Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Microglia in neuropathic pain: cellular and molecular mechanisms and therapeutic potential

Key Points

  • Neuropathic pain that results from damage to the nervous system results from the pathological operation of the nervous system

  • Activated microglia in the dorsal horn of the spinal cord are necessary for synaptic alterations in this region and pain hypersensitivity after nerve injury

  • Microglia also become activated in the brain, contributing to sensory and/or non-sensory (emotion, reward and memory) aspects of neuropathic pain

  • Microglia are morphologically and molecularly activated by chronic opioids and contribute to opioid tolerance and dependence

  • New drugs targeting microglia and human microglia-like cells have been developed that may facilitate translation from bench to bedside

Abstract

Acute nociceptive pain is a key defence system that enables the detection of danger signals that threaten homeostasis and survival. However, chronic pain (such as the neuropathic pain that occurs after peripheral nerve injury) is not simply a consequence of the continuity of acute nociceptive signals but rather of maladaptive nervous system function. Over recent decades, studies have provided evidence for the necessity and sufficiency of microglia for the alterations in synaptic remodelling, connectivity and network function that underlie chronic pain and have shed light on the underlying molecular and cellular mechanisms. It is also becoming clear that microglia have active roles in brain regions important for the emotional and memory-related aspects of chronic pain. Recent advances in the development of new drugs targeting microglia and the establishment of new sources of human microglia-like cells may facilitate translation of these findings from bench to bedside.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Microgliosis mechanisms in the spinal dorsal horn after injury.
Figure 2: Microglia-mediated aberrant excitability of spinal dorsal horn neurons.
Figure 3: Multiple mechanisms for neuronal excitation by microglial inflammatory signals.

Similar content being viewed by others

References

  1. Basbaum, A. I., Bautista, D. M., Scherrer, G. & Julius, D. Cellular and molecular mechanisms of pain. Cell 139, 267–284 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Todd, A. J. Neuronal circuitry for pain processing in the dorsal horn. Nat. Rev. Neurosci. 11, 823–836 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Braz, J., Solorzano, C., Wang, X. & Basbaum, A. I. Transmitting pain and itch messages: a contemporary view of the spinal cord circuits that generate gate control. Neuron 82, 522–536 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Peirs, C. & Seal, R. P. Neural circuits for pain: recent advances and current views. Science 354, 578–584 (2016).

    Article  CAS  PubMed  Google Scholar 

  5. Bushnell, M. C., Ceko, M. & Low, L. A. Cognitive and emotional control of pain and its disruption in chronic pain. Nat. Rev. Neurosci. 14, 502–511 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bliss, T. V., Collingridge, G. L., Kaang, B. K. & Zhuo, M. Synaptic plasticity in the anterior cingulate cortex in acute and chronic pain. Nat. Rev. Neurosci. 17, 485–496 (2016).

    Article  CAS  PubMed  Google Scholar 

  7. Melzack, R. & Wall, P. D. Pain mechanisms: a new theory. Science 150, 971–979 (1965).

    Article  CAS  PubMed  Google Scholar 

  8. Colloca, L. et al. Neuropathic pain. Nat. Rev. Dis. Primers 3, 17002 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kuner, R. & Flor, H. Structural plasticity and reorganisation in chronic pain. Nat. Rev. Neurosci. 18, 20–30 (2016).

    Article  CAS  PubMed  Google Scholar 

  10. Woolf, C. J. & Salter, M. W. Neuronal plasticity: increasing the gain in pain. Science 288, 1765–1769 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Lu, Y. et al. A feed-forward spinal cord glycinergic neural circuit gates mechanical allodynia. J. Clin. Invest. 123, 4050–4062 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Duan, B. et al. Identification of spinal circuits transmitting and gating mechanical pain. Cell 159, 1417–1432 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Petitjean, H. et al. Dorsal horn parvalbumin neurons are gate-keepers of touch-evoked pain after nerve injury. Cell Rep. 13, 1246–1257 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Peirs, C. et al. Dorsal horn circuits for persistent mechanical pain. Neuron 87, 797–812 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Foster, E. et al. Targeted ablation, silencing, and activation establish glycinergic dorsal horn neurons as key components of a spinal gate for pain and itch. Neuron 85, 1289–1304 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cheng, L. et al. Identification of spinal circuits involved in touch-evoked dynamic mechanical pain. Nat. Neurosci. 20, 804–814 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ji, R. R., Xu, Z. Z. & Gao, Y. J. Emerging targets in neuroinflammation-driven chronic pain. Nat. Rev. Drug Discov. 13, 533–548 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gilmore, S. A. Proliferation of non-neuronal cells in spinal cords of irradiated, immature rats following transection of the sciatic nerve. Anat. Rec. 181, 799–811 (1975).

    Article  CAS  PubMed  Google Scholar 

  19. Gilmore, S. A. & Skinner, R. D. Intraspinal non-neuronal cellular responses to peripheral nerve injury. Anat. Rec. 194, 369–387 (1979).

    Article  CAS  PubMed  Google Scholar 

  20. Bennett, G. J. & Xie, Y. K. A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain 33, 87–107 (1988).

    Article  CAS  PubMed  Google Scholar 

  21. Seltzer, Z., Dubner, R. & Shir, Y. A novel behavioral model of neuropathic pain disorders produced in rats by partial sciatic nerve injury. Pain 43, 205–218 (1990).

    Article  CAS  PubMed  Google Scholar 

  22. Kim, S. H. & Chung, J. M. An experimental model for peripheral neuropathy produced by segmental spinal nerve ligation in the rat. Pain 50, 355–363 (1992).

    Article  CAS  PubMed  Google Scholar 

  23. Decosterd, I. & Woolf, C. J. Spared nerve injury: an animal model of persistent peripheral neuropathic pain. Pain 87, 149–158 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Raghavendra, V., Tanga, F. & DeLeo, J. A. Inhibition of microglial activation attenuates the development but not existing hypersensitivity in a rat model of neuropathy. J. Pharmacol. Exp. Ther. 306, 624–630 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Colburn, R. W. et al. Dissociation of microglial activation and neuropathic pain behaviors following peripheral nerve injury in the rat. J. Neuroimmunol. 79, 163–175 (1997).

    Article  CAS  PubMed  Google Scholar 

  26. Inoue, K. & Tsuda, M. Microglia and neuropathic pain. Glia 57, 1469–1479 (2009).

    Article  PubMed  Google Scholar 

  27. Tsuda, M. et al. P2X4 receptors induced in spinal microglia gate tactile allodynia after nerve injury. Nature 424, 778–783 (2003). This study shows a causal role of spinal microglia expressing P2X4 in a rodent model of neuropathic pain.

    Article  CAS  PubMed  Google Scholar 

  28. Jin, S. X., Zhuang, Z. Y., Woolf, C. J. & Ji, R. R. p38 mitogen-activated protein kinase is activated after a spinal nerve ligation in spinal cord microglia and dorsal root ganglion neurons and contributes to the generation of neuropathic pain. J. Neurosci. 23, 4017–4022 (2003). This study shows that spinal microglia contribute to pain hypersensitivity after PNI via activation of p38 MAPKs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Milligan, E. D. et al. Evidence that exogenous and endogenous fractalkine can induce spinal nociceptive facilitation in rats. Eur. J. Neurosci. 20, 2294–2302 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Clark, A. K. et al. Inhibition of spinal microglial cathepsin S for the reversal of neuropathic pain. Proc. Natl Acad. Sci. USA 104, 10655–10660 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Zhuang, Z. Y. et al. Role of the CX3CR1/p38 MAPK pathway in spinal microglia for the development of neuropathic pain following nerve injury-induced cleavage of fractalkine. Brain Behav. Immun. 21, 642–651 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Tsuda, M. et al. IFN-gamma receptor signaling mediates spinal microglia activation driving neuropathic pain. Proc. Natl Acad. Sci. USA 106, 8032–8037 (2009).

    Article  CAS  PubMed  Google Scholar 

  33. Guan, Z. et al. Injured sensory neuron-derived CSF1 induces microglial proliferation and DAP12-dependent pain. Nat. Neurosci. 19, 94–101 (2016). This study demonstrates that CSF1 expression is induced in injured DRG neurons and that this triggers microglial proliferation and neuropathic pain.

    Article  CAS  PubMed  Google Scholar 

  34. Kobayashi, M., Konishi, H., Sayo, A., Takai, T. & Kiyama, H. TREM2/DAP12 signal elicits proinflammatory response in microglia and exacerbates neuropathic pain. J. Neurosci. 36, 11138–11150 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sawada, A. et al. Suppression of bone marrow-derived microglia in the amygdala improves anxiety-like behavior induced by chronic partial sciatic nerve ligation in mice. Pain 155, 1762–1772 (2014).

    Article  CAS  PubMed  Google Scholar 

  36. Taylor, A. M. et al. Microglia disrupt mesolimbic reward circuitry in chronic pain. J. Neurosci. 35, 8442–8450 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Liu, Y. et al. TNF-alpha differentially regulates synaptic plasticity in the hippocampus and spinal cord by microglia-dependent mechanisms after peripheral nerve injury. J. Neurosci. 37, 871–881 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Davalos, D. et al. ATP mediates rapid microglial response to local brain injury in vivo. Nat. Neurosci. 8, 752–758 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Nimmerjahn, A., Kirchhoff, F. & Helmchen, F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308, 1314–1318 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Wake, H., Moorhouse, A. J., Miyamoto, A. & Nabekura, J. Microglia: actively surveying and shaping neuronal circuit structure and function. Trends Neurosci. 36, 209–217 (2013).

    Article  CAS  PubMed  Google Scholar 

  41. Gu, N. et al. Microglial P2Y12 receptors regulate microglial activation and surveillance during neuropathic pain. Brain Behav. Immun. 55, 82–92 (2016).

    Article  CAS  PubMed  Google Scholar 

  42. Batti, L. et al. TMEM16F regulates spinal microglial function in neuropathic pain states. Cell Rep. 15, 2608–2615 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tozaki-Saitoh, H. et al. P2Y12 receptors in spinal microglia are required for neuropathic pain after peripheral nerve injury. J. Neurosci. 28, 4949–4956 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gehrmann, J. & Banati, R. B. Microglial turnover in the injured CNS: activated microglia undergo delayed DNA fragmentation following peripheral nerve injury. J. Neuropathol. Exp. Neurol. 54, 680–688 (1995).

    Article  CAS  PubMed  Google Scholar 

  45. Tsuda, M. et al. JAK-STAT3 pathway regulates spinal astrocyte proliferation and neuropathic pain maintenance in rats. Brain 134, 1127–1139 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Gu, N. et al. Spinal microgliosis due to resident microglial proliferation is required for pain hypersensitivity after peripheral nerve injury. Cell Rep. 16, 605–614 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhang, J. et al. Expression of CCR2 in both resident and bone marrow-derived microglia plays a critical role in neuropathic pain. J. Neurosci. 27, 12396–12406 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tashima, R. et al. Bone marrow-derived cells in the population of spinal microglia after peripheral nerve injury. Sci. Rep. 6, 23701 (2016). This study shows little contribution of circulating bone-marrow-derived cells to the population of spinal microglia after PNI.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Larochelle, A., Bellavance, M. A., Michaud, J. P. & Rivest, S. Bone marrow-derived macrophages and the CNS: an update on the use of experimental chimeric mouse models and bone marrow transplantation in neurological disorders. Biochim. Biophys. Acta 1862, 310–322 (2015).

    Article  CAS  PubMed  Google Scholar 

  50. Denk, F., Crow, M., Didangelos, A., Lopes, D. M. & McMahon, S. B. Persistent alterations in microglial enhancers in a model of chronic pain. Cell Rep. 15, 1771–1781 (2016).

    Article  CAS  PubMed  Google Scholar 

  51. Lim, H., Lee, H., Noh, K. & Lee, S. J. IKK/NF-kappaB-dependent satellite glia activation induces spinal cord microglia activation and neuropathic pain after nerve injury. Pain 158, 1666–1677 (2017).

    Article  CAS  PubMed  Google Scholar 

  52. Svendsen, K. B., Jensen, T. S., Hansen, H. J. & Bach, F. W. Sensory function and quality of life in patients with multiple sclerosis and pain. Pain 114, 473–481 (2005).

    Article  PubMed  Google Scholar 

  53. Ajami, B., Bennett, J. L., Krieger, C., McNagny, K. M. & Rossi, F. M. Infiltrating monocytes trigger EAE progression, but do not contribute to the resident microglia pool. Nat. Neurosci. 14, 1142–1149 (2011).

    Article  CAS  PubMed  Google Scholar 

  54. Honore, P. et al. Murine models of inflammatory, neuropathic and cancer pain each generates a unique set of neurochemical changes in the spinal cord and sensory neurons. Neuroscience 98, 585–598 (2000).

    Article  CAS  PubMed  Google Scholar 

  55. Okubo, M. et al. Macrophage-colony stimulating factor derived from injured primary afferent induces proliferation of spinal microglia and neuropathic pain in rats. PLoS ONE 11, e0153375 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. McVicar, D. W. & Trinchieri, G. CSF-1R, DAP12 and beta-catenin: a menage a trois. Nat. Immunol. 10, 681–683 (2009).

    Article  CAS  PubMed  Google Scholar 

  57. Polgar, E., Hughes, D. I., Arham, A. Z. & Todd, A. J. Loss of neurons from laminas I-III of the spinal dorsal horn is not required for development of tactile allodynia in the spared nerve injury model of neuropathic pain. J. Neurosci. 25, 6658–6666 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Tay, T. L. et al. A new fate mapping system reveals context-dependent random or clonal expansion of microglia. Nat. Neurosci. 20, 793–803 (2017).

    Article  CAS  PubMed  Google Scholar 

  59. Moss, A. et al. Spinal microglia and neuropathic pain in young rats. Pain 128, 215–224 (2007).

    Article  CAS  PubMed  Google Scholar 

  60. McKelvey, R., Berta, T., Old, E., Ji, R. R. & Fitzgerald, M. Neuropathic pain is constitutively suppressed in early life by anti-inflammatory neuroimmune regulation. J. Neurosci. 35, 457–466 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Griffin, R. S. et al. Complement induction in spinal cord microglia results in anaphylatoxin C5a-mediated pain hypersensitivity. J. Neurosci. 27, 8699–8708 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Jeong, H. et al. High-resolution transcriptome analysis reveals neuropathic pain gene-expression signatures in spinal microglia after nerve injury. Pain 157, 964–976 (2016).

    Article  CAS  PubMed  Google Scholar 

  63. Tamura, T., Yanai, H., Savitsky, D. & Taniguchi, T. The IRF family transcription factors in immunity and oncogenesis. Annu. Rev. Immunol. 26, 535–584 (2008).

    Article  CAS  PubMed  Google Scholar 

  64. Masuda, T. et al. IRF8 is a critical transcription factor for transforming microglia into a reactive phenotype. Cell Rep. 1, 334–340 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Masuda, T. et al. Transcription factor IRF5 drives P2X4R+-reactive microglia gating neuropathic pain. Nat. Commun. 5, 3771 (2014). This study provides evidence that the IRF8–IRF5 transcriptional cascade is necessary for producing P2X4-expressing microglia after PNI and in neuropathic pain.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Masuda, T. et al. Transcription factor IRF1 is responsible for IRF8-mediated IL-1beta expression in reactive microglia. J. Pharmacol. Sci. 128, 216–220 (2015).

    Article  CAS  PubMed  Google Scholar 

  67. Holtman, I. R., Skola, D. & Glass, C. K. Transcriptional control of microglia phenotypes in health and disease. J. Clin. Invest. 127, 3220–3229 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Coull, J. A. et al. BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain. Nature 438, 1017–1021 (2005). This study identifies a mechanism of signalling from activated microglia to SDH neurons that is causally associated with neuropathic pain.

    Article  CAS  PubMed  Google Scholar 

  69. Ulmann, L. et al. Up-regulation of P2X4 receptors in spinal microglia after peripheral nerve injury mediates BDNF release and neuropathic pain. J. Neurosci. 28, 11263–11268 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Tsuda, M. et al. Behavioral phenotypes of mice lacking purinergic P2X4 receptors in acute and chronic pain assays. Mol. Pain 5, 28 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Biber, K. et al. Neuronal CCL21 up-regulates microglia P2X4 expression and initiates neuropathic pain development. EMBO J. 30, 1864–1873 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Tsuda, M., Masuda, T., Tozaki-Saitoh, H. & Inoue, K. P2X4 receptors and neuropathic pain. Front. Cell Neurosci. 7, 191 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Nakatsuka, T. & Gu, J. G. ATP P2X receptor-mediated enhancement of glutamate release and evoked EPSCs in dorsal horn neurons of the rat spinal cord. J. Neurosci. 21, 6522–6531 (2001).

    Article  CAS  PubMed  Google Scholar 

  74. Fam, S. R., Gallagher, C. J. & Salter, M. W. P2Y1 purinoceptor-mediated Ca2+ signaling and Ca2+ wave propagation in dorsal spinal cord astrocytes. J. Neurosci. 20, 2800–2808 (2000).

    Article  CAS  PubMed  Google Scholar 

  75. Imura, Y. et al. Microglia release ATP by exocytosis. Glia 61, 1320–1330 (2013).

    Article  PubMed  Google Scholar 

  76. Burma, N. E. et al. Blocking microglial pannexin-1 channels alleviates morphine withdrawal in rodents. Nat. Med. 23, 355–360 (2017).

    Article  CAS  PubMed  Google Scholar 

  77. Jo, Y. H. & Schlichter, R. Synaptic corelease of ATP and GABA in cultured spinal neurons. Nat. Neurosci. 2, 241–245 (1999).

    Article  CAS  PubMed  Google Scholar 

  78. Masuda, T. et al. Dorsal horn neurons release extracellular ATP in a VNUT-dependent manner that underlies neuropathic pain. Nat. Commun. 7, 12529 (2016). This study reports that SDH neurons are the principal source of extracellular ATP in the spinal cord that causes PNI-induced pain hypersensitivity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Sawada, K. et al. Identification of a vesicular nucleotide transporter. Proc. Natl Acad. Sci. USA 105, 5683–5686 (2008).

    Article  CAS  PubMed  Google Scholar 

  80. Trang, T., Beggs, S., Wan, X. & Salter, M. W. P2X4-receptor-mediated synthesis and release of brain-derived neurotrophic factor in microglia is dependent on calcium and p38-mitogen-activated protein kinase activation. J. Neurosci. 29, 3518–3528 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Hildebrand, M. E. et al. Potentiation of synaptic GluN2B NMDAR currents by fyn kinase is gated through BDNF-mediated disinhibition in spinal pain processing. Cell Rep. 17, 2753–2765 (2016).

    Article  CAS  PubMed  Google Scholar 

  82. Keller, A. F., Beggs, S., Salter, M. W. & De Koninck, Y. Transformation of the output of spinal lamina I neurons after nerve injury and microglia stimulation underlying neuropathic pain. Mol. Pain 3, 27 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Sorge, R. E. et al. Different immune cells mediate mechanical pain hypersensitivity in male and female mice. Nat. Neurosci. 18, 1081–1083 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Lever, I., Cunningham, J., Grist, J., Yip, P. K. & Malcangio, M. Release of BDNF and GABA in the dorsal horn of neuropathic rats. Eur. J. Neurosci. 18, 1169–1174 (2003).

    Article  PubMed  Google Scholar 

  85. Zhao, J. et al. Nociceptor-derived brain-derived neurotrophic factor regulates acute and inflammatory but not neuropathic pain. Mol. Cell Neurosci. 31, 539–548 (2006).

    Article  CAS  PubMed  Google Scholar 

  86. Inoue, K. The function of microglia through purinergic receptors: neuropathic pain and cytokine release. Pharmacol. Ther. 109, 210–226 (2006).

    Article  CAS  PubMed  Google Scholar 

  87. Chessell, I. P. et al. Disruption of the P2X7 purinoceptor gene abolishes chronic inflammatory and neuropathic pain. Pain 114, 386–396 (2005).

    Article  CAS  PubMed  Google Scholar 

  88. Kobayashi, K., Takahashi, E., Miyagawa, Y., Yamanaka, H. & Noguchi, K. Induction of the P2X7 receptor in spinal microglia in a neuropathic pain model. Neurosci. Lett. 504, 57–61 (2011).

    Article  CAS  PubMed  Google Scholar 

  89. Tanga, F. Y., Nutile-McMenemy, N. & DeLeo, J. A. The CNS role of Toll-like receptor 4 in innate neuroimmunity and painful neuropathy. Proc. Natl Acad. Sci. USA 102, 5856–5861 (2005).

    Article  CAS  PubMed  Google Scholar 

  90. Kim, D. et al. A critical role of toll-like receptor 2 in nerve injury-induced spinal cord glial cell activation and pain hypersensitivity. J. Biol. Chem. 282, 14975–14983 (2007).

    Article  CAS  PubMed  Google Scholar 

  91. Clark, A. K. et al. P2X7-dependent release of interleukin-1beta and nociception in the spinal cord following lipopolysaccharide. J. Neurosci. 30, 573–582 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Heneka, M. T., Kummer, M. P. & Latz, E. Innate immune activation in neurodegenerative disease. Nat. Rev. Immunol. 14, 463–477 (2014).

    Article  CAS  PubMed  Google Scholar 

  93. Di Virgilio, F., Dal Ben, D., Sarti, A. C., Giuliani, A. L. & Falzoni, S. The P2X7 receptor in infection and inflammation. Immunity 47, 15–31 (2017).

    Article  CAS  PubMed  Google Scholar 

  94. Reeve, A. J., Patel, S., Fox, A., Walker, K. & Urban, L. Intrathecally administered endotoxin or cytokines produce allodynia, hyperalgesia and changes in spinal cord neuronal responses to nociceptive stimuli in the rat. Eur. J. Pain 4, 247–257 (2000).

    Article  CAS  PubMed  Google Scholar 

  95. Kawasaki, Y., Zhang, L., Cheng, J. K. & Ji, R. R. Cytokine mechanisms of central sensitization: distinct and overlapping role of interleukin-1beta, interleukin-6, and tumor necrosis factor-alpha in regulating synaptic and neuronal activity in the superficial spinal cord. J. Neurosci. 28, 5189–5194 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Clark, A. K. et al. Selective activation of microglia facilitates synaptic strength. J. Neurosci. 35, 4552–4570 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Viviani, B. et al. Interleukin-1beta enhances NMDA receptor-mediated intracellular calcium increase through activation of the Src family of kinases. J. Neurosci. 23, 8692–8700 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Miyoshi, K., Obata, K., Kondo, T., Okamura, H. & Noguchi, K. Interleukin-18-mediated microglia/astrocyte interaction in the spinal cord enhances neuropathic pain processing after nerve injury. J. Neurosci. 28, 12775–12787 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Zhuang, Z. Y. et al. A peptide c-Jun N-terminal kinase (JNK) inhibitor blocks mechanical allodynia after spinal nerve ligation: respective roles of JNK activation in primary sensory neurons and spinal astrocytes for neuropathic pain development and maintenance. J. Neurosci. 26, 3551–3560 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Kohro, Y. et al. A new minimally-invasive method for microinjection into the mouse spinal dorsal horn. Sci. Rep. 5, 14306 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Kanda, H., Kobayashi, K., Yamanaka, H., Okubo, M. & Noguchi, K. Microglial TNFα induces COX2 and PGI2 synthase expression in spinal endothelial cells during neuropathic pain. eNeuro https://doi.org/10.1523/ENEURO.0064-17.2017 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Tsuda, M., Mizokoshi, A., Shigemoto-Mogami, Y., Koizumi, S. & Inoue, K. Activation of p38 mitogen-activated protein kinase in spinal hyperactive microglia contributes to pain hypersensitivity following peripheral nerve injury. Glia 45, 89–95 (2004).

    Article  PubMed  Google Scholar 

  103. Kronschlager, M. T. et al. Gliogenic LTP spreads widely in nociceptive pathways. Science 354, 1144–1148 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Park, C. K. et al. Resolving TRPV1- and TNF-alpha-mediated spinal cord synaptic plasticity and inflammatory pain with neuroprotectin D1. J. Neurosci. 31, 15072–15085 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Gao, Y. J. et al. JNK-induced MCP-1 production in spinal cord astrocytes contributes to central sensitization and neuropathic pain. J. Neurosci. 29, 4096–4108 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Chen, G. et al. Connexin-43 induces chemokine release from spinal cord astrocytes to maintain late-phase neuropathic pain in mice. Brain 137, 2193–2209 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Liddelow, S. A. et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541, 481–487 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Oida, H. et al. In situ hybridization studies of prostacyclin receptor mRNA expression in various mouse organs. Br. J. Pharmacol. 116, 2828–2837 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Clark, A. K. & Malcangio, M. Fractalkine/CX3CR1 signaling during neuropathic pain. Front. Cell Neurosci. 8, 121 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Limatola, C. & Ransohoff, R. M. Modulating neurotoxicity through CX3CL1/CX3CR1 signaling. Front. Cell Neurosci. 8, 229 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Kanda, H., Kobayashi, K., Yamanaka, H. & Noguchi, K. COX-1-dependent prostaglandin D2 in microglia contributes to neuropathic pain via DP2 receptor in spinal neurons. Glia 61, 943–956 (2013).

    Article  PubMed  Google Scholar 

  112. Shindou, H. et al. Relief from neuropathic pain by blocking of the platelet-activating factor-pain loop. FASEB J. 31, 2973–2980 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Okubo, M., Yamanaka, H., Kobayashi, K. & Noguchi, K. Leukotriene synthases and the receptors induced by peripheral nerve injury in the spinal cord contribute to the generation of neuropathic pain. Glia 58, 599–610 (2010).

    PubMed  Google Scholar 

  114. Kiyoyuki, Y. et al. Leukotriene enhances NMDA-induced inward currents in dorsal horn neurons of the rat spinal cord after peripheral nerve injury. Mol. Pain 11, 53 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Hanisch, U. K. & Kettenmann, H. Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat. Neurosci. 10, 1387–1394 (2007).

    Article  CAS  PubMed  Google Scholar 

  116. Moore, K. A. et al. Partial peripheral nerve injury promotes a selective loss of GABAergic inhibition in the superficial dorsal horn of the spinal cord. J. Neurosci. 22, 6724–6731 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Koizumi, S. et al. UDP acting at P2Y6 receptors is a mediator of microglial phagocytosis. Nature 446, 1091–1095 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Kobayashi, K., Yamanaka, H., Yanamoto, F., Okubo, M. & Noguchi, K. Multiple P2Y subtypes in spinal microglia are involved in neuropathic pain after peripheral nerve injury. Glia 60, 1529–1539 (2012).

    Article  PubMed  Google Scholar 

  119. Barragan-Iglesias, P. et al. Role of spinal P2Y6 and P2Y11 receptors in neuropathic pain in rats: possible involvement of glial cells. Mol. Pain 10, 29 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Maeda, M., Tsuda, M., Tozaki-Saitoh, H., Inoue, K. & Kiyama, H. Nerve injury-activated microglia engulf myelinated axons in a P2Y12 signaling-dependent manner in the dorsal horn. Glia 58, 1838–1846 (2010).

    Article  PubMed  Google Scholar 

  121. Ni, H. D. et al. Glial activation in the periaqueductal gray promotes descending facilitation of neuropathic pain through the p38 MAPK signaling pathway. J. Neurosci. Res. 94, 50–61 (2016).

    Article  CAS  PubMed  Google Scholar 

  122. Taylor, A. M., Mehrabani, S., Liu, S., Taylor, A. J. & Cahill, C. M. Topography of microglial activation in sensory- and affect-related brain regions in chronic pain. J. Neurosci. Res. 95, 1330–1335 (2017).

    Article  CAS  PubMed  Google Scholar 

  123. Miyamoto, K., Kume, K. & Ohsawa, M. Role of microglia in mechanical allodynia in the anterior cingulate cortex. J. Pharmacol. Sci. 134, 158–165 (2017).

    Article  CAS  PubMed  Google Scholar 

  124. Ikeda, R., Takahashi, Y., Inoue, K. & Kato, F. NMDA receptor-independent synaptic plasticity in the central amygdala in the rat model of neuropathic pain. Pain 127, 161–172 (2007).

    Article  CAS  PubMed  Google Scholar 

  125. Sorge, R. E. et al. Spinal cord Toll-like receptor 4 mediates inflammatory and neuropathic hypersensitivity in male but not female mice. J. Neurosci. 31, 15450–15454 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Taves, S. et al. Spinal inhibition of p38 MAP kinase reduces inflammatory and neuropathic pain in male but not female mice: sex-dependent microglial signaling in the spinal cord. Brain Behav. Immun. 55, 70–81 (2016).

    Article  CAS  PubMed  Google Scholar 

  127. Peng, J. et al. Microglia and monocytes synergistically promote the transition from acute to chronic pain after nerve injury. Nat. Commun. 7, 12029 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Staniland, A. A. et al. Reduced inflammatory and neuropathic pain and decreased spinal microglial response in fractalkine receptor (CX3CR1) knockout mice. J. Neurochem. 114, 1143–1157 (2010).

    CAS  PubMed  Google Scholar 

  129. Mao-Ying, Q. L. et al. Robust spinal neuroinflammation mediates mechanical allodynia in Walker 256 induced bone cancer rats. Mol. Brain 5, 16 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Yang, Y. et al. Delayed activation of spinal microglia contributes to the maintenance of bone cancer pain in female Wistar rats via P2X7 receptor and IL-18. J. Neurosci. 35, 7950–7963 (2015).

    Article  CAS  PubMed  Google Scholar 

  131. Lan, L. S. et al. Down-regulation of Toll-like receptor 4 gene expression by short interfering RNA attenuates bone cancer pain in a rat model. Mol. Pain 6, 2 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Hu, J. H. et al. Involvement of CX3CR1 in bone cancer pain through the activation of microglia p38 MAPK pathway in the spinal cord. Brain Res. 1465, 1–9 (2012).

    Article  CAS  PubMed  Google Scholar 

  133. Nieto, F. R. et al. Neuron-immune mechanisms contribute to pain in early stages of arthritis. J. Neuroinflamm. 13, 96 (2016).

    Article  CAS  Google Scholar 

  134. Jin, X. H., Wang, L. N., Zuo, J. L., Yang, J. P. & Liu, S. L. P2X4 receptor in the dorsal horn partially contributes to brain-derived neurotrophic factor oversecretion and toll-like receptor-4 receptor activation associated with bone cancer pain. J. Neurosci. Res. 92, 1690–1702 (2014).

    Article  CAS  PubMed  Google Scholar 

  135. Matsumura, Y. et al. A novel P2X4 receptor-selective antagonist produces anti-allodynic effect in a mouse model of herpetic pain. Sci. Rep. 6, 32461 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Hayashi, Y. et al. Diurnal spatial rearrangement of microglial processes through the rhythmic expression of P2Y12 receptors. J. Neurol. Disord. 1, 2 (2013).

    Article  Google Scholar 

  137. Hayashi, Y. et al. The intrinsic microglial molecular clock controls synaptic strength via the circadian expression of cathepsin S. Sci. Rep. 3, 2744 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Koyanagi, S. et al. Glucocorticoid regulation of ATP release from spinal astrocytes underlies diurnal exacerbation of neuropathic mechanical allodynia. Nat. Commun. 7, 13102 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Bhattacharya, A. & Biber, K. The microglial ATP-gated ion channel P2X7 as a CNS drug target. Glia 64, 1772–1787 (2016).

    Article  PubMed  Google Scholar 

  140. Hewitt, E. et al. Selective cathepsin S inhibition with MIV-247 attenuates mechanical allodynia and enhances the antiallodynic effects of gabapentin and pregabalin in a mouse model of neuropathic pain. J. Pharmacol. Exp. Ther. 358, 387–396 (2016).

    Article  CAS  PubMed  Google Scholar 

  141. Kato, Y. et al. Identification of a vesicular ATP release inhibitor for the treatment of neuropathic and inflammatory pain. Proc. Natl Acad. Sci. USA 114, E6297–E6305 (2017).

    Article  CAS  Google Scholar 

  142. Moriconi, A. et al. Targeting the minor pocket of C5aR for the rational design of an oral allosteric inhibitor for inflammatory and neuropathic pain relief. Proc. Natl Acad. Sci. USA 111, 16937–16942 (2014).

    Article  CAS  PubMed  Google Scholar 

  143. Kawate, T., Michel, J. C., Birdsong, W. T. & Gouaux, E. Crystal structure of the ATP-gated P2X(4) ion channel in the closed state. Nature 460, 592–598 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Karasawa, A. & Kawate, T. Structural basis for subtype-specific inhibition of the P2X7 receptor. eLife 5, e22153 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Zhang, K. et al. Structure of the human P2Y12 receptor in complex with an antithrombotic drug. Nature 509, 115–118 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Ferrini, F. et al. Morphine hyperalgesia gated through microglia-mediated disruption of neuronal Cl homeostasis. Nat. Neurosci. 16, 183–192 (2013). This paper reports that spinal microglia critically contribute to opioid-induced hyperalgesia through the P2X4–BDNF–TRKB–KCC2 pathway.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Leduc-Pessah, H. et al. Site-specific regulation of P2X7 receptor function in microglia gates morphine analgesic tolerance. J. Neurosci. 37, 10154–10172 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Grace, P. M. et al. Morphine paradoxically prolongs neuropathic pain in rats by amplifying spinal NLRP3 inflammasome activation. Proc. Natl Acad. Sci. USA 113, E3441–E3450 (2016).

    Article  CAS  PubMed  Google Scholar 

  149. Muffat, J. et al. Efficient derivation of microglia-like cells from human pluripotent stem cells. Nat. Med. 22, 1358–1367 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Ohgidani, M. et al. Direct induction of ramified microglia-like cells from human monocytes: dynamic microglial dysfunction in Nasu-Hakola disease. Sci. Rep. 4, 4957 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Ohgidani, M. et al. Fibromyalgia and microglial TNF-alpha: translational research using human blood induced microglia-like cells. Sci. Rep. 7, 11882 (2017). This paper reports that induced microglia-like cells of fibromyalgia patients show an inflammatory phenotype that is correlated with pain severity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Garre, J. M., Silva, H. M., Lafaille, J. J. & Yang, G. CX3CR1+ monocytes modulate learning and learning-dependent dendritic spine remodeling via TNF-alpha. Nat. Med. 23, 714–722 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Butovsky, O. et al. Identification of a unique TGF-beta-dependent molecular and functional signature in microglia. Nat. Neurosci. 17, 131–143 (2014).

    Article  CAS  PubMed  Google Scholar 

  154. Del Valle, L., Schwartzman, R. J. & Alexander, G. Spinal cord histopathological alterations in a patient with longstanding complex regional pain syndrome. Brain Behav. Immun. 23, 85–91 (2009).

    Article  PubMed  Google Scholar 

  155. Banati, R. B. et al. Positron emission tomography and functional characterization of a complete PBR/TSPO knockout. Nat. Commun. 5, 5452 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Banati, R. B. et al. Long-term trans-synaptic glial responses in the human thalamus after peripheral nerve injury. Neuroreport 12, 3439–3442 (2001).

    Article  CAS  PubMed  Google Scholar 

  157. Loggia, M. L. et al. Evidence for brain glial activation in chronic pain patients. Brain 138, 604–615 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Jeon, S. Y. et al. [11C]-(R)-PK11195 positron emission tomography in patients with complex regional pain syndrome: a pilot study. Medicine 96, e5735 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Wei, X. H. et al. The upregulation of translocator protein (18 kDa) promotes recovery from neuropathic pain in rats. J. Neurosci. 33, 1540–1551 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Gautier, E. L. et al. Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages. Nat. Immunol. 13, 1118–1128 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Gosselin, D. et al. Environment drives selection and function of enhancers controlling tissue-specific macrophage identities. Cell 159, 1327–1340 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Hickman, S. E. et al. The microglial sensome revealed by direct RNA sequencing. Nat. Neurosci. 16, 1896–1905 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Del Rio-Hortega, P. El tercer elemento de los centros nerviosos I La microglia en estado normal II Intervencíon de la microglia en los procesos patológicos III Naturaleza probable de la microglia [Spanish]. Bol. Soc. Biol. 9, 69–120 (1919).

    Google Scholar 

  164. Kettenmann, H., Hanisch, U. K., Noda, M. & Verkhratsky, A. Physiology of microglia. Physiol. Rev. 91, 461–553 (2011).

    Article  CAS  PubMed  Google Scholar 

  165. Ginhoux, F. et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330, 841–845 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Kierdorf, K. et al. Microglia emerge from erythromyeloid precursors via Pu.1- and Irf8-dependent pathways. Nat. Neurosci. 16, 273–280 (2013).

    Article  CAS  PubMed  Google Scholar 

  167. Gomez Perdiguero, E. et al. Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors. Nature 518, 547–551 (2015).

    Article  CAS  PubMed  Google Scholar 

  168. Salter, M. W. & Beggs, S. Sublime microglia: expanding roles for the guardians of the CNS. Cell 158, 15–24 (2014).

    Article  CAS  PubMed  Google Scholar 

  169. Kierdorf, K. & Prinz, M. Microglia in steady state. J. Clin. Invest. 127, 3201–3209 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Schulz, C. et al. A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science 336, 86–90 (2012).

    Article  CAS  PubMed  Google Scholar 

  171. Wang, Y. et al. IL-34 is a tissue-restricted ligand of CSF1R required for the development of Langerhans cells and microglia. Nat. Immunol. 13, 753–760 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Ajami, B., Bennett, J. L., Krieger, C., Tetzlaff, W. & Rossi, F. M. Local self-renewal can sustain CNS microglia maintenance and function throughout adult life. Nat. Neurosci. 10, 1538–1543 (2007).

    Article  CAS  PubMed  Google Scholar 

  173. Elmore, M. R. et al. Colony-stimulating factor 1 receptor signaling is necessary for microglia viability, unmasking a microglia progenitor cell in the adult brain. Neuron 82, 380–397 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Hoek, R. M. et al. Down-regulation of the macrophage lineage through interaction with OX2 (CD200). Science 290, 1768–1771 (2000).

    Article  CAS  PubMed  Google Scholar 

  175. Ponomarev, E. D., Veremeyko, T., Barteneva, N., Krichevsky, A. M. & Weiner, H. L. MicroRNA-124 promotes microglia quiescence and suppresses EAE by deactivating macrophages via the C/EBP-alpha-PU.1 pathway. Nat. Med. 17, 64–70 (2011).

    Article  CAS  PubMed  Google Scholar 

  176. Prinz, M. & Priller, J. Microglia and brain macrophages in the molecular age: from origin to neuropsychiatric disease. Nat. Rev. Neurosci. 15, 300–312 (2014).

    Article  CAS  PubMed  Google Scholar 

  177. Hutchinson, M. R. et al. Exploring the neuroimmunopharmacology of opioids: an integrative review of mechanisms of central immune signaling and their implications for opioid analgesia. Pharmacol. Rev. 63, 772–810 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Wang, Z., Ma, W., Chabot, J. G. & Quirion, R. Cell-type specific activation of p38 and ERK mediates calcitonin gene-related peptide involvement in tolerance to morphine-induced analgesia. Faseb J. 23, 2576–2586 (2009).

    Article  CAS  PubMed  Google Scholar 

  179. Horvath, R. J., Romero-Sandoval, E. A. & De Leo, J. A. Inhibition of microglial P2X4 receptors attenuates morphine tolerance, Iba1, GFAP and mu opioid receptor protein expression while enhancing perivascular microglial ED2. Pain 150, 401–413 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Zhou, D., Chen, M. L., Zhang, Y. Q. & Zhao, Z. Q. Involvement of spinal microglial P2X7 receptor in generation of tolerance to morphine analgesia in rats. J. Neurosci. 30, 8042–8047 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Fukagawa, H., Koyama, T., Kakuyama, M. & Fukuda, K. Microglial activation involved in morphine tolerance is not mediated by toll-like receptor 4. J. Anesth 27, 93–97 (2013).

    Article  PubMed  Google Scholar 

  182. Taylor, A. M. et al. Neuroimmune regulation of GABAergic neurons within the ventral tegmental area during withdrawal from chronic morphine. Neuropsychopharmacology 41, 949–959 (2016).

    Article  CAS  PubMed  Google Scholar 

  183. Corder, G. et al. Loss of mu opioid receptor signaling in nociceptors, but not microglia, abrogates morphine tolerance without disrupting analgesia. Nat. Med. 23, 164–173 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Kobayashi, K. et al. P2Y12 receptor upregulation in activated microglia is a gateway of p38 signaling and neuropathic pain. J. Neurosci. 28, 2892–2902 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Matsushita, K. et al. Chemokine (C-C motif) receptor 5 is an important pathological regulator in the development and maintenance of neuropathic pain. Anesthesiology 120, 1491–1503 (2014).

    Article  CAS  PubMed  Google Scholar 

  186. Lim, H., Kim, D. & Lee, S. J. Toll-like receptor 2 mediates peripheral nerve injury-induced NADPH oxidase 2 expression in spinal cord microglia. J. Biol. Chem. 288, 7572–7579 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Calvo, M. et al. Neuregulin-ErbB signaling promotes microglial proliferation and chemotaxis contributing to microgliosis and pain after peripheral nerve injury. J. Neurosci. 30, 5437–5450 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Tsuda, M. et al. Fibronectin/integrin system is involved in P2X4 receptor upregulation in the spinal cord and neuropathic pain after nerve injury. Glia 56, 579–585 (2008).

    Article  PubMed  Google Scholar 

  189. Zhuang, Z. Y., Gerner, P., Woolf, C. J. & Ji, R. R. ERK is sequentially activated in neurons, microglia, and astrocytes by spinal nerve ligation and contributes to mechanical allodynia in this neuropathic pain model. Pain 114, 149–159 (2005).

    Article  PubMed  Google Scholar 

  190. Calvo, M. et al. Following nerve injury neuregulin-1 drives microglial proliferation and neuropathic pain via the MEK/ERK pathway. Glia 59, 554–568 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  191. Katsura, H. et al. Activation of Src-family kinases in spinal microglia contributes to mechanical hypersensitivity after nerve injury. J. Neurosci. 26, 8680–8690 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Tsuda, M. et al. Lyn tyrosine kinase is required for P2X4 receptor upregulation and neuropathic pain after peripheral nerve injury. Glia 56, 50–58 (2008).

    Article  PubMed  Google Scholar 

  193. Kim, D. et al. NADPH oxidase 2-derived reactive oxygen species in spinal cord microglia contribute to peripheral nerve injury-induced neuropathic pain. Proc. Natl Acad. Sci. USA 107, 14851–14856 (2010).

    Article  CAS  PubMed  Google Scholar 

  194. Zhu, X. & Eisenach, J. C. Cyclooxygenase-1 in the spinal cord is altered after peripheral nerve injury. Anesthesiology 99, 1175–1179 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Japan Society for the Promotion of Science Grants-in-Aid for Scientific Research (KAKENHI) grant numbers 15H02522 (M.T.) and 25117013 (K.I.), the Core Research for Evolutional Science and Technology (CREST) programme (M.T.), the Practical Research Project for Allergic Diseases and Immunology (Research on Allergic Diseases and Immunology) (M.T.), the Research Project on Elucidation of Chronic Pain, Platform for Drug Discovery, Informatics, and Structural Life Science (M.T.) from the Japan Agency for Medical Research and Development, and the Toray Science Foundation (M.T.). The authors also thank T. Masuda and Y. Ozono for personal communications regarding their experiments using conditional Vnut-knockout mice.

Author information

Authors and Affiliations

Authors

Contributions

K.I. and M.T. contributed to the discussion of content, wrote the article and reviewed and/or edited the article before submission.

Corresponding authors

Correspondence to Kazuhide Inoue or Makoto Tsuda.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Hyperalgesia

Increased pain in response to a stimulus that normally provokes pain.

Allodynia

Pain in response to a stimulus that does not normally provoke pain.

Sexual dimorphism

The occurrence of different characteristics in individuals of each of the two sexes of the same species.

Diurnal cycle

A cyclic change in the biological processes in an organism with a period length of 24 hours.

Parabiosis mice

Model in which two mice are surgically joined and share circulating blood in order to generate a chimaera without irradiation and transplantation.

Inflammasomes

Intracellular multiprotein complexes that lead to the activation of caspase 1, which generates the active pro-inflammatory cytokines interleukin-1β (IL-1β) and IL-18.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Inoue, K., Tsuda, M. Microglia in neuropathic pain: cellular and molecular mechanisms and therapeutic potential. Nat Rev Neurosci 19, 138–152 (2018). https://doi.org/10.1038/nrn.2018.2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn.2018.2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing