Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Transcriptional regulation of endochondral ossification by HIF-2α during skeletal growth and osteoarthritis development

Abstract

Chondrocyte hypertrophy followed by cartilage matrix degradation and vascular invasion, characterized by expression of type X collagen (COL10A1), matrix metalloproteinase-13 (MMP-13) and vascular endothelial growth factor (VEGF), respectively, are central steps of endochondral ossification during normal skeletal growth and osteoarthritis development. A COL10A1 promoter assay identified hypoxia-inducible factor-2α (HIF-2α, encoded by EPAS1) as the most potent transactivator of COL10A1. HIF-2α enhanced promoter activities of COL10A1, MMP13 and VEGFA through specific binding to the respective hypoxia-responsive elements. HIF-2α, independently of oxygen-dependent hydroxylation, was essential for endochondral ossification of cultured chondrocytes and embryonic skeletal growth in mice. HIF-2α expression was higher in osteoarthritic cartilages versus nondiseased cartilages of mice and humans. Epas1-heterozygous deficient mice showed resistance to osteoarthritis development, and a functional single nucleotide polymorphism (SNP) in the human EPAS1 gene was associated with knee osteoarthritis in a Japanese population. The EPAS1 promoter assay identified RELA, a nuclear factor-κB (NF-κB) family member, as a potent inducer of HIF-2α expression. Hence, HIF-2α is a central transactivator that targets several crucial genes for endochondral ossification and may represent a therapeutic target for osteoarthritis.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Transcriptional regulation of COL10A1 by HIF-2α.
Figure 2: In vitro and in vivo expression patterns of the HIF α- and β-subunit members and Col10a1, Mmp-13 and Vegf during chondrocyte differentiation.
Figure 3: Skeletal abnormality in Epas1-deficient mice.
Figure 4: Effects of gain and loss of function of HIF-2α on endochondral ossification parameters in cultures of chondrogenic cells.
Figure 5: Contribution of HIF-2α to osteoarthritis development in mice and humans.
Figure 6: Upstream mechanism that regulates HIF-2α.

Similar content being viewed by others

References

  1. Kronenberg, H.M. Developmental regulation of the growth plate. Nature 423, 332–336 (2003).

    Article  CAS  Google Scholar 

  2. Kühn, K., D'Lima, D.D., Hashimoto, S. & Lotz, M. Cell death in cartilage. Osteoarthritis Cartilage 12, 1–16 (2004).

    Article  Google Scholar 

  3. Kawaguchi, H. Endochondral ossification signals in cartilage degradation during osteoarthritis progression in experimental mouse models. Mol. Cells 25, 1–6 (2008).

    CAS  PubMed  Google Scholar 

  4. Kamekura, S. et al. Osteoarthritis development in novel experimental mouse models induced by knee joint instability. Osteoarthritis Cartilage 13, 632–641 (2005).

    Article  CAS  Google Scholar 

  5. Kamekura, S. et al. Contribution of runt-related transcription factor 2 to the pathogenesis of osteoarthritis in mice after induction of knee joint instability. Arthritis Rheum. 54, 2462–2470 (2006).

    Article  CAS  Google Scholar 

  6. Yamada, T. et al. Carminerin contributes to chondrocyte calcification during endochondral ossification. Nat. Med. 12, 665–670 (2006).

    Article  CAS  Google Scholar 

  7. Drissi, H., Zuscik, M., Rosier, R. & O'Keefe, R. Transcriptional regulation of chondrocyte maturation: potential involvement of transcription factors in OA pathogenesis. Mol. Aspects Med. 26, 169–179 (2005).

    Article  CAS  Google Scholar 

  8. Ortega, N., Behonick, D.J. & Werb, Z. Matrix remodeling during endochondral ossification. Trends Cell Biol. 14, 86–93 (2004).

    Article  CAS  Google Scholar 

  9. Stickens, D. et al. Altered endochondral bone development in matrix metalloproteinase 13–deficient mice. Development 131, 5883–5895 (2004).

    Article  CAS  Google Scholar 

  10. Zelzer, E. et al. VEGFA is necessary for chondrocyte survival during bone development. Development 131, 2161–2171 (2004).

    Article  CAS  Google Scholar 

  11. Semenza, G.L. HIF-1 and human disease: one highly involved factor. Genes Dev. 14, 1983–1991 (2000).

    CAS  PubMed  Google Scholar 

  12. Schofield, C.J. & Ratcliffe, P.J. Oxygen sensing by HIF hydroxylases. Nat. Rev. Mol. Cell Biol. 5, 343–354 (2004).

    Article  CAS  Google Scholar 

  13. Lando, D., Peet, D.J., Whelan, D.A., Gorman, J.J. & Whitelaw, M.L. Asparagine hydroxylation of the HIF transactivation domain a hypoxic switch. Science 295, 858–861 (2002).

    Article  CAS  Google Scholar 

  14. Pfander, D., Cramer, T., Schipani, E. & Johnson, R.S. HIF-1α controls extracellular matrix synthesis by epiphyseal chondrocytes. J. Cell Sci. 116, 1819–1826 (2003).

    Article  CAS  Google Scholar 

  15. Schipani, E. Hypoxia and HIF-1α in chondrogenesis. Ann. NY Acad. Sci. 1068, 66–73 (2006).

    Article  CAS  Google Scholar 

  16. Schipani, E. et al. Hypoxia in cartilage: HIF-1α is essential for chondrocyte growth arrest and survival. Genes Dev. 15, 2865–2876 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Patel, S.A. & Simon, M.C. Biology of hypoxia-inducible factor-2α in development and disease. Cell Death Differ. 15, 628–634 (2008).

    Article  CAS  Google Scholar 

  18. O'Rourke, J.F., Tian, Y.M., Ratcliffe, P.J. & Pugh, C.W. Oxygen-regulated and transactivating domains in endothelial PAS protein 1: comparison with hypoxia-inducible factor-1α. J. Biol. Chem. 274, 2060–2071 (1999).

    Article  CAS  Google Scholar 

  19. Jain, S., Maltepe, E., Lu, M.M., Simon, C. & Bradfield, C.A. Expression of ARNT, ARNT2, HIF1 α, HIF2 α and Ah receptor mRNAs in the developing mouse. Mech. Dev. 73, 117–123 (1998).

    Article  CAS  Google Scholar 

  20. Tian, H., Hammer, R.E., Matsumoto, A.M., Russell, D.W. & McKnight, S.L. The hypoxia-responsive transcription factor EPAS1 is essential for catecholamine homeostasis and protection against heart failure during embryonic development. Genes Dev. 12, 3320–3324 (1998).

    Article  CAS  Google Scholar 

  21. Scortegagna, M. et al. Multiple organ pathology, metabolic abnormalities and impaired homeostasis of reactive oxygen species in Epas1−/− mice. Nat. Genet. 35, 331–340 (2003).

    Article  CAS  Google Scholar 

  22. Komori, T. Regulation of skeletal development by the Runx family of transcription factors. J. Cell. Biochem. 95, 445–453 (2005).

    Article  CAS  Google Scholar 

  23. Arnold, M.A. et al. MEF2C transcription factor controls chondrocyte hypertrophy and bone development. Dev. Cell 12, 377–389 (2007).

    Article  CAS  Google Scholar 

  24. Magee, C., Nurminskaya, M., Faverman, L., Galera, P. & Linsenmayer, T.F. SP3/SP1 transcription activity regulates specific expression of collagen type X in hypertrophic chondrocytes. J. Biol. Chem. 280, 25331–25338 (2005).

    Article  CAS  Google Scholar 

  25. Pescador, N. et al. Identification of a functional hypoxia-responsive element that regulates the expression of the egl nine homologue 3 (egln3/phd3) gene. Biochem. J. 390, 189–197 (2005).

    Article  CAS  Google Scholar 

  26. Pritzker, K.P. et al. Osteoarthritis cartilage histopathology: grading and staging. Osteoarthritis Cartilage 14, 13–29 (2006).

    Article  CAS  Google Scholar 

  27. Muraki, S. et al. Prevalence of radiographic knee osteoarthritis and its association with knee pain in the elderly of Japanese population–based cohorts: the ROAD study. Osteoarthritis Cartilage 17, 1137–1143 (2009).

    Article  CAS  Google Scholar 

  28. Li, Q. & Verma, I.M. NF-κB regulation in the immune system. Nat. Rev. Immunol. 2, 725–734 (2002).

    Article  CAS  Google Scholar 

  29. Stewart, A.J., Houston, B. & Farquharson, C. Elevated expression of hypoxia inducible factor-2α in terminally differentiating growth plate chondrocytes. J. Cell. Physiol. 206, 435–440 (2006).

    Article  CAS  Google Scholar 

  30. Amarilio, R. et al. HIF1α regulation of Sox9 is necessary to maintain differentiation of hypoxic prechondrogenic cells during early skeletogenesis. Development 134, 3917–3928 (2007).

    Article  CAS  Google Scholar 

  31. Bohensky, J. et al. Regulation of autophagy in human and murine cartilage: hypoxia-inducible factor 2 suppresses chondrocyte autophagy. Arthritis Rheum. 60, 1406–1415 (2009).

    Article  Google Scholar 

  32. Srinivas, V., Bohensky, J., Zahm, A.M. & Shapiro, I.M. Autophagy in mineralizing tissues: microenvironmental perspectives. Cell Cycle 8, 391–393 (2009).

    Article  CAS  Google Scholar 

  33. Gress, C.J. & Jacenko, O. Growth plate compressions and altered hematopoiesis in collagen X null mice. J. Cell Biol. 149, 983–993 (2000).

    Article  CAS  Google Scholar 

  34. Kwan, K.M. et al. Abnormal compartmentalization of cartilage matrix components in mice lacking collagen X: implications for function. J. Cell Biol. 136, 459–471 (1997).

    Article  CAS  Google Scholar 

  35. Rosati, R. et al. Normal long bone growth and development in type X collagen–null mice. Nat. Genet. 8, 129–135 (1994).

    Article  CAS  Google Scholar 

  36. Tamiya, H. et al. Analysis of the Runx2 promoter in osseous and non-osseous cells and identification of HIF2A as a potent transcription activator. Gene 416, 53–60 (2008).

    Article  CAS  Google Scholar 

  37. Echtermeyer, F. et al. Syndecan-4 regulates ADAMTS-5 activation and cartilage breakdown in osteoarthritis. Nat. Med. 15, 1072–1076 (2009).

    Article  CAS  Google Scholar 

  38. Glasson, S.S. et al. Deletion of active ADAMTS5 prevents cartilage degradation in a murine model of osteoarthritis. Nature 434, 644–648 (2005).

    Article  CAS  Google Scholar 

  39. Lin, A.C. et al. Modulating hedgehog signaling can attenuate the severity of osteoarthritis. Nat. Med. 15, 1421–1425 (2009).

    Article  CAS  Google Scholar 

  40. Stanton, H. et al. ADAMTS5 is the major aggrecanase in mouse cartilage in vivo and in vitro. Nature 434, 648–652 (2005).

    Article  CAS  Google Scholar 

  41. Little, C.B. et al. Matrix metalloproteinase 13-deficient mice are resistant to osteoarthritic cartilage erosion but not chondrocyte hypertrophy or osteophyte development. Arthritis Rheum. 60, 3723–3733 (2009).

    Article  CAS  Google Scholar 

  42. Iliopoulos, D., Malizos, K.N., Oikonomou, P. & Tsezou, A. Integrative microRNA and proteomic approaches identify novel osteoarthritis genes and their collaborative metabolic and inflammatory networks. PLoS One 3, e3740 (2008).

    Article  Google Scholar 

  43. Saito, T., Ikeda, T., Nakamura, K., Chung, U.I. & Kawaguchi, H. S100A1 and S100B, transcriptional targets of SOX trio, inhibit terminal differentiation of chondrocytes. EMBO Rep. 8, 504–509 (2007).

    Article  CAS  Google Scholar 

  44. Maemura, K. et al. Generation of a dominant-negative mutant of endothelial PAS domain protein 1 by deletion of a potent C-terminal transactivation domain. J. Biol. Chem. 274, 31565–31570 (1999).

    Article  CAS  Google Scholar 

  45. Ueta, C. et al. Skeletal malformations caused by overexpression of Cbfa1 or its dominant negative form in chondrocytes. J. Cell Biol. 153, 87–100 (2001).

    Article  CAS  Google Scholar 

  46. Miyagishi, M. & Taira, K. RNAi expression vectors in mammalian cells. Methods Mol. Biol. 252, 483–491 (2004).

    CAS  PubMed  Google Scholar 

  47. Kitamura, T. New experimental approaches in retrovirus-mediated expression screening. Int. J. Hematol. 67, 351–359 (1998).

    Article  CAS  Google Scholar 

  48. Morita, S., Kojima, T. & Kitamura, T. Plat-E: an efficient and stable system for transient packaging of retroviruses. Gene Ther. 7, 1063–1066 (2000).

    Article  CAS  Google Scholar 

  49. Parfitt, A.M. et al. Bone histomorphometry: standardization of nomenclature, symbols, and units. Report of the ASBMR Histomorphometry Nomenclature Committee. J. Bone Miner. Res. 2, 595–610 (1987).

    Article  CAS  Google Scholar 

  50. Mankin, H.J., Dorfman, H., Lippiello, L. & Zarins, A. Biochemical and metabolic abnormalities in articular cartilage from osteo-arthritic human hips. II. Correlation of morphology with biochemical and metabolic data. J. Bone Joint Surg. Am. 53, 523–537 (1971).

    Article  CAS  Google Scholar 

  51. Ostergaard, K., Andersen, C.B., Petersen, J., Bendtzen, K. & Salter, D.M. Validity of histopathological grading of articular cartilage from osteoarthritic knee joints. Ann. Rheum. Dis. 58, 208–213 (1999).

    Article  CAS  Google Scholar 

  52. Kellgren, J.H. & Lawrence, J.S. Radiological assessment of osteo-arthrosis. Ann. Rheum. Dis. 16, 494–502 (1957).

    Article  CAS  Google Scholar 

  53. Hirata, M. et al. C/EBPβ promotes transition from proliferation to hypertrophic differentiation of chondrocytes through transactivation of p57. PLoS One 4, e4543 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

We thank R. Yamaguchi and H. Kawahara for technical assistance. This study was supported by a grant-in-aid for Scientific Research from the Japanese Ministry of Education, Culture, Sports, Science and Technology (19109007 and 20689028). The sponsor had no role in study design, data collection, data analysis, data interpretation or writing of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

T.S., T.I. and H.K. performed project planning; T.S., A.F., A.M., F.Y. and S.O. performed the experiments; T.S., A.M., N.N., T.A., N.Y., T.N., K.N., K.T., U.-i.C. and H.K. conducted data analysis; T.S. and H.K. wrote the manuscript.

Corresponding author

Correspondence to Hiroshi Kawaguchi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 and Supplementary Table 1 (PDF 2889 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saito, T., Fukai, A., Mabuchi, A. et al. Transcriptional regulation of endochondral ossification by HIF-2α during skeletal growth and osteoarthritis development. Nat Med 16, 678–686 (2010). https://doi.org/10.1038/nm.2146

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.2146

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing