Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Emerging roles for centromeres in meiosis I chromosome segregation

Key Points

  • Meiosis, the process by which haploid products are created from diploid precursors, is central to sexual reproduction.

  • Meiosis can be thought of as a modified mitotic division with notable modifications, including pairing and attachment of homologues, co-orientation of sister kinetochores in meiosis I and stepwise loss of cohesion.

  • Centromeres, the sites of kinetochore assembly and microtubule attachment, vary widely in sequence and size among different organisms, but retain similar structural properties.

  • Recent studies indicate that centromeres are central to meiotic chromosome segregation beyond their canonical role as the sites of spindle attachment.

  • Centromeres act as chromosome organizers to promote pairing, in which non-homologous centromere coupling seems to serve as an early step.

  • Centromeres organize a chromatin domain that is responsible for the protection of centromeric cohesion in meiosis I.

  • Centromeres serve as the basis for meiosis I sister kinetochore co-orientation.

  • Errors in meiotic segregation in humans result in infertility and Down syndrome. A portion of these errors results from centromere-proximal crossovers and premature loss of centromeric cohesion, pointing to defects in meiotic centromere function as a root cause of human disease and infertility.

Abstract

Centromeres are an essential and conserved feature of eukaryotic chromosomes, yet recent research indicates that we are just beginning to understand the numerous roles that centromeres have in chromosome segregation. During meiosis I, in particular, centromeres seem to function in many processes in addition to their canonical role in assembling kinetochores, the sites of microtubule attachment. Here we summarize recent advances that place centromeres at the centre of meiosis I, and discuss how these studies affect a variety of basic research fields and thus hold promise for increasing our understanding of human reproductive defects and disease states.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Comparison of mitosis and meiosis.
Figure 2: Comparison of the centromeres of budding yeast, fission yeast and humans.
Figure 3: Chromosome morphogenesis in meiotic prophase I.
Figure 4: Centromere clustering in prophase in budding yeast.
Figure 5: A model for the establishment of a protected domain of centromeric cohesion in budding yeast.
Figure 6: The role of kinetochore geometry in co-orientation in fission yeast.

Similar content being viewed by others

References

  1. Nasmyth, K. Disseminating the genome: joining, resolving, and separating sister chromatids during mitosis and meiosis. Annu. Rev. Genet. 35, 673–745 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Lee, B. & Amon, A. Meiosis: how to create a specialized cell cycle. Curr. Opin. Cell Biol. 13, 770–777 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Marston, A. L. & Amon, A. Meiosis: cell-cycle controls shuffle and deal. Nature Rev. Mol. Cell Biol. 5, 983–997 (2004).

    Article  CAS  Google Scholar 

  4. Sharp, L. Introduction to Cytology 3rd edn (McGraw-Hill, New York, 1934).

    Google Scholar 

  5. Fitzgerald-Hayes, M., Clarke, L. & Carbon, J. Nucleotide sequence comparisons and functional analysis of yeast centromere DNAs. Cell 29, 235–244 (1982). The authors conclude that a 25-bp sequence from budding yeast is sufficient for plasmid segregation. This sequence is conserved between chromosomes. This study is the first identification of a discrete centromere sequence.

    Article  CAS  PubMed  Google Scholar 

  6. Fitzgerald-Hayes, M., Buhler, J. M., Cooper, T. G. & Carbon, J. Isolation and subcloning analysis of functional centromere DNA (CEN11) from Saccharomyces cerevisiae chromosome XI. Mol. Cell Biol. 2, 82–87 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Malik, H. S. & Henikoff, S. Conflict begets complexity: the evolution of centromeres. Curr. Opin. Genet. Dev. 12, 711–718 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Zinkowski, R. P., Meyne, J. & Brinkley, B. R. The centromere–kinetochore complex: a repeat subunit model. J. Cell Biol. 113, 1091–1110 (1991).

    Article  CAS  PubMed  Google Scholar 

  9. Marschall, L. G. & Clarke, L. A novel cis-acting centromeric DNA element affects S. pombe centromeric chromatin structure at a distance. J. Cell Biol. 128, 445–454 (1995).

    Article  CAS  PubMed  Google Scholar 

  10. Yeh, E. et al. Pericentric chromatin is organized into an intramolecular loop in mitosis. Curr. Biol. 18, 81–90 (2008). This paper uses an elegant microscopic strategy to reveal the looped structure of budding yeast centromeres, showing cohesins to be a major determinant of this structure.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Blat, Y. & Kleckner, N. Cohesins bind to preferential sites along yeast chromosome III, with differential regulation along arms versus the centric region. Cell 98, 249–259 (1999).

    Article  CAS  PubMed  Google Scholar 

  12. Weber, S. A. et al. The kinetochore is an enhancer of pericentric cohesin binding. PLoS Biol. 2, E260 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Ekwall, K. Epigenetic control of centromere behavior. Annu. Rev. Genet. 41, 63–81 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. De Wulf, P., McAinsh, A. D. & Sorger, P. K. Hierarchical assembly of the budding yeast kinetochore from multiple subcomplexes. Genes Dev. 17, 2902–2921 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chan, G. K., Liu, S. T. & Yen, T. J. Kinetochore structure and function. Trends Cell Biol. 15, 589–598 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Cheeseman, I. M. & Desai, A. Molecular architecture of the kinetochore–microtubule interface. Nature Rev. Mol. Cell Biol. 9, 33–46 (2008).

    Article  CAS  Google Scholar 

  17. Musacchio, A. & Salmon, E. D. The spindle-assembly checkpoint in space and time. Nature Rev. Mol. Cell Biol. 8, 379–393 (2007).

    Article  CAS  Google Scholar 

  18. Westermann, S., Drubin, D. G. & Barnes, G. Structures and functions of yeast kinetochore complexes. Annu. Rev. Biochem. 76, 563–591 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Volpe, T. A. et al. Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science 297, 1833–1837 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Hall, I. M. et al. Establishment and maintenance of a heterochromatin domain. Science 297, 2232–2237 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Nakayama, J., Rice, J. C., Strahl, B. D., Allis, C. D. & Grewal, S. I. Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly. Science 292, 110–113 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Cleard, F., Delattre, M. & Spierer, P. SU(VAR)3-7, a Drosophila heterochromatin-associated protein and companion of HP1 in the genomic silencing of position-effect variegation. EMBO J. 16, 5280–5288 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Eskeland, R. et al. The N-terminus of Drosophila SU(VAR)3-9 mediates dimerization and regulates its methyltransferase activity. Biochemistry 43, 3740–3749 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Kiburz, B. M. et al. The core centromere and Sgo1 establish a 50-kb cohesin-protected domain around centromeres during meiosis I. Genes Dev. 19, 3017–3030 (2005). The authors use genome-wide location analysis to show the precise location of protected cohesins in meiosis I, which coincides with Sgo1 localization and covers 50 kb around each centromere. The authors also determine core centromeric sequences to be necessary and sufficient for assembly of this protected domain.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Megee, P. C. & Koshland, D. A functional assay for centromere-associated sister chromatid cohesion. Science 285, 254–257 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Megee, P. C., Mistrot, C., Guacci, V. & Koshland, D. The centromeric sister chromatid cohesion site directs Mcd1p binding to adjacent sequences. Mol. Cell 4, 445–450 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Zickler, D. & Kleckner, N. Meiotic chromosomes: integrating structure and function. Annu. Rev. Genet. 33, 603–754 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. McKee, B. D. Homologous pairing and chromosome dynamics in meiosis and mitosis. Biochim. Biophys. Acta 1677, 165–180 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Keeney, S. & Neale, M. J. Initiation of meiotic recombination by formation of DNA double-strand breaks: mechanism and regulation. Biochem. Soc. Trans. 34, 523–525 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Whitby, M. C. Making crossovers during meiosis. Biochem. Soc. Trans. 33, 1451–1455 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Zickler, D. & Kleckner, N. The leptotene–zygotene transition of meiosis. Annu. Rev. Genet. 32, 619–697 (1998).

    Article  CAS  PubMed  Google Scholar 

  32. Hawley, R. S. & Theurkauf, W. E. Requiem for distributive segregation: achiasmate segregation in Drosophila females. Trends Genet. 9, 310–317 (1993).

    Article  CAS  PubMed  Google Scholar 

  33. Grell, R. F. Distributive pairing: the size-dependent mechanism for regular segregation of the fourth chromosomes in Drosophila melanogaster. Proc. Natl Acad. Sci. USA 52, 226–232 (1964).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Guacci, V. & Kaback, D. B. Distributive disjunction of authentic chromosomes in Saccharomyces cerevisiae. Genetics 127, 475–488 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Maxfield Boumil, R., Kemp, B., Angelichio, M., Nilsson-Tillgren, T. & Dawson, D. S. Meiotic segregation of a homeologous chromosome pair. Mol. Genet. Genomics 268, 750–760 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Peoples-Holst, T. L. & Burgess, S. M. Multiple branches of the meiotic recombination pathway contribute independently to homolog pairing and stable juxtaposition during meiosis in budding yeast. Genes Dev. 19, 863–874 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tsubouchi, T. & Roeder, G. S. A synaptonemal complex protein promotes homology-independent centromere coupling. Science 308, 870–873 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Kemp, B., Boumil, R. M., Stewart, M. N. & Dawson, D. S. A role for centromere pairing in meiotic chromosome segregation. Genes Dev. 18, 1946–1951 (2004). This study uses budding yeast strains that have been engineered to carry homeologous copies of chromosome 5 as a model to investigate distributive segregation. The authors find that centromere association of the homeologues precedes and is required for their proper segregation in meiosis I.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Koehler, K. E., Hawley, R. S., Sherman, S. & Hassold, T. Recombination and nondisjunction in humans and flies. Hum. Mol. Genet. 5, 1495–1504 (1996).

    Article  CAS  PubMed  Google Scholar 

  40. Hawley, R. S. et al. There are two mechanisms of achiasmate segregation in Drosophila females, one of which requires heterochromatic homology. Dev. Genet. 13, 440–467 (1992).

    Article  CAS  PubMed  Google Scholar 

  41. Fung, J. C., Marshall, W. F., Dernburg, A., Agard, D. A. & Sedat, J. W. Homologous chromosome pairing in Drosophila melanogaster proceeds through multiple independent initiations. J. Cell Biol. 141, 5–20 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hiraoka, Y. et al. The onset of homologous chromosome pairing during Drosophila melanogaster embryogenesis. J. Cell Biol. 120, 591–600 (1993).

    Article  CAS  PubMed  Google Scholar 

  43. Karpen, G. H., Le, M. H. & Le, H. Centric heterochromatin and the efficiency of achiasmate disjunction in Drosophila female meiosis. Science 273, 118–122 (1996).

    Article  CAS  PubMed  Google Scholar 

  44. Dalal, Y., Furuyama, T., Vermaak, D. & Henikoff, S. Structure, dynamics, and evolution of centromeric nucleosomes. Proc. Natl Acad. Sci. USA 104, 15974–15981 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kusch, T. & Workman, J. L. Histone variants and complexes involved in their exchange. Subcell. Biochem. 41, 91–109 (2007).

    PubMed  Google Scholar 

  46. Maddox, P. S., Oegema, K., Desai, A. & Cheeseman, I. M. Holo'er than thou: chromosome segregation and kinetochore function in C. elegans. Chromosome Res. 12, 641–653 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. MacQueen, A. J. et al. Chromosome sites play dual roles to establish homologous synapsis during meiosis in C. elegans. Cell 123, 1037–1050 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Villeneuve, A. M. A cis-acting locus that promotes crossing over between X chromosomes in Caenorhabditis elegans. Genetics 136, 887–902 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. McKim, K. S., Peters, K. & Rose, A. M. Two types of sites required for meiotic chromosome pairing in Caenorhabditis elegans. Genetics 134, 749–768 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Phillips, C. M. et al. HIM-8 binds to the X chromosome pairing center and mediates chromosome-specific meiotic synapsis. Cell 123, 1051–1063 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Phillips, C. M. & Dernburg, A. F. A family of zinc-finger proteins is required for chromosome-specific pairing and synapsis during meiosis in C. elegans. Dev. Cell 11, 817–829 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Riley, R., Chapman, V. Genetic control of the cytologically diploid behaviour of hexaploid wheat. Nature 182, 713–715 (1958). The authors perform crosses of various wheat lines, identifying a general homeologous-pairing restriction activity that correlates with monosomy for a particular chromosome, later identified as chromosome 5.

    Article  Google Scholar 

  53. Wall, A. M., Riley, R., Gale, M. D. The position of a locus on chromosome 5B of Triticum aestivum affecting homeologous meiotic pairing. Genet. Res. 18, 329–339 (1971).

    Article  Google Scholar 

  54. Gill, K. S. & Gill, B. S. A DNA fragment mapped within the submicroscopic deletion of Ph1, a chromosome pairing regulator gene in polyploid wheat. Genetics 129, 257–259 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Griffiths, S. et al. Molecular characterization of Ph1 as a major chromosome pairing locus in polyploid wheat. Nature 439, 749–752 (2006).

    Article  CAS  PubMed  Google Scholar 

  56. Prieto, P., Moore, G. & Reader, S. Control of conformation changes associated with homologue recognition during meiosis. Theor. Appl. Genet. 111, 505–510 (2005).

    Article  PubMed  Google Scholar 

  57. Sidhu, G. K., Rustgi, S., Shafqat, M. N., von Wettstein, D. & Gill, K. S. Fine structure mapping of a gene-rich region of wheat carrying Ph1, a suppressor of crossing over between homoeologous chromosomes. Proc. Natl Acad. Sci. USA 105, 5815–5820 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Aragon-Alcaide, L. et al. Association of homologous chromosomes during floral development. Curr. Biol. 7, 905–908 (1997).

    Article  CAS  PubMed  Google Scholar 

  59. Aragon-Alcaide, L., Reader, S., Miller, T. & Moore, G. Centromeric behaviour in wheat with high and low homoeologous chromosomal pairing. Chromosoma 106, 327–333 (1997).

    Article  CAS  PubMed  Google Scholar 

  60. Martinez-Perez, E., Shaw, P., Aragon-Alcaide, L. & Moore, G. Chromosomes form into seven groups in hexaploid and tetraploid wheat as a prelude to meiosis. Plant J. 36, 21–29 (2003).

    Article  CAS  PubMed  Google Scholar 

  61. Martinez-Perez, E., Shaw, P. & Moore, G. The Ph1 locus is needed to ensure specific somatic and meiotic centromere association. Nature 411, 204–207 (2001).

    Article  CAS  PubMed  Google Scholar 

  62. Nasmyth, K. & Haering, C. H. The structure and function of SMC and kleisin complexes. Annu. Rev. Biochem. 74, 595–648 (2005).

    Article  CAS  PubMed  Google Scholar 

  63. Uhlmann, F. Chromosome cohesion and separation: from men and molecules. Curr. Biol. 13, R104–R114 (2003).

    Article  CAS  PubMed  Google Scholar 

  64. Yu, H. Regulation of APC–Cdc20 by the spindle checkpoint. Curr. Opin. Cell Biol. 14, 706–714 (2002).

    Article  CAS  PubMed  Google Scholar 

  65. Chen, R. H. Dual inhibition of Cdc20 by the spindle checkpoint. J. Biomed. Sci. 14, 475–479 (2007).

    Article  PubMed  Google Scholar 

  66. Shonn, M. A., McCarroll, R. & Murray, A. W. Requirement of the spindle checkpoint for proper chromosome segregation in budding yeast meiosis. Science 289, 300–303 (2000).

    Article  CAS  PubMed  Google Scholar 

  67. Craig, J. M. & Choo, K. H. Kiss and break up — a safe passage to anaphase in mitosis and meiosis. Chromosoma 114, 252–262 (2005).

    Article  PubMed  Google Scholar 

  68. Kitajima, T. S., Kawashima, S. A. & Watanabe, Y. The conserved kinetochore protein shugoshin protects centromeric cohesion during meiosis. Nature 427, 510–517 (2004). The authors identify Sgo1 in fission yeast as the protein responsible for protecting centromeric cohesion during meiosis I. The authors further determine Sgo1 to have homologues in many organisms, including the Drosophila protein MEIS-332, long known to be important for centromeric cohesion.

    Article  CAS  PubMed  Google Scholar 

  69. Riedel, C. G. et al. Protein phosphatase 2A protects centromeric sister chromatid cohesion during meiosis I. Nature 441, 53–61 (2006).

    Article  CAS  PubMed  Google Scholar 

  70. Tang, Z. et al. PP2A is required for centromeric localization of Sgo1 and proper chromosome segregation. Dev. Cell 10, 575–85 (2006).

    Article  CAS  PubMed  Google Scholar 

  71. Lee, B. H. & Amon, A. Role of Polo-like kinase CDC5 in programming meiosis I chromosome segregation. Science 300, 482–486 (2003).

    Article  CAS  PubMed  Google Scholar 

  72. Brar, G. A. et al. Rec8 phosphorylation and recombination promote the step-wise loss of cohesins in meiosis. Nature 441, 532–536 (2006).

    Article  CAS  PubMed  Google Scholar 

  73. Eckert, C. A., Gravdahl, D. J. & Megee, P. C. The enhancement of pericentromeric cohesin association by conserved kinetochore components promotes high-fidelity chromosome segregation and is sensitive to microtubule-based tension. Genes Dev. 21, 278–291 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kitajima, T. S., Yokobayashi, S., Yamamoto, M. & Watanabe, Y. Distinct cohesin complexes organize meiotic chromosome domains. Science 300, 1152–1155 (2003).

    Article  CAS  PubMed  Google Scholar 

  75. Koch, B., Kueng, S., Ruckenbauer, C., Wendt, K. S. & Peters, J. M. The Suv39h–HP1 histone methylation pathway is dispensable for enrichment and protection of cohesin at centromeres in mammalian cells. Chromosoma 117, 199–210 (2008).

    Article  PubMed  CAS  Google Scholar 

  76. Lopez, J. M., Karpen, G. H. & Orr-Weaver, T. L. Sister-chromatid cohesion via MEI-S332 and kinetochore assembly are separable functions of the Drosophila centromere. Curr. Biol. 10, 997–1000 (2000).

    Article  CAS  PubMed  Google Scholar 

  77. Lee, J. et al. Unified mode of centromeric protection by shugoshin in mammalian oocytes and somatic cells. Nature Cell Biol. 10, 42–52 (2008).

    Article  CAS  PubMed  Google Scholar 

  78. Hamant, O. et al. A REC8-dependent plant Shugoshin is required for maintenance of centromeric cohesion during meiosis and has no mitotic functions. Curr. Biol. 15, 948–954 (2005).

    Article  CAS  PubMed  Google Scholar 

  79. Winey, M., Morgan, G. P., Straight, P. D., Giddings, T. H. Jr & Mastronarde, D. N. Three-dimensional ultrastructure of Saccharomyces cerevisiae meiotic spindles. Mol. Biol. Cell 16, 1178–1188 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Suja, J. A., de la Torre, J., Gimenez-Abian, J. F., Garcia de la Vega, C. & Rufas, J. S. Meiotic chromosome structure. Kinetochores and chromatid cores in standard and B chromosomes of Arcyptera fusca (Orthoptera) revealed by silver staining. Genome 34, 19–27 (1991).

    Article  CAS  PubMed  Google Scholar 

  81. Goldstein, L. S. Kinetochore structure and its role in chromosome orientation during the first meiotic division in male D. melanogaster. Cell 25, 591–602 (1981).

    Article  CAS  PubMed  Google Scholar 

  82. Rabitsch, K. P. et al. Kinetochore recruitment of two nucleolar proteins is required for homolog segregation in meiosis I. Dev. Cell 4, 535–548 (2003).

    Article  CAS  PubMed  Google Scholar 

  83. Toth, A. et al. Functional genomics identifies monopolin: a kinetochore protein required for segregation of homologs during meiosis I. Cell 103, 1155–1168 (2000). The authors use a clever genetic strategy combined with genome-wide transcription analyses, to identify Mam1, a protein central to co-orientation of sister kinetochores in budding yeast.

    Article  CAS  PubMed  Google Scholar 

  84. Huang, J. et al. Inhibition of homologous recombination by a cohesin-associated clamp complex recruited to the rDNA recombination enhancer. Genes Dev. 20, 2887–2901 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Lo, H. C., Wan, L., Rosebrock, A., Futcher, B. & Hollingsworth, N. M. Cdc7–Dbf4 regulates NDT80 transcription as well as reductional segregation during budding yeast meiosis. Mol. Biol. Cell 3 Sep 2008 (doi:10.1091/mbc.E08-07-0755).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Clyne, R. K. et al. Polo-like kinase Cdc5 promotes chiasmata formation and cosegregation of sister centromeres at meiosis I. Nature Cell Biol. 5, 480–485 (2003).

    Article  CAS  PubMed  Google Scholar 

  87. Monje-Casas, F., Prabhu, V. R., Lee, B. H., Boselli, M. & Amon, A. Kinetochore orientation during meiosis is controlled by Aurora B and the monopolin complex. Cell 128, 477–490 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Lee, B. H., Kiburz, B. M. & Amon, A. Spo13 maintains centromeric cohesion and kinetochore coorientation during meiosis I. Curr. Biol. 14, 2168–2182 (2004).

    Article  CAS  PubMed  Google Scholar 

  89. Katis, V. L. et al. Spo13 facilitates monopolin recruitment to kinetochores and regulates maintenance of centromeric cohesion during yeast meiosis. Curr. Biol. 14, 2183–2196 (2004).

    Article  CAS  PubMed  Google Scholar 

  90. Petronczki, M. et al. Monopolar attachment of sister kinetochores at meiosis I requires casein kinase 1. Cell 126, 1049–1064 (2006).

    Article  CAS  PubMed  Google Scholar 

  91. Watanabe, Y. A one-sided view of kinetochore attachment in meiosis. Cell 126, 1030–1032 (2006).

    Article  CAS  PubMed  Google Scholar 

  92. Yokobayashi, S. & Watanabe, Y. The kinetochore protein Moa1 enables cohesion-mediated monopolar attachment at meiosis I. Cell 123, 803–817 (2005). The authors identify the fission yeast sister-kinetochore co-orientation factor, Moa1, which acts partially through collaboration with cohesins. The authors further establish the importance of centromeric cohesins in proper kinetochore orientation: they force premature cleavage of centromeric Rec8 with a protease tethered to the core centromere region, which results in cells that erroneously bi-orient sister kinetechores in meiosis I.

    Article  CAS  PubMed  Google Scholar 

  93. Chelysheva, L. et al. AtREC8 and AtSCC3 are essential to the monopolar orientation of the kinetochores during meiosis. J. Cell Sci. 118, 4621–4632 (2005).

    Article  CAS  PubMed  Google Scholar 

  94. Hassold, T. & Hunt, P. To err (meiotically) is human: the genesis of human aneuploidy. Nature Rev. Genet. 2, 280–291 (2001).

    Article  CAS  PubMed  Google Scholar 

  95. Hunt, P. A. & Hassold, T. J. Sex matters in meiosis. Science 296, 2181–2183 (2002).

    Article  CAS  PubMed  Google Scholar 

  96. Hunt, P. A. & Hassold, T. J. Human female meiosis: what makes a good egg go bad? Trends Genet. 24, 86–93 (2008).

    Article  CAS  PubMed  Google Scholar 

  97. Sherman, S. L., Lamb, N. E. & Feingold, E. Relationship of recombination patterns and maternal age among non-disjoined chromosomes 21. Biochem. Soc. Trans. 34, 578–580 (2006).

    Article  CAS  PubMed  Google Scholar 

  98. Cherry, J. M. et al. Genetic and physical maps of Saccharomyces cerevisiae. Nature 387, 67–73 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Chen, S. Y. et al. Global analysis of the meiotic crossover landscape. Dev. Cell 15, 401–415 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Rockmill, B., Voelkel-Meiman, K. & Roeder, G. S. Centromere-proximal crossovers are associated with precocious separation of sister chromatids during meiosis in Saccharomyces cerevisiae. Genetics 174, 1745–1754 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Vialard, F. et al. Evidence of a high proportion of premature unbalanced separation of sister chromatids in the first polar bodies of women of advanced age. Hum. Reprod. 21, 1172–1178 (2006).

    Article  CAS  PubMed  Google Scholar 

  102. Pellestor, F., Andreo, B., Arnal, F., Humeau, C. & De-maille, J. Maternal aging and chromosomal abnormalities: new data drawn from in vitro unfertilized human oocytes. Hum. Genet. 112, 195–203 (2003).

    Article  PubMed  Google Scholar 

  103. Pellestor, F., Andreo, B., Arnal, F., Humeau, C. & De-maille, J. Mechanisms of non-disjunction in human female meiosis: the co-existence of two modes of malsegregation evidenced by the karyotyping of 1,397 in-vitro unfertilized oocytes. Hum. Reprod. 17, 2134–2145 (2002).

    Article  PubMed  Google Scholar 

  104. Wolstenholme, J. & Angell, R. R. Maternal age and trisomy — a unifying mechanism of formation. Chromosoma 109, 435–438 (2000).

    Article  CAS  PubMed  Google Scholar 

  105. Hodges, C. A., Revenkova, E., Jessberger, R., Hassold, T. J. & Hunt, P. A. SMC1beta-deficient female mice provide evidence that cohesins are a missing link in age-related nondisjunction. Nature Genet. 37, 1351–1355 (2005). This paper finds that cohesin-deficient mice show meiotic segregation errors that phenocopy age-related errors that are observed in humans. The results provide an intriguing hint to the cause of 'the age effect', in which meiotic missegregation dramatically increases with maternal age.

    Article  CAS  PubMed  Google Scholar 

  106. Carlile, T. M. & Amon, A. Meiosis I is established through division-specific translational control of a cyclin. Cell 133, 280–291 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Shannon, K. B. & Salmon, E. D. Chromosome dynamics: new light on Aurora B kinase function. Curr. Biol. 12, R458–460 (2002).

    Article  CAS  PubMed  Google Scholar 

  108. Wang, H. W. et al. Architecture of the Dam1 kinetochore ring complex and implications for microtubule-driven assembly and force-coupling mechanisms. Nature Struct. Mol. Biol. 14, 721–726 (2007).

    Article  CAS  Google Scholar 

  109. Cheeseman, I. M. et al. Phospho-regulation of kinetochore–microtubule attachments by the Aurora kinase Ipl1p. Cell 111, 163–172 (2002).

    Article  CAS  PubMed  Google Scholar 

  110. Kang, J. et al. Functional cooperation of Dam1, Ipl1, and the inner centromere protein (INCENP)-related protein Sli15 during chromosome segregation. J. Cell Biol. 155, 763–774 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Li, Y. et al. The mitotic spindle is required for loading of the DASH complex onto the kinetochore. Genes Dev. 16, 183–197 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Vogt, E., Kirsch-Volders, M., Parry, J. & Eichenlaub-Ritter, U. Spindle formation, chromosome segregation and the spindle checkpoint in mammalian oocytes and susceptibility to meiotic error. Mutat. Res. 651, 14–29 (2008).

    Article  CAS  PubMed  Google Scholar 

  113. Lew, D. J. & Burke, D. J. The spindle assembly and spindle position checkpoints. Annu. Rev. Genet. 37, 251–282 (2003).

    Article  CAS  PubMed  Google Scholar 

  114. Ke, Y. W., Dou, Z., Zhang, J. & Yao, X. B. Function and regulation of Aurora/Ipl1p kinase family in cell division. Cell Res. 13, 69–81 (2003).

    Article  CAS  PubMed  Google Scholar 

  115. Courtwright, A. M. & He, X. Dam1 is the right one: phosphoregulation of kinetochore biorientation. Dev. Cell 3, 610–611 (2002).

    Article  CAS  PubMed  Google Scholar 

  116. Terada, Y. Role of chromosomal passenger complex in chromosome segregation and cytokinesis. Cell Struct. Funct. 26, 653–657 (2001).

    Article  CAS  PubMed  Google Scholar 

  117. Lengronne, A. et al. Cohesin relocation from sites of chromosomal loading to places of convergent transcription. Nature 430, 573–578 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank A. Hochwagen and members of the Amon laboratory for critical reading of this manuscript. We would also like to thank S. Roeder for providing us with the pictures shown in Fig. 4. Work in the Amon laboratory is supported by a NIH grant to A.A. A.A. is an investigator of the Howard Hughes Medical Institute. G.A.B. is a recipient of an NSF predoctoral fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelika Amon.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Amon laboratory homepage

Glossary

Mitosis

The cell division during development and regeneration in which cells first replicate their DNA then segregate this genetic material equally to create two cells with identical DNA content to each other and to the precursor cell.

Meiosis

The division of cells to produce spores in yeast and gametes in multicellular organisms. Cells segregate replicated DNA in two separate stages to create four products, which have half the genetic content of the precursor cell and are not usually genetically identical to each another.

Sister chromatids

Chromosomes that are created through DNA replication. Two sister chromatids are, at least initially after DNA replication, identical in sequence.

Homologous chromosomes

(Homologues). Chromosomes from a given species that contain the same gene composition as each other, but that are not usually identical. In a diploid organism there is one maternal and one paternal homologue for each chromosome, generally with multiple polymorphisms present between the two.

Pairing

The process by which homologous chromosomes find each other and align in meiotic prophase.

Kinetochore

A large protein complex that assembles at centromeres and mediates the attachment of chromosomes to microtubules as the basis for chromosome segregation.

Spindle

The structure that segregates chromosomes in mitosis and meiosis. Spindles consist of arrays of microtubules, some of which attach to chromosomes and some of which push cellular poles apart as cells progress through mitosis or meiosis.

Centromere

The site of kinetochore assembly.

Nucleosome

Protein complex that serves as a DNA 'spool', contributing to the compaction of chromosomes. Several types of nucleosome exist, some of which mark specific chromosomal sites and serve as a basic unit of chromatin identity.

Heterochromatin

Regions of highly condensed DNA. Heterochromatin frequently consists of repetitive DNA sequences.

Synapsis

The process by which the proteinaceous synaptonemal complex is assembled between chromosomes leading to the tight association between two chromosomes. Synapsis follows pairing, but is a distinct process and can be non-homologous under certain circumstances.

Homeologous chromosomes

(Homeologues). Chromosomes with their origin in different species that usually contain the same basic gene composition as each other, but many sequence polymorphisms. Homeologues might be present in a species owing to breeding, molecular engineering or from natural hybridizations, as in some multiploid plant species.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brar, G., Amon, A. Emerging roles for centromeres in meiosis I chromosome segregation. Nat Rev Genet 9, 899–910 (2008). https://doi.org/10.1038/nrg2454

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg2454

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing