Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Differential RNA splicing predicts two distinct nerve growth factor precursors

Abstract

Nerve growth factor (NGF) has a crucial role in the development of sensory and sympathetic neurones1–6. However, although it can affect other neural cell types under certain experimental conditions7, no biological role has been convincingly demonstrated elsewhere in the nervous system. The 5′ end of the mouse NGF gene contains several relatively short exons8. The NGF messenger RNA contains two in-frame initiator methionine codons; the second precedes the signal peptide sequence. Studies of the translation of other eukaryotic mRNAs indicate that the first AUG is preferred, suggesting that the signal for secretion might be ambiguous. We have analysed the NGF mRNA species from various cell types, some of which (clonal myoblast and fibroblast cell lines) are known to secrete NGF9,10, to search for different NGF transcripts. One pathway of RNA splicing generates the transcript already described from a submaxillary gland complementary DNA clone11. We demonstrate here that there is another splicing pathway, leading to a shorter transcript that lacks the second exon. This short transcript is the major form in most other mouse tissues and in the tissues of several other species, but both transcripts are usually present. In the short transcript, the initiator methionine is immediately upstream from a signal peptide-like sequence whereas in the long transcript the first methionine is 62 amino acids upstream from the signal peptide-like sequences. This may result in a different cellular localization of the NGF or alter the biological activity of the NGF precursor.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Levi-Montalcini, R. & Angeletti, P. U. Pharmac. Rev. 18, 619–628 (1966).

    CAS  Google Scholar 

  2. Gorin, P. D. & Johnson, E. M. Proc. natn. Acad. Sci. U.S.A. 76, 5382–5386 (1979).

    Article  ADS  CAS  Google Scholar 

  3. Stockel, K., Schwab, M. E. & Thoenen, H. Brain Res. 99, 1–16 (1975).

    Article  CAS  Google Scholar 

  4. Banks, B. E. C. et al. J. Physiol., Lond. 247, 289–298 (1975).

    Article  CAS  Google Scholar 

  5. Chun, L. L. Y. & Patterson, P. H. J. Cell Biol. 75, 694–704 (1975).

    Article  Google Scholar 

  6. Thoenen, H. & Barde, Y-A. Physiol. Rev. 60, 1284–1335 (1980).

    Article  CAS  Google Scholar 

  7. Mobley, W. C. et al. Science 229, 284–287 (1985).

    Article  ADS  CAS  Google Scholar 

  8. Ullrich, A. et al. Nature 303, 821–825 (1983).

    Article  ADS  CAS  Google Scholar 

  9. Murphy, R. A. et al. Proc. natn. Acad. Sci. U.S.A. 74, 4496–4500 (1977).

    Article  ADS  CAS  Google Scholar 

  10. Oger, J. O. et al. Proc. natn. Acad. Sci. U.S.A. 71, 1554–1558 (1974).

    Article  ADS  CAS  Google Scholar 

  11. Scott, J. et al. Nature 302, 538–540 (1983).

    Article  ADS  CAS  Google Scholar 

  12. Shelton, D. L. & Reichardt, L. F. Proc. natn. Acad. Sci. U.S.A. 81, 7951–7955 (1984).

    Article  ADS  CAS  Google Scholar 

  13. Harper, G. P. et al. Nature 279, 160–162 (1979).

    Article  ADS  CAS  Google Scholar 

  14. Herbert, E. et al. Cold Spring Harb. Symp. quant. Biol. 47, 375–384 (1983).

    Article  Google Scholar 

  15. Amara, S. G. et al. Nature 298, 240–244 (1982).

    Article  ADS  CAS  Google Scholar 

  16. Nawa, H., Kotani, H. & Nakanishi, S. Nature 312, 729–734 (1984).

    Article  ADS  CAS  Google Scholar 

  17. Falkenthal, S., Parker, V. P. & Davidson, N. Proc. natn. Acad. Sci. U.S.A. 82, 449–453 (1985).

    Article  ADS  CAS  Google Scholar 

  18. Medford, R. M. et al. Cell 38, 409–421 (1984).

    Article  CAS  Google Scholar 

  19. Mount, S. Nucleic Acids Res. 10, 459–472 (1982).

    Article  CAS  Google Scholar 

  20. Steitz, J. A. et al. Cold Spring Harb. Symp. quant. Biol. 47, 893–900 (1983).

    Article  Google Scholar 

  21. Mount, S. M. et al. Cell 33, 509–518 (1983).

    Article  CAS  Google Scholar 

  22. Kozak, M. Nucleic Acids Res. 9, 5233–5252 (1981).

    Article  CAS  Google Scholar 

  23. Darling, T. L. J. et al. Cold Spring Harb. Symp. quant. Biol. 48, 427–534 (1983).

    Article  CAS  Google Scholar 

  24. Rall, L. et al. Nature 313, 228–233 (1985).

    Article  ADS  CAS  Google Scholar 

  25. Lingappa, V. R. et al. Proc. natn. Acad. Sci. U.S.A. 75, 2338–2342 (1978).

    Article  ADS  CAS  Google Scholar 

  26. Early, P. et al. Cell 20, 313–319 (1980).

    Article  CAS  Google Scholar 

  27. Carlson, M. & Botstein, D. Cell 28, 145–154 (1982).

    Article  CAS  Google Scholar 

  28. Chirgwin, J. M. et al. Biochemistry 18, 5294–52?? (1979).

    Article  CAS  Google Scholar 

  29. Cathala, G. et al. DNA 2, 329–335 (1983).

    Article  CAS  Google Scholar 

  30. Aviv, H. & Leder, P. Proc. natn. Acad. Sci. U.S.A. 69, 1408–1412 (1972).

    Article  ADS  CAS  Google Scholar 

  31. Berk, A. J. & Sharp, P. A. Cell 12, 721–732 (1977).

    Article  CAS  Google Scholar 

  32. Hu, N. T. & Messing, J. Gene 17, 271–277 (1982).

    Article  CAS  Google Scholar 

  33. McKnight, S. L. & Kingsbury, R. Science 217, 316–324 (1982).

    Article  ADS  CAS  Google Scholar 

  34. Wallace, R. B. et al. Nucleic Acids Res. 9, 2647–2656 (1981).

    Article  Google Scholar 

  35. Okayama, H. & Berg, P. Molec. cell. Biol. 2, 161–170 (1982).

    Article  CAS  Google Scholar 

  36. Huynh, T. V., Young, R. A. & Davis, R. W. in DNA Cloning Techniques: A Practical Approach (ed. Glover, D.) pp. 49–78 (IRL Press, Oxford, 1984).

    Google Scholar 

  37. Sanger, F., Nicklen, S. & Coulson, A. R. Proc. natn. Acad. Sci. U.S.A. 74, 5463–5467 (1977).

    Article  ADS  CAS  Google Scholar 

  38. Krieg, P. A. & Melton, D. A. Nucleic Acids Res. 12, 7057–7070 (1984).

    Article  CAS  Google Scholar 

  39. Erickson, A. H. & Blobel, G. Meth. Enzym. 96, 38–50 (1983).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Edwards, R., Selby, M. & Rutter, W. Differential RNA splicing predicts two distinct nerve growth factor precursors. Nature 319, 784–787 (1986). https://doi.org/10.1038/319784a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/319784a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing