Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Bidirectional regulation of neutrophil migration by mitogen-activated protein kinases

Abstract

To kill invading bacteria, neutrophils must interpret spatial cues, migrate and reach target sites. Although the initiation of chemotactic migration has been extensively studied, little is known about its termination. Here we found that two mitogen-activated protein kinases (MAPKs) had opposing roles in neutrophil trafficking. The extracellular signal–regulated kinase Erk potentiated activity of the G protein–coupled receptor kinase GRK2 and inhibited neutrophil migration, whereas the MAPK p38 acted as a noncanonical GRK that phosphorylated the formyl peptide receptor FPR1 and facilitated neutrophil migration by blocking GRK2 function. Therefore, the dynamic balance between Erk and p38 controlled neutrophil 'stop' and 'go' activity, which ensured that neutrophils reached their final destination as the first line of host defense.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Erk and p38 have opposite roles in neutrophil chemotaxis.
Figure 2: Concentration-dependent switch for neutrophil chemotaxis and transmigration.
Figure 3: Inhibition of Erk or enhancement of p38 restores cell migration at high concentrations of fMLF.
Figure 4: Receptor internalization acts as a stop signal for directional migration.
Figure 5: Differences in the regulation of FPR1 internalization by p38 and Erk.
Figure 6: GRK2 mediates the stop signal for neutrophil migration.
Figure 7: Phosphorylation of FPR1 by p38.
Figure 8: Differences in the activation of Erk and p38.

Similar content being viewed by others

References

  1. Devreotes, P.N. & Zigmond, S.H. Chemotaxis in eukaryotic cells: a focus on leukocytes and Dictyostelium. Annu. Rev. Cell Biol. 4, 649–686 (1988).

    Article  CAS  PubMed  Google Scholar 

  2. Ridley, A.J. et al. Cell migration: integrating signals from front to back. Science 302, 1704–1709 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Swaney, K.F., Huang, C.H. & Devreotes, P.N. Eukaryotic chemotaxis: a network of signaling pathways controls motility, directional sensing, and polarity. Annu. Rev. Biophys. 39, 265–289 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Janetopoulos, C. & Firtel, R.A. Directional sensing during chemotaxis. FEBS Lett. 582, 2075–2085 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Xu, J. et al. Divergent signals and cytoskeletal assemblies regulate self-organizing polarity in neutrophils. Cell 114, 201–214 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Srinivasan, S. et al. Rac and Cdc42 play distinct roles in regulating PI(3,4,5)P3 and polarity during neutrophil chemotaxis. J. Cell Biol. 160, 375–385 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Li, Z. et al. Directional sensing requires G β γ-mediated PAK1 and PIX α-dependent activation of Cdc42. Cell 114, 215–227 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Xu, J., Wang, F., Van Keymeulen, A., Rentel, M. & Bourne, H.R. Neutrophil microtubules suppress polarity and enhance directional migration. Proc. Natl. Acad. Sci. USA 102, 6884–6889 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Xu, J. et al. Polarity reveals intrinsic cell chirality. Proc. Natl. Acad. Sci. USA 104, 9296–9300 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Foxman, E.F., Campbell, J.J. & Butcher, E.C. Multistep navigation and the combinatorial control of leukocyte chemotaxis. J. Cell Biol. 139, 1349–1360 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lefkowitz, R.J. G protein–coupled receptors, III. New roles for receptor kinases and β-arrestins in receptor signaling and desensitization. J. Biol. Chem. 273, 18677–18680 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. McLeish, K.R., Gierschik, P. & Jakobs, K.H. Desensitization uncouples the formyl peptide receptor–guanine nucleotide-binding protein interaction in HL60 cells. Mol. Pharmacol. 36, 384–390 (1989).

    CAS  PubMed  Google Scholar 

  13. Prossnitz, E.R., Kim, C.M., Benovic, J.L. & Ye, R.D. Phosphorylation of the N-formyl peptide receptor carboxyl terminus by the G protein–coupled receptor kinase, GRK2. J. Biol. Chem. 270, 1130–1137 (1995).

    Article  CAS  PubMed  Google Scholar 

  14. Moore, C.A., Milano, S.K. & Benovic, J.L. Regulation of receptor trafficking by GRKs and arrestins. Annu. Rev. Physiol. 69, 451–482 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Hsu, M.H., Chiang, S.C., Ye, R.D. & Prossnitz, E.R. Phosphorylation of the N-formyl peptide receptor is required for receptor internalization but not chemotaxis. J. Biol. Chem. 272, 29426–29429 (1997).

    Article  CAS  PubMed  Google Scholar 

  16. Johnson, G.L. & Lapadat, R. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 298, 1911–1912 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Huang, C., Jacobson, K. & Schaller, M.D. MAP kinases and cell migration. J. Cell Sci. 117, 4619–4628 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Nick, J.A. et al. Common and distinct intracellular signaling pathways in human neutrophils utilized by platelet activating factor and fMLP. J. Clin. Invest. 99, 975–986 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cara, D.C., Kaur, J., Forster, M., McCafferty, D.M. & Kubes, P. Role of p38 mitogen-activated protein kinase in chemokine-induced emigration and chemotaxis in vivo. J. Immunol. 167, 6552–6558 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Heit, B., Tavener, S., Raharjo, E. & Kubes, P. An intracellular signaling hierarchy determines direction of migration in opposing chemotactic gradients. J. Cell Biol. 159, 91–102 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zu, Y.L. et al. p38 mitogen-activated protein kinase activation is required for human neutrophil function triggered by TNF-α or FMLP stimulation. J. Immunol. 160, 1982–1989 (1998).

    CAS  PubMed  Google Scholar 

  22. Hale, K.K., Trollinger, D., Rihanek, M. & Manthey, C.L. Differential expression and activation of p38 mitogen-activated protein kinase α, β, γ, and δ in inflammatory cell lineages. J. Immunol. 162, 4246–4252 (1999).

    CAS  PubMed  Google Scholar 

  23. Nishida, K. et al. p38α mitogen-activated protein kinase plays a critical role in cardiomyocyte survival but not in cardiac hypertrophic growth in response to pressure overload. Mol. Cell Biol. 24, 10611–10620 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sullivan, S.J. & Zigmond, S.H. Chemotactic peptide receptor modulation in polymorphonuclear leukocytes. J. Cell Biol. 85, 703–711 (1980).

    Article  CAS  PubMed  Google Scholar 

  25. Barros, L.F., Young, M., Saklatvala, J. & Baldwin, S.A. Evidence of two mechanisms for the activation of the glucose transporter GLUT1 by anisomycin: p38(MAP kinase) activation and protein synthesis inhibition in mammalian cells. J. Physiol. (Lond.) 504, 517–525 (1997).

    Article  CAS  Google Scholar 

  26. Theilade, J., Hansen, J.L., Haunso, S. & Sheikh, S.P. MAP kinase protects G protein–coupled receptor kinase 2 from proteasomal degradation. Biochem. Biophys. Res. Commun. 330, 685–689 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Theilade, J., Lerche Hansen, J., Haunso, S. & Sheikh, S.P. Extracellular signal–regulated kinases control expression of G protein–coupled receptor kinase 2 (GRK2). FEBS Lett. 518, 195–199 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Ono, K. & Han, J. The p38 signal transduction pathway: activation and function. Cell. Signal. 12, 1–13 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Takekawa, M. et al. p53-inducible wip1 phosphatase mediates a negative feedback regulation of p38 MAPK-p53 signaling in response to UV radiation. EMBO J. 19, 6517–6526 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dickinson, R.J. & Keyse, S.M. Diverse physiological functions for dual-specificity MAP kinase phosphatases. J. Cell Sci. 119, 4607–4615 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Zidar, D.A., Violin, J.D., Whalen, E.J. & Lefkowitz, R.J. Selective engagement of G protein coupled receptor kinases (GRKs) encodes distinct functions of biased ligands. Proc. Natl. Acad. Sci. USA 106, 9649–9654 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ye, R.D. et al. International Union of Basic and Clinical Pharmacology. LXXIII. Nomenclature for the formyl peptide receptor (FPR) family. Pharmacol. Rev. 61, 119–161 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Butcher, E.C. Leukocyte–endothelial cell recognition: three (or more) steps to specificity and diversity. Cell 67, 1033–1036 (1991).

    Article  CAS  PubMed  Google Scholar 

  34. Springer, T.A. Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell 76, 301–314 (1994).

    Article  CAS  PubMed  Google Scholar 

  35. Xu, J. et al. Nonmuscle myosin light-chain kinase mediates neutrophil transmigration in sepsis-induced lung inflammation by activating β2 integrins. Nat. Immunol. 9, 880–886 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Semmelhack, J.L. & Wang, J.W. Select Drosophila glomeruli mediate innate olfactory attraction and aversion. Nature 459, 218–223 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank X. Du, B. Gantner (University of Illinois at Chicago), S. Wang (Peking University) and S. Chen (University of Iowa) for discussions, E.R. Prossnitz (University of New Mexico) for the FPR1-ΔST construct and K. Otsu (Osaka University) for permission to use mice with loxP-flanked Mapk14. Supported by the US National Institutes of Health (HL095716 and AI033503), the Chinese Academy of Sciences (KSCX-W-R-66 and KSCX2-YW-R-156), the Natural Science Foundation of China (30630037 and 31070956) and the National Basic Research Program of China (2010CB945301 and 2011CB710900).

Author information

Authors and Affiliations

Authors

Contributions

X.L., B.M., Y.L., R.D.Y. and J.X. designed the research; X.L., B.M., H.T., T.Y., B.S. and G.W. did the experiments; X.L., B.M. and J.X. analyzed data; A.B.M., R.D.M. and Y.Z. contributed new reagents and tools; and X.L., B.M., A.B.M., Y.L., R.D.Y. and J.X. wrote the paper.

Corresponding authors

Correspondence to Richard D Ye or Jingsong Xu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9 and Tables 1–2 (PDF 12697 kb)

Supplementary Video 1

Control HL60 cells migrated in the 100 nM fMLP gradient. (AVI 3844 kb)

Supplementary Video 2

SB203580-treated HL60 cells migrated in the 100 nM fMLP gradient. (AVI 4667 kb)

Supplementary Video 3

PD98059-treated HL60 cells migrated in the 100 nM fMLP gradient. (AVI 4379 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, X., Ma, B., Malik, A. et al. Bidirectional regulation of neutrophil migration by mitogen-activated protein kinases. Nat Immunol 13, 457–464 (2012). https://doi.org/10.1038/ni.2258

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2258

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing