Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Identification of 15 new psoriasis susceptibility loci highlights the role of innate immunity

Abstract

To gain further insight into the genetic architecture of psoriasis, we conducted a meta-analysis of 3 genome-wide association studies (GWAS) and 2 independent data sets genotyped on the Immunochip, including 10,588 cases and 22,806 controls. We identified 15 new susceptibility loci, increasing to 36 the number associated with psoriasis in European individuals. We also identified, using conditional analyses, five independent signals within previously known loci. The newly identified loci shared with other autoimmune diseases include candidate genes with roles in regulating T-cell function (such as RUNX3, TAGAP and STAT3). Notably, they included candidate genes whose products are involved in innate host defense, including interferon-mediated antiviral responses (DDX58), macrophage activation (ZC3H12C) and nuclear factor (NF)-κB signaling (CARD14 and CARM1). These results portend a better understanding of shared and distinctive genetic determinants of immune-mediated inflammatory disorders and emphasize the importance of the skin in innate and acquired host defense.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Nestle, F.O., Kaplan, D.H. & Barker, J. Psoriasis. N. Engl. J. Med. 361, 496–509 (2009).

    Article  CAS  Google Scholar 

  2. Elder, J.T. et al. Molecular dissection of psoriasis: integrating genetics and biology. J. Invest. Dermatol. 130, 1213–1226 (2010).

    Article  CAS  Google Scholar 

  3. Ellinghaus, E. et al. Genome-wide association study identifies a psoriasis susceptibility locus at TRAF3IP2. Nat. Genet. 42, 991–995 (2010).

    Article  CAS  Google Scholar 

  4. Nair, R.P. et al. Genome-wide scan reveals association of psoriasis with IL-23 and NF-κB pathways. Nat. Genet. 41, 199–204 (2009).

    Article  CAS  Google Scholar 

  5. Strange, A. et al. A genome-wide association study identifies new psoriasis susceptibility loci and an interaction between HLA-C and ERAP1. Nat. Genet. 42, 985–990 (2010).

    Article  CAS  Google Scholar 

  6. Stuart, P.E. et al. Genome-wide association analysis identifies three psoriasis susceptibility loci. Nat. Genet. 42, 1000–1004 (2010).

    Article  CAS  Google Scholar 

  7. Sun, L.D. et al. Association analyses identify six new psoriasis susceptibility loci in the Chinese population. Nat. Genet. 42, 1005–1009 (2010).

    Article  CAS  Google Scholar 

  8. Zhang, X.J. et al. Psoriasis genome-wide association study identifies susceptibility variants within LCE gene cluster at 1q21. Nat. Genet. 41, 205–210 (2009).

    Article  CAS  Google Scholar 

  9. de Cid, R. et al. Deletion of the late cornified envelope LCE3B and LCE3C genes as a susceptibility factor for psoriasis. Nat. Genet. 41, 211–215 (2009).

    Article  CAS  Google Scholar 

  10. Ellinghaus, D. et al. Combined analysis of genome-wide association studies for Crohn disease and psoriasis identifies seven shared susceptibility loci. Am. J. Hum. Genet. 90, 636–647 (2012).

    Article  CAS  Google Scholar 

  11. Cotsapas, C. et al. Pervasive sharing of genetic effects in autoimmune disease. PLoS Genet. 7, e1002254 (2011).

    Article  CAS  Google Scholar 

  12. Cortes, A. & Brown, M.A. Promise and pitfalls of the Immunochip. Arthritis Res. Ther. 13, 101 (2011).

    Article  Google Scholar 

  13. Trynka, G. et al. Dense genotyping identifies and localizes multiple common and rare variant association signals in celiac disease. Nat. Genet. 43, 1193–1201 (2011).

    Article  CAS  Google Scholar 

  14. Feng, B.J. et al. Multiple loci within the major histocompatibility complex confer risk of psoriasis. PLoS Genet. 5, e1000606 (2009).

    Article  Google Scholar 

  15. Zheng, H.F. et al. Variants in MHC, LCE and IL12B have epistatic effects on psoriasis risk in Chinese population. J. Dermatol. Sci. 61, 124–128 (2011).

    Article  CAS  Google Scholar 

  16. Riveira-Munoz, E. et al. Meta-analysis confirms the LCE3C_LCE3B deletion as a risk factor for psoriasis in several ethnic groups and finds interaction with HLA-Cw6. J. Invest. Dermatol. 131, 1105–1109 (2011).

    Article  CAS  Google Scholar 

  17. Jordan, C.T. et al. PSORS2 is due to mutations in CARD14. Am. J. Hum. Genet. 90, 784–795 (2012).

    Article  CAS  Google Scholar 

  18. Jordan, C.T. et al. Rare and common variants in CARD14, encoding an epidermal regulator of NF-κB, in psoriasis. Am. J. Hum. Genet. 90, 796–808 (2012).

    Article  CAS  Google Scholar 

  19. Di Meglio, P. et al. The IL23R R381Q gene variant protects against immune-mediated diseases by impairing IL-23–induced Th17 effector response in humans. PLoS ONE 6, e17160 (2011).

    Article  CAS  Google Scholar 

  20. Cal, S. et al. Identification and characterization of human polyserase-3, a novel protein with tandem serine-protease domains in the same polypeptide chain. BMC Biochem. 7, 9 (2006).

    Article  Google Scholar 

  21. Dubois, P.C. et al. Multiple common variants for celiac disease influencing immune gene expression. Nat. Genet. 42, 295–302 (2010).

    Article  CAS  Google Scholar 

  22. Zhernakova, A. et al. Meta-analysis of genome-wide association studies in celiac disease and rheumatoid arthritis identifies fourteen non-HLA shared loci. PLoS Genet. 7, e1002004 (2011).

    Article  CAS  Google Scholar 

  23. Franke, A. et al. Genome-wide meta-analysis increases to 71 the number of confirmed Crohn's disease susceptibility loci. Nat. Genet. 42, 1118–1125 (2010).

    Article  CAS  Google Scholar 

  24. Gudjonsson, J.E. et al. Assessment of the psoriatic transcriptome in a large sample: additional regulated genes and comparisons with in vitro models. J. Invest. Dermatol. 130, 1829–1840 (2010).

    Article  CAS  Google Scholar 

  25. Ding, J. et al. Gene expression in skin and lymphoblastoid cells: refined statistical method reveals extensive overlap in cis-eQTL signals. Am. J. Hum. Genet. 87, 779–789 (2010).

    Article  CAS  Google Scholar 

  26. Mason, C.C. et al. Bimodal distribution of RNA expression levels in human skeletal muscle tissue. BMC Genomics 12, 98 (2011).

    Article  CAS  Google Scholar 

  27. Song, M.Y., Kim, H.E., Kim, S., Choi, I.H. & Lee, J.K. SNP-based large-scale identification of allele-specific gene expression in human B cells. Gene 493, 211–218 (2012).

    Article  CAS  Google Scholar 

  28. Andrés, A.M. et al. Balancing selection maintains a form of ERAP2 that undergoes nonsense-mediated decay and affects antigen presentation. PLoS Genet. 6, e1001157 (2010).

    Article  Google Scholar 

  29. Grjibovski, A.M., Olsen, A.O., Magnus, P. & Harris, J.R. Psoriasis in Norwegian twins: contribution of genetic and environmental effects. J. Eur. Acad. Dermatol. Venereol. 21, 1337–1343 (2007).

    Article  CAS  Google Scholar 

  30. Najarian, D.J. & Gottlieb, A.B. Connections between psoriasis and Crohn's disease. J. Am. Acad. Dermatol. 48, 805–821 quiz 822–824 (2003).

    Article  Google Scholar 

  31. Ludvigsson, J.F., Lindelof, B., Zingone, F. & Ciacci, C. Psoriasis in a nationwide cohort study of patients with celiac disease. J. Invest. Dermatol. 131, 2010–2016 (2011).

    Article  CAS  Google Scholar 

  32. Modlin, R.L. Innate immunity: ignored for decades, but not forgotten. J. Invest. Dermatol. 132, 882–886 (2012).

    Article  CAS  Google Scholar 

  33. Nakatsuji, T. & Gallo, R.L. Antimicrobial peptides: old molecules with new ideas. J. Invest. Dermatol. 132, 887–895 (2012).

    Article  CAS  Google Scholar 

  34. Wölfle, U., Martin, S., Emde, M. & Schempp, C. Dermatology in the Darwin anniversary. Part 2: Evolution of the skin-associated immune system. J. Dtsch. Dermatol. Ges. 7, 862–869 (2009).

    PubMed  Google Scholar 

  35. Capon, F., Burden, A.D., Trembath, R.C. & Barker, J.N. Psoriasis and other complex trait dermatoses: from loci to functional pathways. J. Invest. Dermatol. 132, 915–922 (2012).

    Article  CAS  Google Scholar 

  36. Gudjonsson, J.E. & Elder, J.T. Psoriasis. in Dermatology in General Medicine Vol. 1 (eds. Goldsmith, L. et al.) 197–231 (McGraw-Hill, New York, 2012).

  37. Garber, K. Psoriasis: from bed to bench and back. Nat. Biotechnol. 29, 563–566 (2011).

    Article  CAS  Google Scholar 

  38. Vilhais-Neto, G.C. et al. Rere controls retinoic acid signalling and somite bilateral symmetry. Nature 463, 953–957 (2010).

    Article  CAS  Google Scholar 

  39. Ferby, I. et al. Mig6 is a negative regulator of EGF receptor–mediated skin morphogenesis and tumor formation. Nat. Med. 12, 568–573 (2006).

    Article  CAS  Google Scholar 

  40. Amler, L.C. et al. Identification and characterization of novel genes located at the t(1;15)(p36.2;q24) translocation breakpoint in the neuroblastoma cell line NGP. Genomics 64, 195–202 (2000).

    Article  CAS  Google Scholar 

  41. Djuretic, I.M. et al. Transcription factors T-bet and Runx3 cooperate to activate Ifng and silence Il4 in T helper type 1 cells. Nat. Immunol. 8, 145–153 (2007).

    Article  CAS  Google Scholar 

  42. Shiraishi, N. et al. Identification and characterization of three novel β1,3-N-acetylglucosaminyltransferases structurally related to the β1,3-galactosyltransferase family. J. Biol. Chem. 276, 3498–3507 (2001).

    Article  CAS  Google Scholar 

  43. Togayachi, A. β3GnT2 (B3GNT2), a major polylactosamine synthase: analysis of B3GNT2-deficient mice. Methods Enzymol. 479, 185–204 (2010).

    Article  CAS  Google Scholar 

  44. Grindstaff, K.K. et al. Sec6/8 complex is recruited to cell-cell contacts and specifies transport vesicle delivery to the basal-lateral membrane in epithelial cells. Cell 93, 731–740 (1998).

    Article  CAS  Google Scholar 

  45. Biswas, P.S. et al. Phosphorylation of IRF4 by ROCK2 regulates IL-17 and IL-21 production and the development of autoimmunity in mice. J. Clin. Invest. 120, 3280–3295 (2010).

    Article  CAS  Google Scholar 

  46. Mudter, J. et al. IRF4 regulates IL-17A promoter activity and controls RORγt-dependent Th17 colitis in vivo. Inflamm. Bowel Dis. 17, 1343–1358 (2011).

    Article  Google Scholar 

  47. Huber, M. et al. IRF4 is essential for IL-21–mediated induction, amplification, and stabilization of the Th17 phenotype. Proc. Natl. Acad. Sci. USA 105, 20846–20851 (2008).

    Article  CAS  Google Scholar 

  48. Bowcock, A.M. et al. Insights into psoriasis and other inflammatory diseases from large-scale gene expression studies. Hum. Mol. Genet. 10, 1793–1805 (2001).

    Article  CAS  Google Scholar 

  49. Chang, I.F. & Hsiao, H.Y. Induction of RhoGAP and pathological changes characteristic of Alzheimer's disease by UAHFEMF discharge in rat brain. Curr. Alzheimer Res. 2, 559–569 (2005).

    Article  CAS  Google Scholar 

  50. Gotoh, K. et al. Selective control of type I IFN induction by the Rac activator DOCK2 during TLR-mediated plasmacytoid dendritic cell activation. J. Exp. Med. 207, 721–730 (2010).

    Article  CAS  Google Scholar 

  51. Ippagunta, S.K. et al. The inflammasome adaptor ASC regulates the function of adaptive immune cells by controlling Dock2-mediated Rac activation and actin polymerization. Nat. Immunol. 12, 1010–1016 (2011).

    Article  Google Scholar 

  52. Loo, Y.M. & Gale, M. Immune signaling by RIG-I–like receptors. Immunity 34, 680–692 (2011).

    Article  CAS  Google Scholar 

  53. Cui, X.F., Imaizumi, T., Yoshida, H., Borden, E.C. & Satoh, K. Retinoic acid–inducible gene-I is induced by interferon-γ and regulates the expression of interferon-γ stimulated gene 15 in MCF-7 cells. Biochem. Cell Biol. 82, 401–405 (2004).

    Article  CAS  Google Scholar 

  54. Negishi, H. et al. A critical link between Toll-like receptor 3 and type II interferon signaling pathways in antiviral innate immunity. Proc. Natl. Acad. Sci. USA 105, 20446–20451 (2008).

    Article  CAS  Google Scholar 

  55. Patel, S., Xi, Z.F., Seo, E.Y., McGaughey, D. & Segre, J.A. Klf4 and corticosteroids activate an overlapping set of transcriptional targets to accelerate in utero epidermal barrier acquisition. Proc. Natl. Acad. Sci. USA 103, 18668–18673 (2006).

    Article  CAS  Google Scholar 

  56. Feinberg, M.W. et al. Kruppel-like factor 4 is a mediator of proinflammatory signaling in macrophages. J. Biol. Chem. 280, 38247–38258 (2005).

    Article  CAS  Google Scholar 

  57. Liang, J. et al. A novel CCCH-zinc finger protein family regulates proinflammatory activation of macrophages. J. Biol. Chem. 283, 6337–6346 (2008).

    Article  CAS  Google Scholar 

  58. Nagarajan, P. et al. Ets1 blocks terminal differentiation of keratinocytes and induces expression of matrix metalloproteases and innate immune mediators. J. Cell Sci. 123, 3566–3575 (2010).

    Article  CAS  Google Scholar 

  59. Zamisch, M. et al. The transcription factor Ets1 is important for CD4 repression and Runx3 up-regulation during CD8 T cell differentiation in the thymus. J. Exp. Med. 206, 2685–2699 (2009).

    Article  CAS  Google Scholar 

  60. Moisan, J., Grenningloh, R., Bettelli, E., Oukka, M. & Ho, I.C. Ets-1 is a negative regulator of Th17 differentiation. J. Exp. Med. 204, 2825–2835 (2007).

    Article  CAS  Google Scholar 

  61. Sakamoto, H. et al. A Janus kinase inhibitor, JAB, is an interferon-γ–inducible gene and confers resistance to interferons. Blood 92, 1668–1676 (1998).

    CAS  PubMed  Google Scholar 

  62. Tanaka, K. et al. Loss of suppressor of cytokine signaling 1 in helper T cells leads to defective Th17 differentiation by enhancing antagonistic effects of IFN-γ on STAT3 and Smads. J. Immunol. 180, 3746–3756 (2008).

    Article  CAS  Google Scholar 

  63. Piganis, R.A. et al. Suppressor of cytokine signaling (SOCS) 1 inhibits type I interferon (IFN) signaling via the interferon α receptor (IFNAR1)-associated tyrosine kinase Tyk2. J. Biol. Chem. 286, 33811–33818 (2011).

    Article  CAS  Google Scholar 

  64. Sano, S. et al. Stat3 links activated keratinocytes and immunocytes required for development of psoriasis in a novel transgenic mouse model. Nat. Med. 11, 43–49 (2005).

    Article  CAS  Google Scholar 

  65. Harris, T.J. et al. Cutting edge: an in vivo requirement for STAT3 signaling in TH17 development and TH17-dependent autoimmunity. J. Immunol. 179, 4313–4317 (2007).

    Article  CAS  Google Scholar 

  66. Wei, L., Laurence, A. & O'Shea, J.J. New insights into the roles of Stat5a/b and Stat3 in T cell development and differentiation. Semin. Cell Dev. Biol. 19, 394–400 (2008).

    Article  CAS  Google Scholar 

  67. Blonska, M. & Lin, X. NF-κB signaling pathways regulated by CARMA family of scaffold proteins. Cell Res. 21, 55–70 (2011).

    Article  CAS  Google Scholar 

  68. Kersh, E.N. Impaired memory CD8 T cell development in the absence of methyl-CpG–binding domain protein 2. J. Immunol. 177, 3821–3826 (2006).

    Article  CAS  Google Scholar 

  69. Faili, A. et al. Induction of somatic hypermutation in immunoglobulin genes is dependent on DNA polymerase iota. Nature 419, 944–947 (2002).

    Article  CAS  Google Scholar 

  70. Inouye, M. et al. An immune response network associated with blood lipid levels. PLoS Genet. 6, pii e1001113 (2010).

    Article  Google Scholar 

  71. Wichmann, H.E., Gieger, C. & Illig, T. KORA-gen—resource for population genetics, controls and a broad spectrum of disease phenotypes. Gesundheitswesen 67 suppl 1, S26–S30 (2005).

    Article  Google Scholar 

  72. 1000 Genomes Project Consortium. A map of human genome variation from population-scale sequencing. Nature 467, 1061–1073 (2010).

  73. Giannoulatou, E., Yau, C., Colella, S., Ragoussis, J. & Holmes, C.C. GenoSNP: a variational Bayes within-sample SNP genotyping algorithm that does not require a reference population. Bioinformatics 24, 2209–2214 (2008).

    Article  CAS  Google Scholar 

  74. Howie, B., Fuchsberger, C., Stephens, M., Marchini, J. & Abecasis, G. Fast and accurate genotype imputation in genome-wide association studies through pre-phasing. Nat. Genet. 44, 955–959 (2012).

    Article  CAS  Google Scholar 

  75. Marchini, J., Howie, B., Myers, S., McVean, G. & Donnelly, P. A new multipoint method for genome-wide association studies by imputation of genotypes. Nat. Genet. 39, 906–913 (2007).

    Article  CAS  Google Scholar 

  76. Howie, B.N., Donnelly, P. & Marchini, J. A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet. 5, e1000529 (2009).

    Article  Google Scholar 

  77. Altshuler, D.M. et al. Integrating common and rare genetic variation in diverse human populations. Nature 467, 52–58 (2010).

    Article  CAS  Google Scholar 

  78. Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).

    Article  CAS  Google Scholar 

  79. Kang, H.M. et al. Variance component model to account for sample structure in genome-wide association studies. Nat. Genet. 42, 348–354 (2010).

    Article  CAS  Google Scholar 

  80. Devlin, B. & Roeder, K. Genomic control for association studies. Biometrics 55, 997–1004 (1999).

    Article  CAS  Google Scholar 

  81. Freedman, M.L. et al. Assessing the impact of population stratification on genetic association studies. Nat. Genet. 36, 388–393 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Major support for this study was provided by the US National Institutes of Health, the Wellcome Trust and the German Research Foundation. We thank J.C. Barrett for contribution to the design of the Immunochip and helpful analytical discussion, as well as E. Gray, S. Bumpstead, D. Simpkin and the staff of the Wellcome Trust Sanger Institute Sample Management and Genotyping teams for their genotyping and analytical contributions. We acknowledge use of the British 1958 Birth Cohort DNA collection, funded by the UK Medical Research Council (G0000934) and the Wellcome Trust (068545/Z/02), and the UK National Blood Service controls, funded by the Wellcome Trust. We acknowledge CASP for the contribution of GWAS data, as well as the provision of control DNA samples by the Cooperative Research in the Region of Augsburg (KORA) and Heinz-Nixdorf Recall (Risk Factors, Evaluation of Coronary Calcification and Lifestyle) study (HNR) and genotyping data generated by the Dietary, Lifestyle and Genetic determinants of Obesity and Metabolic syndrome (DILGOM) Consortium. We thank the Barbara and Neal Henschel Charitable Foundation for their support of the National Psoriasis Victor Henschel BioBank. We acknowledge the Genetic repository in Ireland for Psoriasis and Psoriatic Arthritis (GRIPPsA), the Irish blood transfusion service/Trinity College Dublin Biobank and the Dublin Centre for Clinical Research (funded by the Health Research Board and the Wellcome Trust). A detailed list of contributing consortia and relevant funding support is provided in the Supplementary Note.

Author information

Authors and Affiliations

Authors

Consortia

Contributions

J.T.E., R.C.T. and G.R.A. designed and directed the study. R.P.N., M.W., J.D., J.J.V., J.T.E., F.C., J.N.W.N.B., M.H.A., C.H.S., A.D.B., C.E.M.G., A.R., J. Kere, X.E., W.W., J. Worthington, R.T.-A., M.S., G.N., L.S., R.M., M.J.C., J.S., A.F., S.W., S.K., K.K., T.E., A.M., A.M.B., G.G.K., D.D.G., P.R., U.M., F.O.N., A.H., J. Winkelmann, S.S., C.W., C.L., S.E., R.A., V.C., C.F.R., H.B., H.W.L. and H.E.W. contributed to sample collection and phenotyping. J. Knight coordinated the samples and data sets for the Genetic Analysis of Psoriasis (GAP) consortium. J.T.E. coordinated the PAGE samples and data sets. P.D., A.S., G.B., R.D.P., D.V. and C.C.A.S. contributed to the design of the Immunochip. J. Knight, P.E.S., G.R.A. and H.M.K. advised on the statistical analysis. C.L., S.E., R.A., H.B., E.E., P.H. and R.P.N. performed genotyping. E.E., S.L.S., L.C.T. and H.M.K. performed the genotype calling. S.L.S., L.C.T., Y.L. and J.D. performed genotype imputation and statistical analysis. F.C., J.N.W.N.B., J.E.G., T.T., J.T.E. and A.F. prepared Box 1. L.C.T., S.L.S., F.C. and J.T.E. drafted the manuscript and prepared the figures and tables. E.E., J.E.G., J. Knight, P.E.S., R.P.N., R.C.T., T.T., G.R.A., J.N.W.N.B. and A.F. edited and revised the manuscript. All authors approved the final draft.

Corresponding authors

Correspondence to Goncalo R Abecasis, James T Elder or Richard C Trembath.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Tables 1–10, Supplementary Figures 1–5 and Supplementary Note (PDF 2509 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsoi, L., Spain, S., Knight, J. et al. Identification of 15 new psoriasis susceptibility loci highlights the role of innate immunity. Nat Genet 44, 1341–1348 (2012). https://doi.org/10.1038/ng.2467

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.2467

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing