Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Crystal structure of the complex between human CD8αα and HLA-A2

Abstract

The dimeric cell-surface glycoprotein CD8 is crucial to the positive selection of cytotoxic T cells in the thymus1. The homodimer CD8αα or the heterodimer αβ stabilizes the interaction of the T-cell antigen receptor (TCR) with major histocompatibility complex (MHC) class I/peptide by binding to the class I molecule2. Here we report the crystal structure at 2.7Å resolution of a complex between CD8αα and the human MHC molecule HLA-A2, which is associated with peptide. CD8αα binds one HLA-A2/peptide molecule, interfacing with the α2 and α3 domains of HLA-A2 and also contacting β2-microglobulin. A flexible loop of the α3 domain (residues 223–229) is clamped between the complementarity-determining region (CDR)-like loops of the two CD8 subunits in the classic manner of an antibody–antigen interaction, precluding the binding of a second MHC molecule. The position of the α3 domain is different from that in uncomplexed HLA-A2 (refs 3, 4), being most similar to that in the TCR/Tax/HLA-A2 complex5, but no conformational change extends to the MHC/peptide surface presented for TCR recognition. Although these shifts in α3 may provide a synergistic modulation of affinity, the binding of CD8 to MHC is clearly consistent with an avidity-based contribution from CD8 to TCR–peptide–MHC interactions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The structure of the CD8αα/HLA-A2/peptide complex and the interaction surfaces.
Figure 2: Structural comparisons and models.

Similar content being viewed by others

References

  1. Zamoyska, R. The CD8 coreceptor revisited: one chain good, two chains better. Immunity 1, 243–246 (1994).

    Article  CAS  Google Scholar 

  2. Norment, A. M., Salter, R. D., Parham, P., Engelhard, V. H. & Littman, D. R. Cell–cell adhesion mediated by CD8 and MHC class I molecules. Nature 336, 79–81 (1988).

    Article  ADS  CAS  Google Scholar 

  3. Madden, D. R., Garboczi, D. N. & Wiley, D. C. The antigenic identity of peptide–MHC complexes: a comparison of the conformations of five viral peptides presented by HLA-A2. Cell 75, 693–708 (1993).

    Article  CAS  Google Scholar 

  4. Bjorkman, P. J. et al. Structure of the human class I histocompatibility antigen, HLA-A2. Nature 329, 506–512 (1987).

    Article  ADS  CAS  Google Scholar 

  5. Garboczi, D. N. et al. Structure of the complex between human T-cell receptor, viral peptide and HLA-A2. Nature 384, 134–141 (1996).

    Article  ADS  CAS  Google Scholar 

  6. Leahy, D. J., Axel, R. & Hendrickson, W. A. Crystal structure of a soluble form of the human T cell coreceptor CD8 at 2.6Å resolution. Cell 68, 1145–1162 (1992).

    Article  CAS  Google Scholar 

  7. Madden, D. R. The three-dimensional structure of peptide-MHC complexes. Annu. Rev. Immunol. 13, 587–622 (1995).

    Article  CAS  Google Scholar 

  8. Kirszbaum, L., Sharpe, J. A., Goss, N., Lahnstein, J. & Walker, I. D. The alpha-chain of murine CD8 lacks an invariant Ig-like disulfide bond but contains a unique intrachain loop instead. J. Immunol. 142, 3931–3936 (1989).

    CAS  PubMed  Google Scholar 

  9. Salter, R. D. et al. Polymorphism in the α3 domain of HLA-A molecules affects binding to CD8. Nature 338, 345–347 (1989).

    Article  ADS  CAS  Google Scholar 

  10. Salter, R. D. et al. Abinding site for the T-cell co-receptor CD8 on the α3 domain of HLA-A2. Nature 345, 41–46 (1990).

    Article  ADS  CAS  Google Scholar 

  11. Sun, J., Leahy, D. J. & Kavathas, P. B. Interaction between CD8 and major histocompatibility complex (MHC) class I mediated by multiple contact surface that include the alpha 2 and alpha 3 domains of MHC class I. J. Exp. Med. 182, 1275–1280 (1995).

    Article  CAS  Google Scholar 

  12. Wilson, I. A. & Stanfield, R. L. Antibody-antigen interaction: new structures and new conformational changes. Curr. Opin. Struct. Biol. 4, 857–867 (1994).

    Article  CAS  Google Scholar 

  13. Clackson, T. & Wells, J. A. Ahot spot of binding energy in a hormone-receptor interface. Science 267, 383–386 (1995).

    Article  ADS  CAS  Google Scholar 

  14. Garrett, T. P., Saper, M. A., Bjorkman, P. J., Strominger, J. L. & Wiley, D. C. Specificity pockets for the side chains of peptide antigens in HLA-Aw68. Nature 342, 692–696 (1989).

    Article  ADS  CAS  Google Scholar 

  15. Giblin, P. A., Leahy, D. J., Mennone, J. & Kavathas, P. B. The role of charge and multiple faces of the CD8 alpha/alpha homodimer in binding to major histocompatibility complex class I molecules: support for a bivalent model. Proc. Natl Acad. Sci. USA 91, 1716–1720 (1994).

    Article  ADS  CAS  Google Scholar 

  16. Luescher, I. F. et al. CD8 modulation of T-cell antigen receptor–ligand interactions on living cytotoxic T lymphocytes. Nature 373, 353–356 (1995).

    Article  ADS  CAS  Google Scholar 

  17. Wheeler, C. J., von Hoegen, P. & Parnes, J. R. An immunological role for the CD8 β-chain. Nature 357, 247–249 (1992).

    Article  ADS  CAS  Google Scholar 

  18. Garcia, K. C. et al. CD8 enhances formation of stable T-cell receptor./MHC class I molecule complexes. Nature 384, 577–581 (1996).

    Article  ADS  CAS  Google Scholar 

  19. Reid, S. W. et al. Production and crystallization of MHC class I B allele single peptide complexes. FEBS Lett. 383, 119–123 (1996).

    Article  CAS  Google Scholar 

  20. Otwinowski, Z. & Minor W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  21. Navaza, J. AMoRe: an automated package for molecular replacement. Acta Crystallogr. A 50, 157–163 (1994).

    Article  Google Scholar 

  22. Brünger, A. T. XPLOR Version 3.1: A System for X-ray Crystallography and NMR (Yale Univ. Press, New Haven, CT, (1992)).

    Google Scholar 

  23. Jones, T. A., Zou, J. Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  24. Kabsch, W. & Sander, C. Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22, 2577–2637 (1983).

    Article  CAS  Google Scholar 

  25. Kraulis, P. J. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  26. Merritt, E. A. & Murphy, M. E. P. Raster3D version 2.0. A program for photorealistic molecular graphics. Acta Crystallogr. D 50, 869–873 (1994).

    Article  CAS  Google Scholar 

  27. Smith, K. J. et al. Bound water structure and polymorphic amino acids act together to allow the binding of different peptides to MHC class I HLA-B53. Immunity 4, 215–228 (1996).

    Article  CAS  Google Scholar 

  28. Stuart, D. I., Levine, M., Muirhead, H. & Stammers, D. K. The crystal structure of cat pyruvate kinase at a resolution of 2.6Å. J. Mol. Biol. 134, 109–142 (1979).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to the late Alan Williams for discussions that inspired this work. We thank R. Bryan, K. Measures and R. Esnouf for computing facilities and programs; K. Harlos for assistance with X-ray data collection, S. Lee for help in the preparation of figures; Z. Rao for assistance in crystallization trials; D. Wiley and D. Garboczi for pre-release coordinates of the TCR/Tax/HLA-A2 complex; and C. O'Callahan, V. Cerundolo, D. Garboczi, G. Harcourt and B. Willcox for help and advice. This work was funded by the MRC. The Oxford Centre for Molecular Sciences is supported by the BBSRC, EPSRC and MRC. J.T. was supported by an EMBO fellowship, E.Y.J. by the Royal Society, and D.I.S. and A.J.M. by the MRC.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to John I. Bell or E. Yvonne Jones.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, G., Tormo, J., Gerth, U. et al. Crystal structure of the complex between human CD8αα and HLA-A2. Nature 387, 630–634 (1997). https://doi.org/10.1038/42523

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/42523

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing