org/10.1023/B:BILE.0000019559.84305.47

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:BILE.0000019559.84305.47

Navigation