Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

CD22 regulates B lymphocyte function in vivo through both ligand-dependent and ligand-independent mechanisms

Abstract

The interaction of CD22 with α2,6-linked sialic acid ligands has been widely proposed to regulate B lymphocyte function and migration. Here, we generated gene-targeted mice that express mutant CD22 molecules that do not interact with these ligands. CD22 ligand binding regulated the expression of cell surface CD22, immunoglobulin M and major histocompatibility complex class II on mature B cells, maintenance of the marginal zone B cell population, optimal B cell antigen receptor–induced proliferation, and B cell turnover rates. However, CD22 negative regulation of calcium mobilization after B cell antigen receptor ligation, CD22 phosphorylation, recruitment of SHP-1 to CD22 and B cell migration did not require CD22 ligand engagement. These observations resolve longstanding questions regarding the physiological importance of CD22 ligand binding in the regulation of B cell function in vivo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Generation of CD22Δ1-2 and CD22AA mice.
Figure 2: B cell phenotypes in CD22Δ1-2 and CD22AA mice.
Figure 3: Calcium mobilization, CD22 tyrosine phosphorylation and CD22 recruitment of SHP-1 are normal in CD22Δ1-2 and CD22AA B cells.
Figure 4: Altered proliferative responses of B cells from CD22Δ1-2 and CD22AA mice.
Figure 5: Altered B cell turnover in CD22Δ1-2 and CD22AA mice.
Figure 6: CD22 ligand binding does not promote B cell migration.

Similar content being viewed by others

References

  1. Tedder, T.F., Tuscano, J., Sato, S. & Kehrl, J.H. CD22, a B lymphocyte-specific adhesion molecule that regulates antigen receptor signaling. Annu. Rev. Immunol. 15, 481–504 (1997).

    Article  CAS  PubMed  Google Scholar 

  2. Erickson, L.D., Tygrett, L.T., Bhatia, S.K., Grabstein, K.H. & Waldschmidt, T.J. Differential expression of CD22 (Lyb8) on murine B cells. Int. Immunol. 8, 1121–1129 (1996).

    Article  CAS  PubMed  Google Scholar 

  3. Law, C.-L., Aruffo, A., Chandran, K.A., Doty, R.T. & Clark, E.A. Ig domains 1 and 2 of murine CD22 constitute the ligand-binding domain and bind multiple sialylated ligands expressed on B and T cells. J. Immunol. 155, 3368–3376 (1995).

    CAS  PubMed  Google Scholar 

  4. Wilson, G.L., Fox, C.H., Fauci, A.S. & Kehrl, J.H. cDNA cloning of the B cell membrane protein CD22: a mediator of B-B cell interactions. J. Exp. Med. 173, 137–146 (1991).

    Article  CAS  PubMed  Google Scholar 

  5. Engel, P. et al. The same epitope on CD22 of B lymphocytes mediates the adhesion of erythrocytes, T and B lymphocytes, neutrophils and monocytes. J. Immunol. 150, 4719–4732 (1993).

    CAS  PubMed  Google Scholar 

  6. Engel, P., Wagner, N., Miller, A. & Tedder, T.F. Identification of the ligand binding domains of CD22, a member of the immunoglobulin superfamily that uniquely binds a sialic acid-dependent ligand. J. Exp. Med. 181, 1581–1586 (1995).

    Article  CAS  PubMed  Google Scholar 

  7. Sgroi, D., Varki, A., Braesch-Andersen, S. & Stamenkovic, I. CD22, a B cell-specific immunoglobulin superfamily member, is a sialic acid-binding lectin. J. Biol. Chem. 268, 7011–7018 (1993).

    CAS  PubMed  Google Scholar 

  8. Stamenkovic, I. & Seed, B. The B cell antigen CD22 mediates monocyte and erythrocyte adhesion. Nature 344, 74–77 (1990).

    Article  Google Scholar 

  9. Kelm, S. et al. Sialoadhesin, myelin-associated glycoprotein and CD22 define a new family of sialic acid-dependent adhesion molecules of the immunoglobulin superfamily. Curr. Biol. 4, 965–972 (1994).

    Article  CAS  PubMed  Google Scholar 

  10. Peaker, C.J.G. & Neuberger, M.S. Association of CD22 with the B cell antigen receptor. Eur. J. Immunol. 23, 1358–1363 (1993).

    Article  CAS  PubMed  Google Scholar 

  11. Leprince, C., Draves, K.E., Geahlen, R.L., Ledbetter, J.A. & Clark, E.A. CD22 associates with the human surface IgM-B cell antigen receptor complex. Proc. Natl. Acad. Sci. USA 90, 3236–3240 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pflugh, D.L., Maher, S.E. & Bothwell, A.L.M. Ly-6 superfamily members Ly-6A/E Ly-6C and Ly-6I recognize two potential ligands expressed by B lymphocytes. J. Immunol. 169, 5130–5136 (2002).

    Article  PubMed  Google Scholar 

  13. Stamenkovic, I., Sgroi, D., Aruffo, A., Sy, M.S. & Anderson, T. The B lymphocyte adhesion molecule CD22 interacts with leukocyte common antigen CD45RO on T cells and α2,6 sialyltransferase, CD75, on B cells. Cell 66, 1133–1144 (1991).

    Article  CAS  PubMed  Google Scholar 

  14. Schulte, R.J., Campbell, M.A., Fischer, W.H. & Sefton, B.M. Tyrosine phosphorylation of CD22 during B cell activation. Science 258, 1001–1004 (1992).

    Article  CAS  PubMed  Google Scholar 

  15. Poe, J.C., Fujimoto, M., Jansen, P.J., Miller, A.S. & Tedder, T.F. CD22 forms a quaternary complex with SHIP, Grb2 and Shc. A pathway for regulation of B lymphocyte antigen receptor-induced calcium flux. J. Biol. Chem. 275, 17420–17427 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Doody, G.M. et al. A role in B cell activation for CD22 and the protein tyrosine phosphatase SHP. Science 269, 242–244 (1995).

    Article  CAS  PubMed  Google Scholar 

  17. Lankester, A.C., van Schijndel, G.M. & van Lier, R.A. Hematopoietic cell phosphatase is recruited to CD22 following B cell antigen receptor ligation. J. Biol. Chem. 270, 20305–20308 (1995).

    Article  CAS  PubMed  Google Scholar 

  18. Campbell, M.A. & Klinman, N.R. Phosphotyrosine-dependent association between CD22 and protein tyrosine phosphatase 1C. Eur. J. Immunol. 25, 1573–1579 (1995).

    Article  CAS  PubMed  Google Scholar 

  19. Law, C.-L. et al. CD22 associates with protein tyrosine phosphatase 1C, Syk, and phospholipase C-γ1 upon B cell activation. J. Exp. Med. 183, 547–560 (1996).

    Article  CAS  PubMed  Google Scholar 

  20. Yohannan, J., Wienands, J., Coggeshall, K.M. & Justement, L.B. Analysis of tyrosine phosphorylation-dependent interactions between stimulatory effector proteins and the B cell co-receptor CD22. J. Biol. Chem. 274, 18769–18776 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. Nitschke, L., Carsetti, R., Ocker, B., Kohler, G. & Lamers, M.C. CD22 is a negative regulator of B-cell receptor signalling. Curr. Biol. 7, 133–143 (1997).

    Article  CAS  PubMed  Google Scholar 

  22. O'Keefe, T.L., Williams, G.T., Davies, S.L. & Neuberger, M.S. Hyperresponsive B cells in CD22-deficient mice. Science 274, 798–801 (1996).

    Article  CAS  PubMed  Google Scholar 

  23. Otipoby, K.L. et al. CD22 regulates thymus-independent responses and the lifespan of B cells. Nature 384, 634–637 (1996).

    Article  CAS  PubMed  Google Scholar 

  24. Sato, S. et al. CD22 is both a positive and negative regulator of B lymphocyte antigen receptor signal transduction: altered signaling in CD22-deficient mice. Immunity 5, 551–562 (1996).

    Article  CAS  PubMed  Google Scholar 

  25. Cyster, J.G. & Goodnow, C.C. Tuning antigen receptor signaling by CD22: Integrating cues from antigens and the microenvironment. Immunity 6, 509–517 (1997).

    Article  CAS  PubMed  Google Scholar 

  26. Tuscano, J., Engel, P., Tedder, T.F. & Kehrl, J.H. Engagement of the adhesion receptor CD22 triggers a potent stimulatory signal for B cells and blocking CD22/CD22L interactions impairs T-cell proliferation. Blood 87, 4723–4730 (1996).

    CAS  PubMed  Google Scholar 

  27. Tuscano, J.M., Engel, P., Tedder, T.F., Agarwal, A. & Kehrl, J.H. Involvement of p72syk kinase, p53/56lyn kinase and phosphatidyl inositol-3 kinase in signal transduction via the human B lymphocyte antigen CD22. Eur. J. Immunol. 26, 1246–1252 (1996).

    Article  CAS  PubMed  Google Scholar 

  28. Tuscano, J.M. et al. The anti-CD22 ligand blocking antibody, HB22.7, has independent lymphomacidal properties, and augments the efficacy of 90Y-DOTA-peptide-Lym-1 in lymphoma xenografts. Blood 101, 3641–3647 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Tuscano, J.M., Riva, A., Toscano, S.N., Tedder, T.F. & Kehrl, J.H. CD22 cross-linking generates B-cell antigen receptor-independent signals that activate the JNK/SAPK signaling cascade. Blood 94, 1382–1392 (1999).

    CAS  PubMed  Google Scholar 

  30. Lanoue, A., Batista, F.D., Stewart, M. & Neuberger, M.S. Interaction of CD22 with α2,6-linked sialoglycoconjugates: innate recognition of self to dampen B cell autoreactivity? Eur. J. Immunol. 32, 348–355 (2002).

    CAS  Google Scholar 

  31. Jin, L., McLean, P.A., Neel, B.G. & Wortis, H.H. Sialic acid binding domains of CD22 are required for negative regulation of B cell receptor signaling. J. Exp. Med. 195, 1199–1205 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kelm, S., Gerlach, J., Brossmer, R., Danzer, C.-P. & Nitschke, L. The ligand-binding domain of CD22 is needed for inhibition of the B cell receptor signal, as demonstrated by a novel human CD22-specific inhibitor compound. J. Exp. Med. 195, 1207–1213 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hennet, T., Chui, D., Paulson, J.C. & Marth, J.D. Immune regulation by the ST6Gal sialyltransferase. Proc. Natl. Acad. Sci. USA 95, 4504–4509 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Collins, B.E. et al. Constitutively unmasked CD22 on B cells of ST6Gal I knockout mice: novel sialoside probe for murine CD22. Glycobiology 12, 563–571 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Razi, N. & Varki, A. Masking and unmasking of the sialic acid-binding lectin activity of CD22 (Siglec-2) on B lymphocytes. Proc. Natl. Acad. Sci. USA 95, 7469–7474 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Collins, B.E. et al. Masking of CD22 by cis ligands does not prevent redistribution of CD22 to sites of cell contact. Proc. Natl. Acad. Sci. USA 101, 6104–6109 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Floyd, H., Nitschke, L. & Crocker, P.R. A novel subset of murine B cells that expreses unmasked forms of CD22 is enriched in the bone marrow: implications for B-cell homing to the bone marrow. Immunology 101, 342–347 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Nitschke, L., Floyd, H., Ferguson, D.J.P. & Crocker, P.R. Identification of CD22 ligands on bone marrow sinusoidal endothelium implicated in CD22-dependent homing of recirculating B cells. J. Exp. Med. 189, 1513–1518 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. van der Merwe, P.A. et al. Localization of the putative sialic acid-binding site on the immunoglobulin superfamily cell-surface molecule CD22. J. Biol. Chem. 271, 9273–9280 (1996).

    Article  CAS  PubMed  Google Scholar 

  40. Samardzic, T. et al. Reduction of marginal zone B cells in CD22-deficient mice. Eur. J. Immunol. 32, 561–567 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Poe, J.C. et al. Severely-impaired B lymphocyte proliferation, survival and induction of the c-Myc:Cullin 1 ubiquitin ligase pathway resulting from CD22 deficiency on the C57BL/6 genetic background. J. Immunol. 172, 2100–2110 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Goodnow, C.C. et al. Altered immunoglobulin expression and functional silencing of self-reactive B lymphocytes in transgenic mice. Nature 334, 676–682 (1988).

    Article  CAS  PubMed  Google Scholar 

  43. Bast, B.J. et al. The HB-6, CDw75, and CD76 differentiation antigens are unique cell-surface carbohydrate determinants generated by the β-galactoside α2,6-sialyltransferase. J. Cell Biol. 116, 423–435 (1992).

    Article  CAS  PubMed  Google Scholar 

  44. Lajaunias, F. et al. Polymorphisms in the Cd22 gene of inbred mouse strains. Immunogenetics 49, 991–995 (1999).

    Article  CAS  PubMed  Google Scholar 

  45. Nagy, A., Rossant, J., Nagy, R., Abramow-Newerly, W. & Roder, J.C. Derivation of completely cell culture-derived mice from early-passage embryonic stem cells. Proc. Natl. Acad. Sci. USA 90, 8424–8428 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sato, S., Ono, N., Steeber, D.A., Pisetsky, D.S. & Tedder, T.F. CD19 regulates B lymphocyte signaling thresholds critical for the development of B-1 lineage cells and autoimmunity. J. Immunol. 157, 4371–4378 (1996).

    CAS  PubMed  Google Scholar 

  47. Steeber, D.A., Green, N.E., Sato, S. & Tedder, T.F. Lymphocyte migration in L-selectin-deficient mice: altered subset migration and aging of the immune system. J. Immunol. 157, 1096–1106 (1996).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A. Jackson, A. Meade and I. Dzhagalov for assistance with real-time PCR assays. Supported by the National Institutes of Health (CA96547, CA81776 and AI56363) and a Biomedical Science Grant from the Arthritis Foundation (to T.F.T.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas F Tedder.

Ethics declarations

Competing interests

T. Tedder has a personal financial interest in Cellective Therapeutics, which is developing CD22-directed therapies for the treatment of oncology and autoimmunity.

Supplementary information

Supplementary Fig. 1

Cd22 gene targeting in CD22AA mice assessed by Southern hybridization of Kpn I-Xho I digested genomic DNA using DNA probe A, specific for a region of the Cd22 gene outside of the targeting vector. (PDF 149 kb)

Supplementary Methods (PDF 5 kb)

Supplementary Note (PDF 3 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poe, J., Fujimoto, Y., Hasegawa, M. et al. CD22 regulates B lymphocyte function in vivo through both ligand-dependent and ligand-independent mechanisms. Nat Immunol 5, 1078–1087 (2004). https://doi.org/10.1038/ni1121

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1121

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing