Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Biomarkers of abdominal aortic aneurysm progression. Part 2: inflammation

Abstract

Defining progression of abdominal aortic aneurysm (AAA) is complicated by several factors, including measurement error, duration of follow-up, and the imaging modality used to assess AAA expansion. Investigations of biomarkers of AAA progression should be standardized so that valid comparisons can be made. Previous research has shown some promising advances towards identifying a reliable and individual predictor of AAA progression. In this second part of our Review on biomarkers of AAA progression, we examine direct and indirect markers of inflammation including various cytokines, C-reactive protein, activators of tissue plasminogen activator and urokinase plasminogen activator, and osteopontin.

Key Points

  • Progression of abdominal aortic aneurysm (AAA) is best measured by the yearly change in maximal anterior–posterior abdominal aortic diameter, determined by a consistent imaging modality corrected for measurement error

  • Inflammation is a key disease process in AAA

  • Extracellular matrix degeneration and inflammation are closely related in AAA

  • Circulating levels of the markers of inflammation interferon γ, macrophage migratory inhibition factor and osteopontin are potential biomarkers of AAA progression that have biological plausibility

  • Activators of tissue plasminogen activator and urokinase plasminogen activator, including homocysteine, cotinine, and immunoglobulins against Chlamydia pneumoniae, are potential biomarkers of AAA with biological plausibility

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic diagram of the mechanisms implicated in abdominal aortic aneurysm (AAA), which primarily involves two main processes: inflammation and extracellular matrix turnover.

Similar content being viewed by others

References

  1. van der Vliet, J. A. & Boll, A. P. Abdominal aortic aneurysm. Lancet 349, 863–866 (1997).

    Article  CAS  PubMed  Google Scholar 

  2. Sakalihasan, N., Limet, R. & Defawe, O. D. Abdominal aortic aneurysm. Lancet 365, 1577–1589 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. [No authors listed] Mortality results for randomised controlled trial of early elective surgery or ultrasonographic surveillance for small abdominal aortic aneurysms. The UK Small Aneurysm Trial Participants. Lancet 352, 1649–1655 (1998).

  4. Hellenthal, F. A., Geenen, I. L., Teijink, J. A., Heeneman, S. & Schurink, G. W. Histological features of human abdominal aortic aneurysm are not related to clinical characteristics. Cardiovasc. Pathol. doi:10.1016/j.carpath.2008.06.014.

    Article  PubMed  Google Scholar 

  5. Hellenthal, F. A., Buurman, W. A., Wodzig, W. K. & Schurink, G. W. Biomarkers of AAA progression. Part 1: extracellular matrix degeneration. Nat. Rev. Cardiol. doi:10.1038/nrcardio.2009.80

    Article  CAS  PubMed  Google Scholar 

  6. Juvonen, J. et al. Elevated circulating levels of inflammatory cytokines in patients with abdominal aortic aneurysm. Arterioscler. Thromb. Vasc. Biol. 17, 2843–2847 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Newman, K. M., Jean-Claude, J., Li, H., Ramey, W. G. & Tilson, M. D. Cytokines that activate proteolysis are increased in abdominal aortic aneurysms. Circulation 90, II224–II227 (1994).

    CAS  PubMed  Google Scholar 

  8. Shimizu, K., Libby, P. & Mitchell, R. N. Local cytokine environments drive aneurysm formation in allografted aortas. Trends Cardiovasc. Med. 15, 142–148 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Freestone, T. et al. Inflammation and matrix metalloproteinases in the enlarging abdominal aortic aneurysm. Arterioscler. Thromb. Vasc. Biol. 15, 1145–1151 (1995).

    Article  CAS  PubMed  Google Scholar 

  10. Schönbeck, U., Sukhova, G. K., Gerdes, N. & Libby, P. TH2 predominant immune responses prevail in human abdominal aortic aneurysm. Am. J. Pathol. 161, 499–506 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Shimizu, K., Mitchell, R. N. & Libby, P. Inflammation and cellular immune responses in abdominal aortic aneurysms. Arterioscler. Thromb. Vasc. Biol. 26, 987–994 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Parks, W. C., Wilson, C. L. & Lopez-Boado, Y. S. Matrix metalloproteinases as modulators of inflammation and innate immunity. Nat. Rev. Immunol. 4, 617–629 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Pearce, W. H. & Koch, A. E. Cellular components and features of immune response in abdominal aortic aneurysms. Ann. NY Acad. Sci. 800, 175–185 (1996).

    Article  CAS  PubMed  Google Scholar 

  14. Folkesson, M. et al. Presence of NGAL/MMP-9 complexes in human abdominal aortic aneurysms. Thromb. Haemost. 98, 427–433 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Okusawa, S., Gelfand, J. A., Ikejima, T., Connolly, R. J. & Dinarello, C. A. Interleukin 1 induces a shock-like state in rabbits. Synergism with tumor necrosis factor and the effect of cyclooxygenase inhibition. J. Clin. Invest. 81, 1162–1172 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tomosugi, N. I. et al. Modulation of antibody-mediated glomerular injury in vivo by bacterial lipopolysaccharide, tumor necrosis factor, and IL-1. J. Immunol. 142, 3083–3090 (1989).

    CAS  PubMed  Google Scholar 

  17. Hiraga, S. et al. Modulation of collagen synthesis by tumor necrosis factor α in cultured vascular smooth muscle cells. Life Sci. 66, 235–244 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Treska, V., Topolcan, O. & Pecen, L. Cytokines as plasma markers of abdominal aortic aneurysm. Clin. Chem. Lab. Med. 38, 1161–1164 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Rohde, L. E. et al. Plasma concentrations of interleukin-6 and abdominal aortic diameter among subjects without aortic dilatation. Arterioscler. Thromb. Vasc. Biol. 19, 1695–1699 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Pearce, W. H., Sweis, I., Yao, J. S., McCarthy, W. J. & Koch, A. E. Interleukin-1β and tumor necrosis factor-α release in normal and diseased human infrarenal aortas. J. Vasc. Surg. 16, 784–789 (1992).

    Article  CAS  PubMed  Google Scholar 

  21. Shi, G. P. et al. Cystatin C deficiency in human atherosclerosis and aortic aneurysms. J. Clin. Invest. 104, 1191–1197 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gambarin, F. I. et al. Rationale and design of a trial evaluating the effects of losartan vs. nebivolol vs. the association of both on the progression of aortic root dilation in Marfan syndrome with FBN1 gene mutations. J. Cardiovasc. Med. (Hagerstown) 10, 354–362 (2009).

    Article  Google Scholar 

  23. Lindholt, J. S., Jorgensen, B., Shi, G. P. & Henneberg, E. W. Relationships between activators and inhibitors of plasminogen, and the progression of small abdominal aortic aneurysms. Eur. J. Vasc. Endovasc. Surg. 25, 546–551 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Flondell-Sité, D., Lindblad, B., Kölbel, T. & Gottsäter, A. Cytokines and systemic biomarkers are related to the size of abdominal aortic aneurysms. Cytokine 46, 211–215 (2009).

    Article  PubMed  CAS  Google Scholar 

  25. Bloom, B. R. & Bennett, B. Mechanism of a reaction in vitro associated with delayed-type hypersensitivity. Science 153, 80–82 (1966).

    Article  CAS  PubMed  Google Scholar 

  26. Calandra, T., Bernhagen, J., Mitchell, R. A. & Bucala, R. The macrophage is an important and previously unrecognized source of macrophage migration inhibitory factor. J. Exp. Med. 179, 1895–1902 (1994).

    Article  CAS  PubMed  Google Scholar 

  27. Bacher, M. et al. An essential regulatory role for macrophage migration inhibitory factor in T-cell activation. Proc. Natl Acad. Sci. USA 93, 7849–7854 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Takahashi, N. et al. Involvement of macrophage migration inhibitory factor (MIF) in the mechanism of tumor cell growth. Mol. Med. 4, 707–714 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chesney, J. et al. An essential role for macrophage migration inhibitory factor (MIF) in angiogenesis and the growth of a murine lymphoma. Mol. Med. 5, 181–191 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Onodera, S. et al. Macrophage migration inhibitory factor up-regulates expression of matrix metalloproteinases in synovial fibroblasts of rheumatoid arthritis. J. Biol. Chem. 275, 444–450 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Meyer-Siegler, K. Macrophage migration inhibitory factor increases MMP-2 activity in DU-145 prostate cells. Cytokine 12, 914–921 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Pan, J. H. et al. Macrophage migration inhibitory factor is associated with aneurysmal expansion. J. Vasc. Surg. 37, 628–635 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Jono, S. et al. Serum osteoprotegerin levels are associated with the presence and severity of coronary artery disease. Circulation 106, 1192–1194 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Kiechl, S. et al. Osteoprotegerin is a risk factor for progressive atherosclerosis and cardiovascular disease. Circulation 109, 2175–2180 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Zhang, J. et al. PDGF induces osteoprotegerin expression in vascular smooth muscle cells by multiple signal pathways. FEBS Lett. 521, 180–184 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Daugherty, A. & Cassis, L. Angiotensin II-mediated development of vascular diseases. Trends Cardiovasc. Med. 14, 117–120 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Nishimoto, M. et al. Increased local angiotensin II formation in aneurysmal aorta. Life Sci. 71, 2195–2205 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Deng, G. G. et al. Urokinase-type plasminogen activator plays a critical role in angiotensin II-induced abdominal aortic aneurysm. Circ. Res. 92, 510–517 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Moran, C. S. et al. Association of osteoprotegerin with human abdominal aortic aneurysm progression. Circulation 111, 3119–3125 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Zuegg, J., Webb, D. C., Foster, P. S. & Casarotto, M. G. Structural model of human IL-13 defines the spatial interactions with the IL-13Rα/IL-4Rα receptor. Immunol. Cell Biol. 79, 332–339 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Jordan, N. J. et al. Chemokine production by human vascular smooth muscle cells: modulation by IL-13. Br. J. Pharmacol. 122, 749–757 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Brown, M. A. & Hural, J. Functions of IL-4 and control of its expression. Crit. Rev. Immunol. 17, 1–32 (1997).

    Article  CAS  PubMed  Google Scholar 

  43. Elser, B. et al. IFN-γ represses IL-4 expression via IRF-1 and IRF-2. Immunity 17, 703–712 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. Soong, C. V. et al. Bowel ischaemia and organ impairment in elective abdominal aortic aneurysm repair. Br. J. Surg. 81, 965–968 (1994).

    Article  CAS  PubMed  Google Scholar 

  45. Sun, J. et al. Mast cells modulate the pathogenesis of elastase-induced abdominal aortic aneurysms in mice. J. Clin. Invest. 117, 3359–3368 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Walton, L. J. et al. Inhibition of prostaglandin E2 synthesis in abdominal aortic aneurysms: implications for smooth muscle cell viability, inflammatory processes, and the expansion of abdominal aortic aneurysms. Circulation 100, 48–54 (1999).

    Article  CAS  PubMed  Google Scholar 

  47. Swartbol, P., Truedsson, L. & Norgren, L. Adverse reactions during endovascular treatment of aortic aneurysms may be triggered by interleukin 6 release from the thrombotic content. J. Vasc. Surg. 28, 664–668 (1998).

    Article  CAS  PubMed  Google Scholar 

  48. Jones, K. G. et al. Interleukin-6 (IL-6) and the prognosis of abdominal aortic aneurysms. Circulation 103, 2260–2265 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Karlsson, L., Bergqvist, D., Lindback, J. & Parsson, H. Expansion of small-diameter abdominal aortic aneurysms is not reflected by the release of inflammatory mediators IL-6, MMP-9 and CRP in plasma. Eur. J. Vasc. Endovasc. Surg. 37, 420–424 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. Ridker, P. M., Cushman, M., Stampfer, M. J., Tracy, R. P. & Hennekens, C. H. Plasma concentration of C-reactive protein and risk of developing peripheral vascular disease. Circulation 97, 425–428 (1998).

    Article  CAS  PubMed  Google Scholar 

  51. Ridker, P. M., Hennekens, C. H., Buring, J. E. & Rifai, N. C-reactive protein and other markers of inflammation in the prediction of cardiovascular disease in women. N. Engl. J. Med. 342, 836–843 (2000).

    Article  CAS  PubMed  Google Scholar 

  52. Powell, J. T., Muller, B. R. & Greenhalgh, R. M. Acute phase proteins in patients with abdominal aortic aneurysms. J. Cardiovasc. Surg. (Torino) 28, 528–530 (1987).

    CAS  Google Scholar 

  53. Ridker, P. M. et al. C-reactive protein levels and outcomes after statin therapy. N. Engl. J. Med. 352, 20–28 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. Vainas, T. et al. Serum C-reactive protein level is associated with abdominal aortic aneurysm size and may be produced by aneurysmal tissue. Circulation 107, 1103–1105 (2003).

    Article  PubMed  Google Scholar 

  55. Wanhainen, A. et al. Risk factors associated with abdominal aortic aneurysm: a population-based study with historical and current data. J. Vasc. Surg. 41, 390–396 (2005).

    Article  PubMed  Google Scholar 

  56. Domanovits, H. et al. Acute phase reactants in patients with abdominal aortic aneurysm. Atherosclerosis 163, 297–302 (2002).

    Article  CAS  PubMed  Google Scholar 

  57. Wood, W. G. et al. Evaluation of a sensitive immunoluminometric assay for the determination of C-reactive protein (CRP) in serum and plasma and the establishment of reference ranges for different groups of subjects. Clin. Lab. 46, 131–140 (2000).

    CAS  PubMed  Google Scholar 

  58. Norman, P., Spencer, C. A., Lawrence-Brown, M. M. & Jamrozik, K. C-reactive protein levels and the expansion of screen-detected abdominal aortic aneurysms in men. Circulation 110, 862–866 (2004).

    Article  CAS  PubMed  Google Scholar 

  59. Lindholt, J. S., Erlandsen, E. J. & Henneberg, E. W. Cystatin C deficiency is associated with the progression of small abdominal aortic aneurysms. Br. J. Surg. 88, 1472–1475 (2001).

    Article  CAS  PubMed  Google Scholar 

  60. Vega de Ceniga, M. et al. Search for serum biomarkers associated with abdominal aortic aneurysm growth—a pilot study. Eur. J. Vasc. Endovasc. Surg. 37, 297–299 (2009).

    Article  CAS  PubMed  Google Scholar 

  61. Benowitz, N. L. Clinical pharmacology of nicotine: implications for understanding, preventing, and treating tobacco addiction. Clin. Pharmacol. Ther. 83, 531–541 (2008).

    Article  CAS  PubMed  Google Scholar 

  62. Brady, A. R., Thompson, S. G., Fowkes, F. G., Greenhalgh, R. M. & Powell, J. T. Abdominal aortic aneurysm expansion: risk factors and time intervals for surveillance. Circulation 110, 16–21 (2004).

    Article  PubMed  Google Scholar 

  63. Buckley, C. et al. Accelerated enlargement of experimental abdominal aortic aneurysms in a mouse model of chronic cigarette smoke exposure. J. Am. Coll. Surg. 199, 896–903 (2004).

    Article  PubMed  Google Scholar 

  64. Franks, P. J., Edwards, R. J., Greenhalgh, R. M. & Powell, J. T. Risk factors for abdominal aortic aneurysms in smokers. Eur. J. Vasc. Endovasc. Surg. 11, 487–492 (1996).

    Article  CAS  PubMed  Google Scholar 

  65. Cannon, D. J., Casteel, L. & Read, R. C. Abdominal aortic aneurysm, Leriche's syndrome, inguinal herniation, and smoking. Arch. Surg. 119, 387–389 (1984).

    Article  CAS  PubMed  Google Scholar 

  66. Kimura, S., Nishinaga, M., Ozawa, T. & Shimada, K. Thrombin generation as an acute effect of cigarette smoking. Am. Heart J. 128, 7–11 (1994).

    Article  CAS  PubMed  Google Scholar 

  67. Schneiderman, J. et al. Expression of fibrinolytic genes in atherosclerotic abdominal aortic aneurysm wall. A possible mechanism for aneurysm expansion. J. Clin. Invest. 96, 639–645 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. MacSweeney, S. T., Ellis, M., Worrell, P. C., Greenhalgh, R. M. & Powell, J. T. Smoking and growth rate of small abdominal aortic aneurysms. Lancet 344, 651–652 (1994).

    Article  CAS  PubMed  Google Scholar 

  69. Russell, R. E. et al. Release and activity of matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 by alveolar macrophages from patients with chronic obstructive pulmonary disease. Am. J. Respir. Cell. Mol. Biol. 26, 602–609 (2002).

    Article  CAS  PubMed  Google Scholar 

  70. Nordskog, B. K., Fields, W. R., Hellmann, G. M. Kinetic analysis of cytokine response to cigarette smoke condensate by human endothelial and monocytic cells. Toxicology 212, 87–97 (2005).

    Article  CAS  PubMed  Google Scholar 

  71. Byron, K. A., Varigos, G. A. & Wootton, A. M. IL-4 production is increased in cigarette smokers. Clin. Exp. Immunol. 95, 333–336 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Lindholt, J. S., Jorgensen, B., Klitgaard, N. A. & Henneberg, E. W. Systemic levels of cotinine and elastase, but not pulmonary function, are associated with the progression of small abdominal aortic aneurysms. Eur. J. Vasc. Endovasc. Surg. 26, 418–422 (2003).

    Article  CAS  PubMed  Google Scholar 

  73. Wilmink, T. B., Quick, C. R. & Day, N. E. The association between cigarette smoking and abdominal aortic aneurysms. J. Vasc. Surg. 30, 1099–1105 (1999).

    Article  CAS  PubMed  Google Scholar 

  74. Boushey, C. J., Beresford, S. A., Omenn, G. S. & Motulsky, A. G. A quantitative assessment of plasma homocysteine as a risk factor for vascular disease. Probable benefits of increasing folic acid intakes. JAMA 274, 1049–1057 (1995).

    Article  CAS  PubMed  Google Scholar 

  75. Brunelli, T. et al. High prevalence of mild hyperhomocysteinemia in patients with abdominal aortic aneurysm. J. Vasc. Surg. 32, 531–536 (2000).

    Article  CAS  PubMed  Google Scholar 

  76. Warsi, A. A., Davies, B., Morris-Stiff, G., Hullin, D. & Lewis, M. H. Abdominal aortic aneurysm and its correlation to plasma homocysteine and vitamins. Eur. J. Vasc. Endovasc. Surg. 27, 75–79 (2004).

    Article  CAS  PubMed  Google Scholar 

  77. Spark, J. I., Laws, P. & Fitridge, R. The incidence of hyperhomocysteinaemia in vascular patients. Eur. J. Vasc. Endovasc. Surg. 26, 558–561 (2003).

    Article  CAS  PubMed  Google Scholar 

  78. Strauss, E., Waliszewski, K., Gabriel, M., Zapalski, S. & Pawlak, A. L. Increased risk of the abdominal aortic aneurysm in carriers of the MTHFR 677T allele. J. Appl. Genet. 44, 85–93 (2003).

    PubMed  Google Scholar 

  79. Bescond, A. et al. Influence of homocysteine on matrix metalloproteinase-2: activation and activity. Biochem. Biophys. Res. Commun. 263, 498–503 (1999).

    Article  CAS  PubMed  Google Scholar 

  80. Sofi, F. et al. High levels of homocysteine, lipoprotein(a) and plasminogen activator inhibitor-1 are present in patients with abdominal aortic aneurysm. Thromb. Haemost. 94, 1094–1098 (2005).

    Article  CAS  PubMed  Google Scholar 

  81. Lindholt, J. S., Møller, J., Henneberg, E. W. & Scient, C. Mild hyperhomocysteinemia is associated with impaired renal function but not with progression of small abdominal aortic aneurysms. Int. J. Angiol. 11, 95–98 (2002).

    Article  Google Scholar 

  82. Halazun, K. J. et al. Hyperhomocysteinaemia is associated with the rate of abdominal aortic aneurysm expansion. Eur. J. Vasc. Endovasc. Surg. 33, 391–396 (2007).

    Article  CAS  PubMed  Google Scholar 

  83. O'Regan, A. & Fleming, C. Osteopontin as a biomarker for ovarian cancer. JAMA 287, 3208–3210 (2002).

    Article  PubMed  Google Scholar 

  84. Wang, K. X. & Denhardt, D. T. Osteopontin: role in immune regulation and stress responses. Cytokine Growth Factor Rev. 19, 333–345 (2008).

    Article  CAS  PubMed  Google Scholar 

  85. Golledge, J. et al. Association between osteopontin and human abdominal aortic aneurysm. Arterioscler. Thromb. Vasc. Biol. 27, 655–660 (2007).

    Article  CAS  PubMed  Google Scholar 

  86. Golledge, J., McCann, M., Mangan, S., Lam, A. & Karan, M. Osteoprotegerin and osteopontin are expressed at high concentrations within symptomatic carotid atherosclerosis. Stroke 35, 1636–1641 (2004).

    Article  CAS  PubMed  Google Scholar 

  87. Lai, C. F. et al. An osteopontin-NADPH oxidase signaling cascade promotes pro-matrix metalloproteinase 9 activation in aortic mesenchymal cells. Circ. Res. 98, 1479–1489 (2006).

    Article  CAS  PubMed  Google Scholar 

  88. Seipelt, R. G. et al. Osteopontin expression and adventitial angiogenesis induced by local vascular endothelial growth factor 165 reduces experimental aortic calcification. J. Thorac. Cardiovasc. Surg. 129, 773–781 (2005).

    Article  CAS  PubMed  Google Scholar 

  89. Urbonavicius, S. et al. Proteomic identification of differentially expressed proteins in aortic wall of patients with ruptured and nonruptured abdominal aortic aneurysms. J. Vasc. Surg. 49, 455–463 (2009).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Femke A. M. V. I. Hellenthal.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hellenthal, F., Buurman, W., Wodzig, W. et al. Biomarkers of abdominal aortic aneurysm progression. Part 2: inflammation. Nat Rev Cardiol 6, 543–552 (2009). https://doi.org/10.1038/nrcardio.2009.102

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2009.102

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing