Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Aicardi–Goutières syndrome and the type I interferonopathies

Key Points

  • Type I interferons (IFNs) are antiviral cytokines, the regulation of which is tightly controlled. A type I IFN response is typically initiated by the sensing of exogenous nucleic acid ligands.

  • The term 'type I interferonopathies' refers to Mendelian disorders in which an upregulation of type I IFN expression is considered to have a central role in disease pathogenesis.

  • Inborn errors of type I IFN upregulation might be caused by the accumulation of an endogenous agonistic ligand or by unchecked signalling.

  • So far, mutations in any of TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, ADAR, IFIH1, TMEM173, ACP5, ISG15 or DDX58 (possibly also PSMB8), as well as early components of the complement cascade (particularly C1 and C4), might all be considered to be causes of type I interferonopathies.

  • The definition of phenotypes as type I interferonopathies will be important in the context of directed therapeutics, and the identification of the source of endogenous ligands implicated in the respective interferonopathies may guide future treatment decisions.

Abstract

Dissection of the genetic basis of Aicardi–Goutières syndrome has highlighted a fundamental link between nucleic acid metabolism, innate immune sensors and type I interferon induction. This had led to the concept of the human interferonopathies as a broader set of Mendelian disorders in which a constitutive upregulation of type I interferon activity directly relates to disease pathology. Here, we discuss the molecular and cellular basis of the interferonopathies, their categorization, future treatment strategies and the insights they provide into normal physiology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Molecular function of type I interferonopathy-related proteins and relevant innate immune signalling pathways in the context of AGS.

Similar content being viewed by others

References

  1. Gresser, I. et al. Interferon-induced disease in mice and rats. Ann. NY Acad. Sci. 350, 12–20 (1980). A summary of the first experimental data indicating that high levels of IFN might be detrimental in mammals.

    CAS  PubMed  Google Scholar 

  2. Aicardi, J. & Goutières, F. A progressive familial encephalopathy in infancy with calcifications of the basal ganglia and chronic cerebrospinal fluid lymphocytosis. Ann. Neurol. 15, 49–54 (1984).

    CAS  PubMed  Google Scholar 

  3. Lebon, P. et al. Intrathecal synthesis of interferon-α in infants with progressive familial encephalopathy. J. Neurol. Sci. 84, 201–208 (1988).

    CAS  PubMed  Google Scholar 

  4. Crow, Y. J. et al. Cree encephalitis is allelic with Aicardi–Goutières syndrome: implications for the pathogenesis of disorders of interferon α metabolism. J. Med. Genet. 40, 183–187 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Crow, Y. J. et al. Mutations in the gene encoding the 3′–5′ DNA exonuclease TREX1 cause Aicardi–Goutières syndrome at the AGS1 locus. Nat. Genet. 38, 917–920 (2006).

    CAS  PubMed  Google Scholar 

  6. Crow, Y. J. et al. Mutations in genes encoding ribonuclease H2 subunits cause Aicardi–Goutières syndrome and mimic congenital viral brain infection. Nat. Genet. 38, 910–916 (2006).

    CAS  PubMed  Google Scholar 

  7. Rice, G. I. et al. Mutations involved in Aicardi–Goutières syndrome implicate SAMHD1 as regulator of the innate immune response. Nat. Genet. 41, 829–832 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Rice, G. I. et al. Mutations in ADAR1 cause Aicardi–Goutières syndrome associated with a type I interferon signature. Nat. Genet. 44, 1243–1248 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Rice, G. I. et al. Gain-of-function mutations in IFIH1 cause a spectrum of human disease phenotypes associated with upregulated type I interferon signaling. Nat. Genet. 46, 503–509 (2014). This paper is the first to describe mutations in a cytoplasmic nucleic acid receptor.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Crow, Y. J. et al. Characterization of human disease phenotypes associated with mutations in TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, ADAR, and IFIH1. Am. J. Med. Genet. A 167A, 296–312 (2015).

    PubMed  Google Scholar 

  11. Tolmie, J. L., Shillito, P., Hughes-Benzie, R. & Stephenson, J. B. The Aicardi–Goutières syndrome (familial, early onset encephalopathy with calcifications of the basal ganglia and chronic cerebrospinal fluid lymphocytosis). J. Med. Genet. 32, 881–884 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Crow, Y. J. et al. Congenital glaucoma and brain stem atrophy as features of Aicardi–Goutières syndrome. Am. J. Med. Genet. A 129A, 303–307 (2004).

    PubMed  Google Scholar 

  13. Dale, R. C., Tang, S. P., Heckmatt, J. Z. & Tatnall, F. M. Familial systemic lupus erythematosus and congenital infection-like syndrome. Neuropediatrics 31, 155–158 (2000).

    CAS  PubMed  Google Scholar 

  14. Crow, Y. J. Type I interferonopathies: a novel set of inborn errors of immunity. Ann. NY Acad. Sci. 1238, 91–98 (2011). This is the first paper to use the term type I interferonopathy.

    CAS  PubMed  Google Scholar 

  15. Crow, Y. J. Type I interferonopathies: Mendelian type I interferon up-regulation. Curr. Opin. Immunol. 32, 7–12 (2014).

    PubMed  Google Scholar 

  16. Kaneko, H. et al. DICER1 deficit induces Alu RNA toxicity in age-related macular degeneration. Nature 471, 325–330 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Tarallo, V. et al. DICER1 loss and Alu RNA induce age-related macular degeneration via the NLRP3 inflammasome and MyD88. Cell 149, 847–859 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Rice, G. I. et al. Assessment of interferon-related biomarkers in Aicardi–Goutières syndrome associated with mutations in TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, and ADAR: a case-control study. Lancet Neurol. 12, 1159–1169 (2013). A comprehensive description of the type I IFN signature in association with mutations in AGS-related genes.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Akwa, Y. et al. Transgenic expression of IFN-α in the central nervous system of mice protects against lethal neurotropic viral infection but induces inflammation and neurodegeneration. J. Immunol. 161, 5016–5026 (1998). This paper demonstrates the neuronal toxicity of type I IFN expression in mice.

    CAS  PubMed  Google Scholar 

  20. Krivine, A., Tovey, M., Taty-Taty, R. & Lebon, P. Endogenous interferon-α in newborns from HIV seropositive mothers. J. Interferon Res. 12, S151 (1992).

    Google Scholar 

  21. Kauffman, W. M. et al. CT and MR evaluation of intracranial involvement in pediatric HIV infection: a clinical-imaging correlation. AJNR Am. J. Neuroradiol. 13, 949–957 (1992).

    CAS  PubMed  Google Scholar 

  22. DeCarli, C., Civitello, L. A., Brouwers, P. & Pizzo, P. A. The prevalence of computed tomographic abnormalities of the cerebrum in 100 consecutive children symptomatic with the human immune deficiency virus. Ann. Neurol. 34, 198–205 (1993).

    CAS  PubMed  Google Scholar 

  23. Tardieu, M. et al. HIV-1-related encephalopathy in infants compared with children and adults. Neurology 54, 1089–1095 (2000).

    CAS  PubMed  Google Scholar 

  24. Bessis, D. et al. Necrotizing cutaneous lesions complicating treatment with pegylated-interferon alfa in an HIV-infected patient. Eur. J. Dermatol. 12, 99–102 (2002).

    PubMed  Google Scholar 

  25. Ronnblom, L. E., Alm, G. V. & Oberg, K. E. Possible induction of systemic lupus erythematosus by interferon-α treatment in a patient with a malignant carcinoid tumour. J. Intern. Med. 227, 207–210 (1990).

    CAS  PubMed  Google Scholar 

  26. Kwon, Y. S., Choe, Y. H. & Chin, H. S. Development of glaucoma in the course of interferon α therapy for chronic hepatitis B. Yonsei Med. J. 42, 134–136 (2001).

    CAS  PubMed  Google Scholar 

  27. Crow, Y. J. & Rehwinkel, J. Aicardi–Goutières syndrome and related phenotypes: linking nucleic acid metabolism with autoimmunity. Hum. Mol. Genet. 18, R130–R136 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Stetson, D. B., Ko, J. S., Heidmann, T. & Medzhitov, R. Trex1 prevents cell-intrinsic initiation of autoimmunity. Cell 134, 587–598 (2008). This paper is the first to describe TREX1 as a possible regulator of cytoplasmic DNA derived from retroelements.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Gall, A. et al. Autoimmunity initiates in nonhematopoietic cells and progresses via lymphocytes in an interferon-dependent autoimmune disease. Immunity 36, 120–131 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Sanchis, A. et al. Genetic syndromes mimic congenital infections. J. Pediatr. 146, 701–705 (2005).

    CAS  PubMed  Google Scholar 

  31. Reijns, M. A. et al. Enzymatic removal of ribonucleotides from DNA is essential for mammalian genome integrity and development. Cell 149, 1008–1022 (2012). This paper is the first to describe the essential role of RNase H2 in removing ribonucleotides that are incorporated during DNA synthesis.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Hiller, B. et al. Mammalian RNase H2 removes ribonucleotides from DNA to maintain genome integrity. J. Exp. Med. 209, 1419–1426 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Perrino, F. W., Harvey, S., Shaban, N. M. & Hollis, T. RNaseH2 mutants that cause Aicardi–Goutières syndrome are active nucleases. J. Mol. Med. (Berl.) 87, 25–30 (2009).

    CAS  Google Scholar 

  34. Rigby, R. E. et al. RNA:DNA hybrids are a novel molecular pattern sensed by TLR9. EMBO J. 33, 542–558 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Mankan, A. K. et al. Cytosolic RNA:DNA hybrids activate the cGAS–STING axis. EMBO J. 33, 2937–2946 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Rehwinkel, J. et al. SAMHD1-dependent retroviral control and escape in mice. EMBO J. 32, 2454–2462 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Behrendt, R. et al. Mouse SAMHD1 has antiretroviral activity and suppresses a spontaneous cell-intrinsic antiviral response. Cell Rep. 4, 689–696 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Goldstone, D. C. et al. HIV-1 restriction factor SAMHD1 is a deoxynucleoside triphosphate triphosphohydrolase. Nature 480, 379–382 (2011).

    CAS  PubMed  Google Scholar 

  39. Laguette, N. et al. SAMHD1 is the dendritic- and myeloid-cell-specific HIV-1 restriction factor counteracted by Vpx. Nature 474, 654–657 (2011). This paper, together with reference 58, is the first to describe SAMHD1 as an HIV-1 restriction factor.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Ryoo, J. et al. The ribonuclease activity of SAMHD1 is required for HIV-1 restriction. Nat. Med. 20, 936–941 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Hartner, J. C., Walkley, C. R., Lu, J. & Orkin, S. H. ADAR1 is essential for the maintenance of hematopoiesis and suppression of interferon signaling. Nat. Immunol. 10, 109–115 (2009). This paper contains an important description of ADAR as a suppressor of type I IFN-induced signalling.

    CAS  PubMed  Google Scholar 

  42. Mannion, N. M. et al. The RNA-editing enzyme ADAR1 controls innate immune responses to RNA. Cell Rep. 9, 1482–1494 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Vitali, P. & Scadden, A. D. Double-stranded RNAs containing multiple IU pairs are sufficient to suppress interferon induction and apoptosis. Nat. Struct. Mol. Biol. 17, 1043–1050 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Funabiki, M. et al. Autoimmune disorders associated with gain of function of the intracellular sensor MDA5. Immunity 40, 199–212 (2014).

    CAS  PubMed  Google Scholar 

  45. Oda, H. et al. Aicardi–Goutières syndrome is caused by IFIH1 mutations. Am. J. Hum. Genet. 95, 121–125 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Yang, Y. G., Lindahl, T. & Barnes, D. E. Trex1 exonuclease degrades ssDNA to prevent chronic checkpoint activation and autoimmune disease. Cell 131, 873–886 (2007). This report is the first to suggest a link between TREX1 and the DNA damage response.

    CAS  PubMed  Google Scholar 

  47. Pizzi, S. et al. Reduction of hRNase H2 activity in Aicardi–Goutières syndrome cells leads to replication stress and genome instability. Hum. Mol. Genet. 24, 649–658 (2014).

    PubMed  PubMed Central  Google Scholar 

  48. Kind, B. et al. Altered spatio-temporal dynamics of RNase H2 complex assembly at replication and repair sites in Aicardi–Goutières syndrome. Hum. Mol. Genet. 23, 5950–5960 (2014).

    CAS  PubMed  Google Scholar 

  49. Gunther, C. et al. Defective removal of ribonucleotides from DNA promotes systemic autoimmunity. J. Clin. Invest. 125, 413–424 (2014).

    PubMed  PubMed Central  Google Scholar 

  50. Kretschmer, S. et al. SAMHD1 prevents autoimmunity by maintaining genome stability. Ann. Rheum. Dis. 74, e17 (2014).

    PubMed  PubMed Central  Google Scholar 

  51. Clifford, R. et al. SAMHD1 is mutated recurrently in chronic lymphocytic leukemia and is involved in response to DNA damage. Blood 123, 1021–1031 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Landau, D. A. et al. Evolution and impact of subclonal mutations in chronic lymphocytic leukemia. Cell 152, 714–726 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Ferguson, B. J., Mansur, D. S., Peters, N. E., Ren, H. & Smith, G. L. DNA-PK is a DNA sensor for IRF-3-dependent innate immunity. eLife 1, e00047 (2012).

    PubMed  PubMed Central  Google Scholar 

  54. Laguette, N. et al. Premature activation of the SLX4 complex by Vpr promotes G2/M arrest and escape from innate immune sensing. Cell 156, 134–145 (2014).

    CAS  PubMed  Google Scholar 

  55. Hartlova, A. et al. DNA damage primes the type I interferon system via the cytosolic DNA sensor STING to promote anti-microbial innate immunity. Immunity 42, 332–343 (2015).

    PubMed  Google Scholar 

  56. Brooks, P. J., Cheng, T. F. & Cooper, L. Do all of the neurologic diseases in patients with DNA repair gene mutations result from the accumulation of DNA damage? DNA Repair (Amst.) 7, 834–848 (2008).

    CAS  Google Scholar 

  57. Yan, N., Regalado-Magdos, A. D., Stiggelbout, B., Lee-Kirsch, M. A. & Lieberman, J. The cytosolic exonuclease TREX1 inhibits the innate immune response to human immunodeficiency virus type 1. Nat. Immunol. 11, 1005–1013 (2010). This paper is the first to describe a role for TREX1 in HIV-1 metabolism.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Hrecka, K. et al. Vpx relieves inhibition of HIV-1 infection of macrophages mediated by the SAMHD1 protein. Nature 474, 658–661 (2011). This paper, together with reference 39, is the first to describe SAMHD1 as an HIV-1 restriction factor.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Manel, N. et al. A cryptic sensor for HIV-1 activates antiviral innate immunity in dendritic cells. Nature 467, 214–217 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Lahaye, X. et al. The capsids of HIV-1 and HIV-2 determine immune detection of the viral cDNA by the innate sensor cGAS in dendritic cells. Immunity 39, 1132–1142 (2013).

    CAS  PubMed  Google Scholar 

  61. Zhao, K. et al. Modulation of LINE-1 and Alu/SVA retrotransposition by Aicardi–Goutières syndrome-related SAMHD1. Cell Rep. 4, 1108–1115 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Genovesio, A. et al. Automated genome-wide visual profiling of cellular proteins involved in HIV infection. J. Biomol. Screen. 16, 945–958 (2011).

    CAS  PubMed  Google Scholar 

  63. Volkman, H. E. & Stetson, D. B. The enemy within: endogenous retroelements and autoimmune disease. Nat. Immunol. 15, 415–422 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Zeng, M. et al. MAVS, cGAS, and endogenous retroviruses in T-independent B cell responses. Science 346, 1486–1492 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Gorbunova, V., Boeke, J. D., Helfand, S. L. & Sedivy, J. M. Human genomics. Sleeping dogs of the genome. Science 346, 1187–1188 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Yu, Q. et al. Type I interferon controls propagation of long interspersed element-1. J. Biol. Chem. 290, 10191–10199 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Beck-Engeser, G. B., Eilat, D. & Wabl, M. An autoimmune disease prevented by anti-retroviral drugs. Retrovirology 8, 91 (2011). This paper is the first to report the successful use of reverse transcriptase inhibitors in Trex1 -null mice.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Hooks, J. J. et al. Immune interferon in the circulation of patients with autoimmune disease. N. Engl. J. Med. 301, 5–8 (1979).

    CAS  PubMed  Google Scholar 

  69. Lee-Kirsch, M. A. et al. Familial chilblain lupus, a monogenic form of cutaneous lupus erythematosus, maps to chromosome 3p. Am. J. Hum. Genet. 79, 731–737 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Ravenscroft, J. C., Suri, M., Rice, G. I., Szynkiewicz, M. & Crow, Y. J. Autosomal dominant inheritance of a heterozygous mutation in SAMHD1 causing familial chilblain lupus. Am. J. Med. Genet. A 155A, 235–237 (2011).

    PubMed  Google Scholar 

  71. Briggs, T. A. et al. Tartrate-resistant acid phosphatase deficiency causes a bone dysplasia with autoimmunity and a type I interferon expression signature. Nat. Genet. 43, 127–131 (2011).

    CAS  PubMed  Google Scholar 

  72. Lee-Kirsch, M. A. et al. Mutations in the gene encoding the 3′–5′ DNA exonuclease TREX1 are associated with systemic lupus erythematosus. Nat. Genet. 39, 1065–1067 (2007).

    CAS  PubMed  Google Scholar 

  73. Ellyard, J. I. et al. Identification of a pathogenic variant in TREX1 in early-onset cerebral systemic lupus erythematosus by whole-exome sequencing. Arthritis Rheuml. 66, 3382–3386 (2014).

    CAS  Google Scholar 

  74. Troedson, C. et al. Systemic lupus erythematosus due to C1q deficiency with progressive encephalopathy, intracranial calcification and acquired moyamoya cerebral vasculopathy. Lupus 22, 639–643 (2013).

    CAS  PubMed  Google Scholar 

  75. Arkwright, P. D., Riley, P., Hughes, S. M., Alachkar, H. & Wynn, R. F. Successful cure of C1q deficiency in human subjects treated with hematopoietic stem cell transplantation. J. Allergy Clin. Immunol. 133, 265–267 (2014).

    CAS  PubMed  Google Scholar 

  76. Lood, C. et al. C1q inhibits immune complex-induced interferon-α production in plasmacytoid dendritic cells: a novel link between C1q deficiency and systemic lupus erythematosus pathogenesis. Arthritis Rheum. 60, 3081–3090 (2009).

    CAS  PubMed  Google Scholar 

  77. Santer, D. M. et al. C1q deficiency leads to the defective suppression of IFN-α in response to nucleoprotein containing immune complexes. J. Immunol. 185, 4738–4749 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Liu, Y. et al. Activated STING in a vascular and pulmonary syndrome. N. Engl. J. Med. 371, 507–518 (2014). This paper is the first to describe TMEM173 mutations in a type I interferonopathy phenotype.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Jeremiah, N. et al. Inherited STING-activating mutation underlies a familial inflammatory syndrome with lupus-like manifestations. J. Clin. Invest. 124, 5516–5520 (2014).

    PubMed  PubMed Central  Google Scholar 

  80. Ahn, J., Ruiz, P. & Barber, G. N. Intrinsic self-DNA triggers inflammatory disease dependent on STING. J. Immunol. 193, 4634–4642 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Rutsch, F. et al. A specific IFIH1 gain-of-function mutation causes Singleton–Merten syndrome. Am. J. Hum. Genet. 96, 275–282 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Goubau, D. et al. Antiviral immunity via RIG-I-mediated recognition of RNA bearing 5′-diphosphates. Nature 514, 372–375 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Jang, M. A. et al. Mutations in DDX58, which encodes RIG-I, cause atypical Singleton–Merten syndrome. Am. J. Hum. Genet. 96, 266–274 (2015). This paper is the first to describe mutations in the gene encoding RIG-I as a cause of type I IFN upregulation in humans.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Zhang, X. et al. Human intracellular ISG15 prevents interferon-α/β over-amplification and auto-inflammation. Nature 517, 89–93 (2015). This paper describes ISG15 mutations as a cause of a human type I interferonopathy.

    CAS  PubMed  Google Scholar 

  85. Bogunovic, D. et al. Mycobacterial disease and impaired IFN-γ immunity in humans with inherited ISG15 deficiency. Science 337, 1684–1688 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Francois-Newton, V. et al. USP18-based negative feedback control is induced by type I and type III interferons and specifically inactivates interferon α response. PLoS ONE 6, e22200 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Agarwal, A. K. et al. PSMB8 encoding the β5i proteasome subunit is mutated in joint contractures, muscle atrophy, microcytic anemia, and panniculitis-induced lipodystrophy syndrome. Am. J. Hum. Genet. 87, 866–872 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Liu, Y. et al. Mutations in proteasome subunit β type 8 cause chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature with evidence of genetic and phenotypic heterogeneity. Arthritis Rheum. 64, 895–907 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Moebius, J., van den Broek, M., Groettrup, M. & Basler, M. Immunoproteasomes are essential for survival and expansion of T cells in virus-infected mice. Eur. J. Immunol. 40, 3439–3449 (2010).

    CAS  PubMed  Google Scholar 

  90. Ramesh, V. et al. Intracerebral large artery disease in Aicardi–Goutières syndrome implicates SAMHD1 in vascular homeostasis. Dev. Med. Child Neurol. 52, 725–732 (2010).

    PubMed  Google Scholar 

  91. Livingston, J. H. et al. A type I interferon signature identifies bilateral striatal necrosis due to mutations in ADAR1. J. Med. Genet. 51, 76–82 (2014).

    CAS  PubMed  Google Scholar 

  92. Vogt, J. et al. Striking intrafamilial phenotypic variability in Aicardi–Goutières syndrome associated with the recurrent Asian founder mutation in RNASEH2C. Am. J. Med. Genet. A 161A, 338–342 (2013).

    PubMed  Google Scholar 

  93. Ramantani, G. et al. Expanding the phenotypic spectrum of lupus erythematosus in Aicardi–Goutières syndrome. Arthritis Rheum. 62, 1469–1477 (2010).

    CAS  PubMed  Google Scholar 

  94. Van Eyck, L. et al. IFIH1 mutation causes systemic lupus erythematosus with selective IgA-deficiency. Arthritis Rheuml. http://dx.doi.org/10.1002/art.39110 (2015).

  95. Rice, G. et al. Clinical and molecular phenotype of Aicardi–Goutières syndrome. Am. J. Hum. Genet. 81, 713–725 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Lausch, E. et al. Genetic deficiency of tartrate-resistant acid phosphatase associated with skeletal dysplasia, cerebral calcifications and autoimmunity. Nat. Genet. 43, 132–137 (2011).

    CAS  PubMed  Google Scholar 

  97. McGonagle, D. & McDermott, M. F. A proposed classification of the immunological diseases. PLoS Med. 3, e297 (2006).

    PubMed  PubMed Central  Google Scholar 

  98. Eckard, S. C. et al. The SKIV2L RNA exosome limits activation of the RIG-I-like receptors. Nat. Immunol. 15, 839–845 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. White, M. J. et al. Apoptotic caspases suppress mtDNA-induced STING-mediated type I IFN production. Cell 159, 1549–1562 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. West, A. P. et al. Mitochondrial DNA stress primes the antiviral innate immune response. Nature http://dx.doi.org/10.1038/nature14156 (2015).

  101. Niewold, T. B., Hua, J., Lehman, T. J., Harley, J. B. & Crow, M. K. High serum IFN-α activity is a heritable risk factor for systemic lupus erythematosus. Genes Immun. 8, 492–502 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Schoggins, J. W. Interferon-stimulated genes: roles in viral pathogenesis. Curr. Opin. Virol. 6, 40–46 (2014).

    CAS  PubMed  Google Scholar 

  103. Takanohashi, A. et al. Elevation of proinflammatory cytokines in patients with Aicardi–Goutières syndrome. Neurology 80, 997–1002 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Cuadrado, E. et al. Aicardi–Goutières syndrome harbours abundant systemic and brain-reactive autoantibodies. Ann. Rheum. Dis. http://dx.doi.org/10.1136/annrheumdis-2014-205396 (2014).

  105. Crow, Y. J., Vanderver, A., Orcesi, S., Kuijpers, T. W. & Rice, G. I. Therapies in Aicardi–Goutières syndrome. Clin. Exp. Immunol. 175, 1–8 (2014).

    CAS  PubMed  Google Scholar 

  106. Gehrke, N. et al. Oxidative damage of DNA confers resistance to cytosolic nuclease TREX1 degradation and potentiates STING-dependent immune sensing. Immunity 39, 482–495 (2013).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Y.J.C. acknowledges the Manchester Biomedical Research Centre, the European Research Council (GA 309449: fellowship to Y.J.C) and a state subsidy managed by the National Research Agency (France) under the “Investments for the Future” programme bearing the reference ANR-10-IAHU-01. N.M. acknowledges the ATIP–Avenir programme, the Agence Nationale de Recherche sur le SIDA (ANRS), the Ville de Paris Emergence programme, European FP7 Marie Curie Actions (grant 268311), the Laboratory of Excellence (LABEX) Vaccine Research Institute (VRI; ANR-10-LABX-77), LABEX Dendritic Cell Biology (DCBIOL;ANR-10-IDEX-0001-02 PSL and ANR-11-LABX-0043), Acting on European Research in Immunology and Allergology (ACTERIA) Foundation, the Fondation Schlumberger pour l'Education et la Recherche (FSER) and a European Research Council grant (309848 HIVINNATE). Y.J.C. would like to extend special thanks to G. Rice for help with preparing the manuscript and, together with M. Rodero and I. Melki, for discussions relating to its content.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanick J. Crow.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

FURTHER INFORMATION

ClinicalTrials.gov

PowerPoint slides

Glossary

Intrathecal synthesis

Synthesis that occurs in the fluid-filled space under the lining of the brain or spinal cord.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crow, Y., Manel, N. Aicardi–Goutières syndrome and the type I interferonopathies. Nat Rev Immunol 15, 429–440 (2015). https://doi.org/10.1038/nri3850

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri3850

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing