Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

DNA methylation regulates the expression of CXCL12 in rheumatoid arthritis synovial fibroblasts

Abstract

In the search for specific genes regulated by DNA methylation in rheumatoid arthritis (RA), we investigated the expression of CXCL12 in synovial fibroblasts (SFs) and the methylation status of its promoter and determined its contribution to the expression of matrix metalloproteinases (MMPs). DNA was isolated from SFs and methylation was analyzed by bisulfite sequencing and McrBC assay. CXCL12 protein was quantified by enzyme-linked immunosorbent assay before and after treatment with 5-azacytidine. RASFs were transfected with CXCR7-siRNA and stimulated with CXCL12. Expression of MMPs was analyzed by real-time PCR. Basal expression of CXCL12 was higher in RASFs than osteoarthritis (OA) SFs. 5-azacytidine demethylation increased the expression of CXCL12 and reduced the methylation of CpG nucleotides. A lower percentage of CpG methylation was found in the CXCL12 promoter of RASFs compared with OASFs. Overall, we observed a significant correlation in the mRNA expression and the CXCL12 promoter DNA methylation. Stimulation of RASFs with CXCL12 increased the expression of MMPs. CXCR7 but not CXCR4 was expressed and functional in SFs. We show here that RASFs produce more CXCL12 than OASFs due to promoter methylation changes and that stimulation with CXCL12 activates MMPs via CXCR7 in SFs. Thereby we describe an endogenously activated pathway in RASFs, which promotes joint destruction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Ospelt C, Gay S . The role of resident synovial cells in destructive arthritis. Best Pract Res Clin Rheumatol 2008; 22: 239–252.

    Article  CAS  Google Scholar 

  2. Karouzakis E, Gay RE, Michel BA, Gay S, Neidhart M . DNA hypomethylation in rheumatoid arthritis synovial fibroblasts. Arthritis Rheum 2009; 60: 3613–3622.

    Article  CAS  Google Scholar 

  3. Wade PA . Methyl CpG-binding proteins and transcriptional repression. Bioessays 2001; 23: 1131–1137.

    Article  CAS  Google Scholar 

  4. Reik W, Dean W, Walter J . Epigenetic reprogramming in mammalian development. Science 2001; 293: 1089–1093.

    Article  CAS  Google Scholar 

  5. Hewagama A, Richardson B . The genetics and epigenetics of autoimmune diseases. J Autoimmun 2009; 33: 3–11.

    Article  CAS  Google Scholar 

  6. Esteller M . Epigenetics in cancer. N Engl J Med 2008; 358: 1148–1159.

    Article  CAS  Google Scholar 

  7. Petit I, Jin D, Rafii S . The SDF-1-CXCR4 signaling pathway: a molecular hub modulating neo-angiogenesis. Trends Immunol 2007; 28: 299–307.

    Article  CAS  Google Scholar 

  8. Kucia M, Jankowski K, Reca R, Wysoczynski M, Bandura L, Allendorf DJ et al. CXCR4-SDF-1 signalling, locomotion, chemotaxis and adhesion. J Mol Histol 2004; 35: 233–245.

    Article  CAS  Google Scholar 

  9. Burns JM, Summers BC, Wang Y, Melikian A, Berahovich R, Miao Z et al. A novel chemokine receptor for SDF-1 and I-TAC involved in cell survival, cell adhesion, and tumor development. J Exp Med 2006; 203: 2201–2213.

    Article  CAS  Google Scholar 

  10. Raggo C, Ruhl R, McAllister S, Koon H, Dezube BJ, Fruh K et al. Novel cellular genes essential for transformation of endothelial cells by Kaposi's sarcoma-associated herpesvirus. Cancer Res 2005; 65: 5084–5095.

    Article  CAS  Google Scholar 

  11. Miao Z, Luker KE, Summers BC, Berahovich R, Bhojani MS, Rehemtulla A et al. CXCR7 (RDC1) promotes breast and lung tumor growth in vivo and is expressed on tumor-associated vasculature. Proc Natl Acad Sci USA 2007; 104: 15735–15740.

    Article  CAS  Google Scholar 

  12. De Paepe B, Schroder JM, Martin JJ, Racz GZ, De Bleecker JL . Localization of the alpha-chemokine SDF-1 and its receptor CXCR4 in idiopathic inflammatory myopathies. Neuromuscul Disord 2004; 14: 265–273.

    Article  Google Scholar 

  13. Gu J, Marker-Hermann E, Baeten D, Tsai WC, Gladman D, Xiong M et al. A 588-gene microarray analysis of the peripheral blood mononuclear cells of spondyloarthropathy patients. Rheumatology (Oxford) 2002; 41: 759–766.

    Article  CAS  Google Scholar 

  14. Krumbholz M, Theil D, Cepok S, Hemmer B, Kivisakk P, Ransohoff RM et al. Chemokines in multiple sclerosis: CXCL12 and CXCL13 up-regulation is differentially linked to CNS immune cell recruitment. Brain 2006; 129 (part 1): 200–211.

    Article  Google Scholar 

  15. Kryczek I, Wei S, Keller E, Liu R, Zou W . Stroma-derived factor (SDF-1/CXCL12) and human tumor pathogenesis. Am J Physiol Cell Physiol 2007; 292: C987–C995.

    Article  CAS  Google Scholar 

  16. Kanbe K, Takagishi K, Chen Q . Stimulation of matrix metalloprotease 3 release from human chondrocytes by the interaction of stromal cell-derived factor 1 and CXC chemokine receptor 4. Arthritis Rheum 2002; 46: 130–137.

    Article  CAS  Google Scholar 

  17. Nanki T, Hayashida K, El-Gabalawy HS, Suson S, Shi K, Girschick HJ et al. Stromal cell-derived factor-1-CXC chemokine receptor 4 interactions play a central role in CD4+ T cell accumulation in rheumatoid arthritis synovium. J Immunol 2000; 165: 6590–6598.

    Article  CAS  Google Scholar 

  18. Burger JA, Zvaifler NJ, Tsukada N, Firestein GS, Kipps TJ . Fibroblast-like synoviocytes support B-cell pseudoemperipolesis via a stromal cell-derived factor-1- and CD106 (VCAM-1)-dependent mechanism. J Clin Invest 2001; 107: 305–315.

    Article  CAS  Google Scholar 

  19. Nanki T, Nagasaka K, Hayashida K, Saita Y, Miyasaka N . Chemokines regulate IL-6 and IL-8 production by fibroblast-like synoviocytes from patients with rheumatoid arthritis. J Immunol 2001; 167: 5381–5385.

    Article  CAS  Google Scholar 

  20. Blades MC, Ingegnoli F, Wheller SK, Manzo A, Wahid S, Panayi GS et al. Stromal cell-derived factor 1 (CXCL12) induces monocyte migration into human synovium transplanted onto SCID Mice. Arthritis Rheum 2002; 46: 824–836.

    Article  CAS  Google Scholar 

  21. Watanabe N, Ando K, Yoshida S, Inuzuka S, Kobayashi M, Matsui N et al. Gene expression profile analysis of rheumatoid synovial fibroblast cultures revealing the overexpression of genes responsible for tumor-like growth of rheumatoid synovium. Biochem Biophys Res Commun 2002; 294: 1121–1129.

    Article  CAS  Google Scholar 

  22. Grassi F, Cristino S, Toneguzzi S, Piacentini A, Facchini A, Lisignoli G . CXCL12 chemokine up-regulates bone resorption and MMP-9 release by human osteoclasts: CXCL12 levels are increased in synovial and bone tissue of rheumatoid arthritis patients. J Cell Physiol 2004; 199: 244–251.

    Article  CAS  Google Scholar 

  23. Garcia-Vicuna R, Gomez-Gaviro MV, Dominguez-Luis MJ, Pec MK, Gonzalez-Alvaro I, Alvaro-Gracia JM et al. CC and CXC chemokine receptors mediate migration, proliferation, and matrix metalloproteinase production by fibroblast-like synoviocytes from rheumatoid arthritis patients. Arthritis Rheum 2004; 50: 3866–3877.

    Article  CAS  Google Scholar 

  24. Kanbe K, Takemura T, Takeuchi K, Chen Q, Takagishi K, Inoue K . Synovectomy reduces stromal-cell-derived factor-1 (SDF-1) which is involved in the destruction of cartilage in osteoarthritis and rheumatoid arthritis. J Bone Joint Surg Br 2004; 86: 296–300.

    Article  CAS  Google Scholar 

  25. Kondo Y, Issa JP . Epigenetic changes in colorectal cancer. Cancer Metastasis Rev 2004; 23: 29–39.

    Article  CAS  Google Scholar 

  26. Lin CH, Hsieh SY, Sheen IS, Lee WC, Chen TC, Shyu WC et al. Genome-wide hypomethylation in hepatocellular carcinogenesis. Cancer Res 2001; 61: 4238–4243.

    CAS  PubMed  Google Scholar 

  27. Herman JG, Baylin SB . Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med 2003; 349: 2042–2054.

    Article  CAS  Google Scholar 

  28. Weisenberger DJ, Campan M, Long TI, Kim M, Woods C, Fiala E et al. Analysis of repetitive element DNA methylation by MethyLight. Nucleic Acids Res 2005; 33: 6823–6836.

    Article  CAS  Google Scholar 

  29. Roman-Gomez J, Jimenez-Velasco A, Agirre X, Cervantes F, Sanchez J, Garate L et al. Promoter hypomethylation of the LINE-1 retrotransposable elements activates sense/antisense transcription and marks the progression of chronic myeloid leukemia. Oncogene 2005; 24: 7213–7223.

    Article  CAS  Google Scholar 

  30. Richardson B . Primer: epigenetics of autoimmunity. Nat Clin Pract Rheumatol 2007; 3: 521–527.

    Article  CAS  Google Scholar 

  31. Lu Q, Wu A, Richardson BC . Demethylation of the same promoter sequence increases CD70 expression in lupus T cells and T cells treated with lupus-inducing drugs. J Immunol 2005; 174: 6212–6219.

    Article  CAS  Google Scholar 

  32. Kaplan MJ, Lu Q, Wu A, Attwood J, Richardson B . Demethylation of promoter regulatory elements contributes to perforin overexpression in CD4+ lupus T cells. J Immunol 2004; 172: 3652–3661.

    Article  CAS  Google Scholar 

  33. Oelke K, Lu Q, Richardson D, Wu A, Deng C, Hanash S et al. Overexpression of CD70 and overstimulation of IgG synthesis by lupus T cells and T cells treated with DNA methylation inhibitors. Arthritis Rheum 2004; 50: 1850–1860.

    Article  CAS  Google Scholar 

  34. Calonge E, Alonso-Lobo JM, Escandon C, Gonzalez N, Bermejo M, Santiago B et al. c/EBPbeta is a major regulatory element driving transcriptional activation of the CXCL12 promoter. J Mol Biol 2010; 396: 463–472.

    Article  CAS  Google Scholar 

  35. Ceradini DJ, Gurtner GC . Homing to hypoxia: HIF-1 as a mediator of progenitor cell recruitment to injured tissue. Trends Cardiovasc Med 2005; 15: 57–63.

    Article  CAS  Google Scholar 

  36. Garcia-Moruja C, Alonso-Lobo JM, Rueda P, Torres C, Gonzalez N, Bermejo M et al. Functional characterization of SDF-1 proximal promoter. J Mol Biol 2005; 348: 43–62.

    Article  CAS  Google Scholar 

  37. Wendt MK, Johanesen PA, Kang-Decker N, Binion DG, Shah V, Dwinell MB . Silencing of epithelial CXCL12 expression by DNA hypermethylation promotes colonic carcinoma metastasis. Oncogene 2006; 25: 4986–4997.

    Article  CAS  Google Scholar 

  38. Wendt MK, Cooper AN, Dwinell MB . Epigenetic silencing of CXCL12 increases the metastatic potential of mammary carcinoma cells. Oncogene 2008; 27: 1461–1471.

    Article  CAS  Google Scholar 

  39. Pietkiewicz PP, Lutkowska A, Lianeri M, Jagodzinski PP . Tamoxifen epigenetically modulates CXCL12 expression in MCF-7 breast cancer cells. Biomed Pharmacother 2010; 64: 54–57.

    Article  CAS  Google Scholar 

  40. Bradfield PF, Amft N, Vernon-Wilson E, Exley AE, Parsonage G, Rainger GE et al. Rheumatoid fibroblast-like synoviocytes overexpress the chemokine stromal cell-derived factor 1 (CXCL12), which supports distinct patterns and rates of CD4+ and CD8+ T cell migration within synovial tissue. Arthritis Rheum 2003; 48: 2472–2482.

    Article  CAS  Google Scholar 

  41. del Rey MJ, Izquierdo E, Caja S, Usategui A, Santiago B, Galindo M et al. Human inflammatory synovial fibroblasts induce enhanced myeloid cell recruitment and angiogenesis through a hypoxia-inducible transcription factor 1alpha/vascular endothelial growth factor-mediated pathway in immunodeficient mice. Arthritis Rheum 2009; 60: 2926–2934.

    Article  CAS  Google Scholar 

  42. Pablos JL, Santiago B, Galindo M, Torres C, Brehmer MT, Blanco FJ et al. Synoviocyte-derived CXCL12 is displayed on endothelium and induces angiogenesis in rheumatoid arthritis. J Immunol 2003; 170: 2147–2152.

    Article  CAS  Google Scholar 

  43. Sato N, Matsubayashi H, Fukushima N, Goggins M . The chemokine receptor CXCR4 is regulated by DNA methylation in pancreatic cancer. Cancer Biol Ther 2005; 4: 70–76.

    Article  CAS  Google Scholar 

  44. Law NM, Rosenzweig SA . Characterization of the G-protein linked orphan receptor GPRN1/RDC1. Biochem Biophys Res Commun 1994; 201: 458–465.

    Article  CAS  Google Scholar 

  45. Balabanian K, Lagane B, Infantino S, Chow KY, Harriague J, Moepps B et al. The chemokine SDF-1/CXCL12 binds to and signals through the orphan receptor RDC1 in T lymphocytes. J Biol Chem 2005; 280: 35760–35766.

    Article  CAS  Google Scholar 

  46. Infantino S, Moepps B, Thelen M . Expression and regulation of the orphan receptor RDC1 and its putative ligand in human dendritic and B cells. J Immunol 2006; 176: 2197–2207.

    Article  CAS  Google Scholar 

  47. Zabel BA, Wang Y, Lewen S, Berahovich RD, Penfold ME, Zhang P et al. Elucidation of CXCR7-mediated signaling events and inhibition of CXCR4-mediated tumor cell transendothelial migration by CXCR7 ligands. J Immunol 2009; 183: 3204–3211.

    Article  CAS  Google Scholar 

  48. Kalatskaya I, Berchiche YA, Gravel S, Limberg BJ, Rosenbaum JS, Heveker N . AMD3100 is a CXCR7 ligand with allosteric agonist properties. Mol Pharmacol 2009; 75: 1240–1247.

    Article  CAS  Google Scholar 

  49. Rajagopal S, Kim J, Ahn S, Craig S, Lam CM, Gerard NP et al. Beta-arrestin- but not G protein-mediated signaling by the ″decoy″ receptor CXCR7. Proc Natl Acad Sci USA 2010; 107: 628–632.

    Article  Google Scholar 

  50. Gurevich EV, Gurevich VV . Arrestins: ubiquitous regulators of cellular signaling pathways. Genome Biol 2006; 7: 236.

    Article  Google Scholar 

  51. Konttinen YT, Ainola M, Valleala H, Ma J, Ida H, Mandelin J et al. Analysis of 16 different matrix metalloproteinases (MMP-1 to MMP-20) in the synovial membrane: different profiles in trauma and rheumatoid arthritis. Ann Rheum Dis 1999; 58: 691–697.

    Article  CAS  Google Scholar 

  52. Jungel A, Ospelt C, Lesch M, Thiel M, Sunyer T, Schorr O et al. Effect of the oral application of a highly selective MMP-13 inhibitor in three different animal models of rheumatoid arthritis. Ann Rheum Dis 2010; 69: 898–902.

    Article  CAS  Google Scholar 

  53. Rutkauskaite E, Zacharias W, Schedel J, Muller-Ladner U, Mawrin C, Seemayer CA et al. Ribozymes that inhibit the production of matrix metalloproteinase 1 reduce the invasiveness of rheumatoid arthritis synovial fibroblasts. Arthritis Rheum 2004; 50: 1448–1456.

    Article  CAS  Google Scholar 

  54. Iliopoulos D, Malizos KN, Tsezou A . Epigenetic regulation of leptin affects MMP-13 expression in osteoarthritic chondrocytes: possible molecular target for osteoarthritis therapeutic intervention. Ann Rheum Dis 2007; 66: 1616–1621.

    Article  CAS  Google Scholar 

  55. Roach HI, Yamada N, Cheung KS, Tilley S, Clarke NM, Oreffo RO et al. Association between the abnormal expression of matrix-degrading enzymes by human osteoarthritic chondrocytes and demethylation of specific CpG sites in the promoter regions. Arthritis Rheum 2005; 52: 3110–3124.

    Article  CAS  Google Scholar 

  56. Couillard J, Demers M, Lavoie G, St-Pierre Y . The role of DNA hypomethylation in the control of stromelysin gene expression. Biochem Biophys Res Commun 2006; 342: 1233–1239.

    Article  CAS  Google Scholar 

  57. Ogata Y, Enghild JJ, Nagase H . Matrix metalloproteinase 3 (stromelysin) activates the precursor for the human matrix metalloproteinase 9. J Biol Chem 1992; 267: 3581–3584.

    CAS  PubMed  Google Scholar 

  58. Goldberg GI, Strongin A, Collier IE, Genrich LT, Marmer BL . Interaction of 92-kDa type IV collagenase with the tissue inhibitor of metalloproteinases prevents dimerization, complex formation with interstitial collagenase, and activation of the proenzyme with stromelysin. J Biol Chem 1992; 267: 4583–4591.

    CAS  PubMed  Google Scholar 

  59. Benbow U, Brinckerhoff CE . The AP-1 site and MMP gene regulation: what is all the fuss about? Matrix Biol 1997; 15: 519–526.

    Article  CAS  Google Scholar 

  60. Arnett FC, Edworthy SM, Bloch DA, McShane DJ, Fries JF, Cooper NS et al. The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum 1988; 31: 315–324.

    Article  CAS  Google Scholar 

  61. Ospelt C, Kurowska-Stolarska M, Neidhart M, Michel BA, Gay RE, Laufer S et al. The dual inhibitor of lipoxygenase and cyclooxygenase ML3000 decreases the expression of CXCR3 ligands. Ann Rheum Dis 2007; 67: 524–529.

    Article  Google Scholar 

  62. Li LC, Dahiya R . MethPrimer: designing primers for methylation PCRs. Bioinformatics 2002; 18: 1427–1431.

    Article  CAS  Google Scholar 

  63. Bock C, Reither S, Mikeska T, Paulsen M, Walter J, Lengauer T . BiQ Analyzer: visualization and quality control for DNA methylation data from bisulfite sequencing. Bioinformatics 2005; 21: 4067–4068.

    Article  CAS  Google Scholar 

  64. Distler JH, Jungel A, Huber LC, Seemayer CA, Reich III CF, Gay RE et al. The induction of matrix metalloproteinase and cytokine expression in synovial fibroblasts stimulated with immune cell microparticles. Proc Natl Acad Sci USA 2005; 102: 2892–2897.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Mrs Maria Comazzi and Mr Ferenc Pataky for their excellent technical work. We also thank our collaborators Professor C Buckley and Dr A Filer for providing us with the human lung fibroblast cultures. This work was supported by the Articulum Fellowship Program (YR), the Institute of Arthritis Research, Epilanges, Switzerland, and by the European Community's FP6 (Autocure) and FP7 funding (Masterswitch). This publication reflects only the author's views. The European Community is not liable for any use that may be made of the information herein.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E Karouzakis.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karouzakis, E., Rengel, Y., Jüngel, A. et al. DNA methylation regulates the expression of CXCL12 in rheumatoid arthritis synovial fibroblasts. Genes Immun 12, 643–652 (2011). https://doi.org/10.1038/gene.2011.45

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gene.2011.45

Keywords

This article is cited by

Search

Quick links