Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Common infections and the risk of stroke

Abstract

The occurrence of stroke in populations is incompletely explained by traditional vascular risk factors. Data from several case–control studies and one large study using case series methodology indicate that recent infection is a temporarily acting, independent trigger factor for ischemic stroke. Both bacterial and viral infections, particularly respiratory tract infections, contribute to this association. A causal role for infection in stroke is supported by a graded temporal relationship between these conditions, and by multiple pathophysiological pathways linking infection and inflammation, thrombosis, and stroke. Furthermore, observational studies suggest that influenza vaccination confers a preventive effect against stroke. Case–control and prospective studies indicate that chronic infections, such as periodontitis, chronic bronchitis and infection with Helicobacter pylori, Chlamydia pneumoniae or Cytomegalovirus, might increase stroke risk, although considerable variation exists in the results of these studies, and methodological issues regarding serological results remain unresolved. Increasing evidence indicates that the aggregate burden of chronic and/or past infections rather than any one single infectious disease is associated with the risk of stroke. Furthermore, genetic predispositions relating to infection susceptibility and the strength of the inflammatory response seem to codetermine this risk. Here, we summarize and analyze the evidence for common acute and chronic infectious diseases as stroke risk factors.

Key Points

  • Acute bacterial and viral infections (mainly respiratory infections) transiently increase the risk of ischemic stroke—an effect mainly observed during the first week after infection onset

  • The association between acute infection and stroke is not dependent on particular microbial agents but, rather, results from the inflammatory response to infection, which induces a procoagulant state

  • Periodontitis, chronic bronchitis, and infection with Helicobacter pylori or Chlamydia pneumoniae might be associated with an increase in stroke risk; however, whether such chronic infections are causally related to stroke remains undetermined

  • The aggregate burden of chronic persistent infections and/or past infections rather than one single infectious disease seems to be associated with stroke risk

  • Observational studies suggest that influenza vaccination has a protective effect against stroke

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mechanisms linking infection and inflammation with thrombogenesis and stroke.
Figure 2: Factors potentially affecting the risk of stroke.

Similar content being viewed by others

References

  1. Kelly-Hayes, M. et al. Temporal patterns of stroke onset. The Framingham Study. Stroke 26, 1343–1347 (1995).

    CAS  PubMed  Google Scholar 

  2. Rothwell, P. M., Wroe, S. J., Slattery, J. & Warlow, C. P. Is stroke incidence related to season or temperature? The Oxfordshire Community Stroke Project. Lancet 347, 934–936 (1996).

    CAS  PubMed  Google Scholar 

  3. Freud, S. Die infantile Cerebrallähmung 1–327 (Holder, Wien, 1897).

    Google Scholar 

  4. Marie, S. Infantile cerebral hemiparesis and infectious diseases [French]. Progrès Méd. 13, 167–169 (1885).

    Google Scholar 

  5. Bickerstaff, E. R. Aetiology of acute hemiplegia in childhood. Br. Med. J. 2, 82–87 (1964).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Hindfelt, B. & Nilsson, O. Brain infarction in young adults (with particular reference to pathogenesis). Acta Neurol. Scand. 55, 145–157 (1977).

    CAS  PubMed  Google Scholar 

  7. Syrjänen, J., Valtonen, V. V., Iivanainen, M., Kaste, M. & Huttunen, J. K. Preceding infection as an important risk factor for ischaemic brain infarction in young and middle aged patients. Br. Med. J. (Clin. Res. Ed.) 296, 1156–1160 (1988).

    Google Scholar 

  8. Grau, A. J. et al. Recent bacterial and viral infection is a risk factor for cerebrovascular ischemia: clinical and biochemical studies. Neurology 50, 196–203 (1998).

    CAS  PubMed  Google Scholar 

  9. Grau, A. J. et al. Recent infection as a risk factor for cerebrovascular ischemia. Stroke 26, 373–379 (1995).

    CAS  PubMed  Google Scholar 

  10. Bova, I. Y., Bornstein, N. M. & Korczyn, A. D. Acute infection as a risk factor for ischemic stroke. Stroke 27, 2204–2206 (1996).

    CAS  PubMed  Google Scholar 

  11. Macko, R. F. et al. Precipitants of brain infarction. Roles of preceding infection/inflammation and recent psychological stress. Stroke 27, 1999–2004 (1996).

    CAS  PubMed  Google Scholar 

  12. Nagaraja, D. et al. Preceding infection as a risk factor of stroke in the young. J. Assoc. Physicians India 47, 673–675 (1999).

    CAS  PubMed  Google Scholar 

  13. Nencini, P., Sarti, C., Innocenti, R., Pracucci, G. & Inzitari, D. Acute inflammatory events and ischemic stroke subtypes. Cerebrovasc. Dis. 15, 215–221 (2003).

    PubMed  Google Scholar 

  14. Paganini-Hill, A. et al. Infection and risk of ischemic stroke: differences among stroke subtypes. Stroke 34, 452–457 (2003).

    CAS  PubMed  Google Scholar 

  15. Clayton, T. C., Thompson, M. & Meade, T. W. Recent respiratory infection and risk of cardiovascular disease: case–control study through a general practice database. Eur. Heart J. 29, 96–103 (2008).

    PubMed  Google Scholar 

  16. Zurru, M. C. et al. Recent respiratory infection predicts atherothrombotic stroke: case–control study in a Buenos Aires healthcare system. Stroke 40, 1986–1990 (2009).

    PubMed  Google Scholar 

  17. Smeeth, L. et al. Risk of myocardial infarction and stroke after acute infection or vaccination. N. Engl. J. Med. 351, 2611–2618 (2004).

    CAS  PubMed  Google Scholar 

  18. Eickhoff, T. C., Sherman, I. L. & Serfling, R. E. Observations on excess mortality associated with epidemic influenza. JAMA 176, 776–782 (1961).

    CAS  PubMed  Google Scholar 

  19. Gordon, T. & Thom, T. The recent decrease in CHD mortality. Prev. Med. 4, 115–125 (1975).

    CAS  PubMed  Google Scholar 

  20. Soltero, I., Liu, K., Cooper, R., Stamler, J. & Garside, D. Trends in mortality from cerebrovascular diseases in the United States, 1960 to 1975. Stroke 9, 549–558 (1978).

    CAS  PubMed  Google Scholar 

  21. Field, T. S., Zhu, H., Tarrant, M., Mitchell, J. R. & Hill, M. D. Relationship between supra-annual trends in influenza rates and stroke occurrence. Neuroepidemiology 23, 228–235 (2004).

    PubMed  Google Scholar 

  22. Curwen, M. Excess winter mortality: a British phenomenon. Health Trends 22, 169–175 (1990).

    Google Scholar 

  23. Grau, A. J. et al. Clinical and biochemical analysis in infection-associated stroke. Stroke 26, 1520–1526 (1995).

    CAS  PubMed  Google Scholar 

  24. Grau, A. J. et al. Lack of evidence for pulmonary venous thrombosis in cryptogenic stroke: a magnetic resonance angiography study. Stroke 33, 1416–1419 (2002).

    PubMed  Google Scholar 

  25. Grau, A. J. et al. Association of cervical artery dissection with recent infection. Arch. Neurol. 56, 851–856 (1999).

    CAS  PubMed  Google Scholar 

  26. Guillon, B. et al. Infection and the risk of spontaneous cervical artery dissection: a case–control study. Stroke 34, e79–e81 (2003).

    PubMed  Google Scholar 

  27. Schievink, W. I., Wijdicks, E. F. & Kuiper, J. D. Seasonal pattern of spontaneous cervical artery dissection. J. Neurosurg. 89, 101–103 (1998).

    CAS  PubMed  Google Scholar 

  28. Paciaroni, M. et al. Seasonal variability in spontaneous cervical artery dissection. J. Neurol. Neurosurg. Psychiatry 77, 677–679 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Genius, J., Dong-Si, T., Grau, A. P. & Lichy, C. Postacute C-reactive protein levels are elevated in cervical artery dissection. Stroke 36, e42–e44 (2005).

    CAS  PubMed  Google Scholar 

  30. Jørgensen, H. S., Reith, J., Pedersen, P. M., Nakayama, H. & Olsen, T. S. Body temperature and outcome in stroke patients. Lancet 348, 193 (1996).

    PubMed  Google Scholar 

  31. Ameriso, S. F., Wong, V. L., Quismorio, F. P. Jr & Fisher, M. Immunohematologic characteristics of infection-associated cerebral infarction. Stroke 22, 1004–1009 (1991).

    CAS  PubMed  Google Scholar 

  32. McColl, B. W., Rothwell, N. J. & Allan, S. M. Systemic inflammatory stimulus potentiates the acute phase and CXC chemokine responses to experimental stroke and exacerbates brain damage via interleukin-1- and neutrophil-dependent mechanisms. J. Neurosci. 27, 4403–4412 (2007).

    CAS  PubMed  Google Scholar 

  33. Grau, A. J. et al. Fever and infection early after ischemic stroke. J. Neurol. Sci. 171, 115–120 (1999).

    CAS  PubMed  Google Scholar 

  34. Rosenzweig, H. L. et al. Endotoxin preconditioning prevents cellular inflammatory response during ischemic neuroprotection in mice. Stroke 35, 2576–2581 (2004).

    CAS  PubMed  Google Scholar 

  35. Grayston, J. T., Kuo, C. C., Wang, S. P. & Altman, J. A new Chlamydia psittaci strain, TWAR, isolated in acute respiratory tract infections. N. Engl. J. Med. 315, 161–168 (1986).

    CAS  PubMed  Google Scholar 

  36. Urra, X., Obach, V. & Chamorro, A. Stroke induced immunodepression syndrome: from bench to bedside. Curr. Mol. Med. 9, 195–202 (2009).

    CAS  PubMed  Google Scholar 

  37. Epstein, S. E., Zhu, J., Najafi, A. H. & Burnett, M. S. Insights into the role of infection in atherogenesis and in plaque rupture. Circulation 119, 3133–3141 (2009).

    CAS  PubMed  Google Scholar 

  38. Wimmer, M. L., Sandmann-Strupp, R., Saikku, P. & Haberl, R. L. Association of chlamydial infection with cerebrovascular disease. Stroke 27, 2207–2210 (1996).

    CAS  PubMed  Google Scholar 

  39. Cook, P. J. et al. Chlamydia pneumoniae antibody titers are significantly associated with acute stroke and transient cerebral ischemia: the West Birmingham Stroke Project. Stroke 29, 404–410 (1998).

    CAS  PubMed  Google Scholar 

  40. Glader, C. A. et al. Chlamydia pneumoniae antibodies and high lipoprotein(a) levels do not predict ischemic cerebral infarctions. Results from a nested case–control study in Northern Sweden. Stroke 30, 2013–2018 (1999).

    CAS  PubMed  Google Scholar 

  41. Fagerberg, B., Gnarpe, J., Gnarpe, H., Agewall, S. & Wikstrand, J. Chlamydia pneumoniae but not cytomegalovirus antibodies are associated with future risk of stroke and cardiovascular disease: a prospective study in middle-aged to elderly men with treated hypertension. Stroke 30, 299–305 (1999).

    CAS  PubMed  Google Scholar 

  42. Elkind, M. S., Lin, I. F., Grayston, J. T. & Sacco, R. L. Chlamydia pneumoniae and the risk of first ischemic stroke: the Northern Manhattan Stroke Study. Stroke 31, 1521–1525 (2000).

    CAS  PubMed  Google Scholar 

  43. Heuschmann, P. U. et al. Association between infection with Helicobacter pylori and Chlamydia pneumoniae and risk of ischemic stroke subtypes: results from a population-based case–control study. Stroke 32, 2253–2258 (2001).

    CAS  PubMed  Google Scholar 

  44. Madre, J. G. et al. Association between seropositivity to Chlamydia pneumoniae and acute ischaemic stroke. Eur. J. Neurol. 9, 303–306 (2002).

    PubMed  Google Scholar 

  45. Tanne, D. et al. Prospective study of Chlamydia pneumoniae IgG and IgA seropositivity and risk of incident ischemic stroke. Cerebrovasc. Dis. 16, 166–170 (2003).

    PubMed  Google Scholar 

  46. Ngeh, J., Gupta, S., Goodbourn, C., Panayiotou, B. & McElligott, G. Chlamydia pneumoniae in elderly patients with stroke (C-PEPS): a case–control study on the seroprevalence of Chlamydia pneumoniae in elderly patients with acute cerebrovascular disease. Cerebrovasc. Dis. 15, 11–16 (2003).

    PubMed  Google Scholar 

  47. Anzini, A. et al. Chlamydia pneumoniae infection in young stroke patients: a case–control study. Eur. J. Neurol. 11, 321–327 (2004).

    CAS  PubMed  Google Scholar 

  48. Johnsen, S. P. et al. Chlamydia pneumoniae seropositivity and risk of ischemic stroke: a nested case–control study. Eur. J. Epidemiol. 20, 59–65 (2005).

    PubMed  Google Scholar 

  49. Elkind, M. S. et al. Seropositivity to Chlamydia pneumoniae is associated with risk of first ischemic stroke. Stroke 37, 790–795 (2006).

    CAS  PubMed  Google Scholar 

  50. Piechowski-Jozwiak, B., Mickielewicz, A., Gaciong, Z., Berent, H. & Kwiecinski, H. Elevated levels of anti-Chlamydia pneumoniae IgA and IgG antibodies in young adults with ischemic stroke. Acta Neurol. Scand. 116, 144–149 (2007).

    CAS  PubMed  Google Scholar 

  51. Bandaru, V. C. et al. Chlamydia pneumoniae antibodies in various subtypes of ischemic stroke in Indian patients. J. Neurol. Sci. 272, 115–122 (2008).

    CAS  PubMed  Google Scholar 

  52. Lin, T. M. et al. The association of C (–260)→ T polymorphism in CD14 promoter and Chlamydia pneumoniae infection in ischemic stroke patients. Am. J.Clin. Pathol. 130, 595–601 (2008).

    CAS  PubMed  Google Scholar 

  53. Alamowitch, S., Labreuche, J., Touboul, P. J., Eb, F. & Amarenco, P. Chlamydia pneumoniae seropositivity in aetiological subtypes of brain infarction and carotid atherosclerosis: a case control study. J. Neurol. Neurosurg. Psychiatry 79, 147–151 (2008).

    CAS  PubMed  Google Scholar 

  54. Bandaru, V. C., Boddu, D. B., Laxmi, V., Neeraja, M. & Kaul, S. Seroprevalence of Chlamydia pneumoniae antibodies in stroke in young. Can. J. Neurol. Sci. 36, 725–730 (2009).

    PubMed  Google Scholar 

  55. Apfalter, P. Chlamydia pneumoniae, stroke, and serological associations: anything learned from the atherosclerosis–cardiovascular literature or do we have to start over again? Stroke 37, 756–758 (2006).

    PubMed  Google Scholar 

  56. Lindsberg, P. J. & Grau, A. J. Inflammation and infections as risk factors for ischemic stroke. Stroke 34, 2518–2532 (2003).

    PubMed  Google Scholar 

  57. Prager, M. et al. Chlamydia pneumoniae in carotid artery atherosclerosis: a comparison of its presence in atherosclerotic plaque, healthy vessels, and circulating leukocytes from the same individuals. Stroke 33, 2756–2761 (2002).

    PubMed  Google Scholar 

  58. Muller, J. et al. Chlamydia pneumoniae DNA in peripheral blood mononuclear cells in healthy control subjects and patients with diabetes mellitus, acute coronary syndrome, stroke, and arterial hypertension. Scand. J. Infect. Dis. 35, 704–712 (2003).

    PubMed  Google Scholar 

  59. Maass, M. et al. Poor correlation between microimmunofluorescence serology and polymerase chain reaction for detection of vascular Chlamydia pneumoniae infection in coronary artery disease patients. Med. Microbiol. Immunol. 187, 103–106 (1998).

    CAS  PubMed  Google Scholar 

  60. Andraws, R., Berger, J. S. & Brown, D. L. Effects of antibiotic therapy on outcomes of patients with coronary artery disease: a meta-analysis of randomized controlled trials. JAMA 293, 2641–2647 (2005).

    CAS  PubMed  Google Scholar 

  61. Illoh, K. O., Illoh, O. C., Feseha, H. B. & Hallenbeck, J. M. Antibiotics for vascular diseases: a meta-analysis of randomized controlled trials. Atherosclerosis 179, 403–412 (2005).

    CAS  PubMed  Google Scholar 

  62. Luchsinger, J. A., Pablos-Mendez, A., Knirsch, C., Rabinowitz, D. & Shea, S. Antibiotic use and risk of ischemic stroke in the elderly. Am. J. Med. 111, 361–366 (2001).

    CAS  PubMed  Google Scholar 

  63. Sander, D., Winbeck, K., Klingelhofer, J., Etgen, T. & Conrad, B. Progression of early carotid atherosclerosis is only temporarily reduced after antibiotic treatment of Chlamydia pneumoniae seropositivity. Circulation 109, 1010–1015 (2004).

    CAS  PubMed  Google Scholar 

  64. McColl, K. E. Clinical practice. Helicobacter pylori infection. N. Engl. J. Med. 362, 1597–1604 (2010).

    CAS  PubMed  Google Scholar 

  65. Ameriso, S. F., Fridman, E. A., Leiguarda, R. C. & Sevlever, G. E. Detection of Helicobacter pylori in human carotid atherosclerotic plaques. Stroke 32, 385–391 (2001).

    CAS  PubMed  Google Scholar 

  66. Cremonini, F., Gabrielli, M., Gasbarrini, G., Pola, P. & Gasbarrini, A. The relationship between chronic H. pylori infection, CagA seropositivity and stroke: meta-analysis. Atherosclerosis 173, 253–259 (2004).

    CAS  PubMed  Google Scholar 

  67. Pietroiusti, A. et al. Cytotoxin-associated gene-A-positive Helicobacter pylori strains are associated with atherosclerotic stroke. Circulation 106, 580–584 (2002).

    CAS  PubMed  Google Scholar 

  68. Preusch, M. R. et al. Association between cerebral ischemia and cytotoxin-associated gene-A-bearing strains of Helicobacter pylori. Stroke 35, 1800–1804 (2004).

    CAS  PubMed  Google Scholar 

  69. Zhang, S., Guo, Y., Ma, Y. & Teng, Y. Cytotoxin-associated gene-A-seropositive virulent strains of Helicobacter pylori and atherosclerotic diseases: a systematic review. Chin. Med. J. (Engl.) 121, 946–951 (2008).

    CAS  Google Scholar 

  70. De Bastiani, R. et al. High prevalence of Cag-A positive H. pylori strains in ischemic stroke: a primary care multicenter study. Helicobacter 13, 274–277 (2008).

    CAS  PubMed  Google Scholar 

  71. Diomedi, M. et al. Cytotoxin-associated gene-A-positive Helicobacter pylori strains infection increases the risk of recurrent atherosclerotic stroke. Helicobacter 13, 525–531 (2008).

    PubMed  Google Scholar 

  72. Janket, S. J., Baird, A. E., Chuang, S. K. & Jones, J. A. Meta-analysis of periodontal disease and risk of coronary heart disease and stroke. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 95, 559–569 (2003).

    PubMed  Google Scholar 

  73. Chiu, B. Multiple infections in carotid atherosclerotic plaques. Am. Heart J. 138, S534–S536 (1999).

    CAS  PubMed  Google Scholar 

  74. Grau, A. J. et al. Periodontal disease as a risk factor for ischemic stroke. Stroke 35, 496–501 (2004).

    PubMed  Google Scholar 

  75. Sim, S. J. et al. Periodontitis and the risk for non-fatal stroke in Korean adults. J. Periodontol. 79, 1652–1658 (2008).

    PubMed  Google Scholar 

  76. Desvarieux, M. et al. Gender differences in the relationship between periodontal disease, tooth loss, and atherosclerosis. Stroke 35, 2029–2035 (2004).

    PubMed  Google Scholar 

  77. Jimenez, M., Krall, E. A., Garcia, R. I., Vokonas, P. S. & Dietrich, T. Periodontitis and incidence of cerebrovascular disease in men. Ann. Neurol. 66, 505–512 (2009).

    PubMed  PubMed Central  Google Scholar 

  78. Pussinen, P. J. et al. Antibodies to periodontal pathogens and stroke risk. Stroke 35, 2020–2023 (2004).

    PubMed  Google Scholar 

  79. Pussinen, P. J., Alfthan, G., Jousilahti, P., Paju, S. & Tuomilehto, J. Systemic exposure to Porphyromonas gingivalis predicts incident stroke. Atherosclerosis 193, 222–228 (2007).

    CAS  PubMed  Google Scholar 

  80. Mustapha, I. Z., Debrey, S., Oladubu, M. & Ugarte, R. Markers of systemic bacterial exposure in periodontal disease and cardiovascular disease risk: a systematic review and meta-analysis. J. Periodontol. 78, 2289–2302 (2007).

    PubMed  Google Scholar 

  81. D'Aiuto, F. et al. Periodontal infections cause changes in traditional and novel cardiovascular risk factors: results from a randomized controlled clinical trial. Am. Heart J. 151, 977–984 (2006).

    PubMed  Google Scholar 

  82. Tonetti, M. S. et al. Treatment of periodontitis and endothelial function. N. Engl. J. Med. 356, 911–920 (2007).

    CAS  PubMed  Google Scholar 

  83. Grau, A. J. et al. Association between acute cerebrovascular ischemia and chronic and recurrent infection. Stroke 28, 1724–1729 (1997).

    CAS  PubMed  Google Scholar 

  84. Grau, A. J. et al. Association of symptoms of chronic bronchitis and frequent flu-like illnesses with stroke. Stroke 40, 3206–3210 (2009).

    PubMed  Google Scholar 

  85. Kiechl, S. et al. Active and passive smoking, chronic infections, and the risk of carotid atherosclerosis: prospective results from the Bruneck Study. Stroke 33, 2170–2176 (2002).

    PubMed  Google Scholar 

  86. Elkind, M. S. Infectious burden: a new risk factor and treatment target for atherosclerosis. Infect. Disord. Drug Targets 10, 84–90 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Nieto, F. J. et al. Cohort study of cytomegalovirus infection as a risk factor for carotid intimal-medial thickening, a measure of subclinical atherosclerosis. Circulation 94, 922–927 (1996).

    CAS  PubMed  Google Scholar 

  88. Espinola-Klein, C. et al. Are morphological or functional changes in the carotid artery wall associated with Chlamydia pneumoniae, Helicobacter pylori, cytomegalovirus, or herpes simplex virus infection? Stroke 31, 2127–2133 (2000).

    CAS  PubMed  Google Scholar 

  89. Kis, Z. et al. Chronic infections and genetic factors in the development of ischemic stroke. New Microbiol. 30, 213–220 (2007).

    CAS  PubMed  Google Scholar 

  90. Yi, L., Lin, J. Y., Gao, Y., Feng, Z. J. & Wang, D. X. Detection of human cytomegalovirus in the atherosclerotic cerebral arteries in han population in China. Acta Virol. 52, 99–106 (2008).

    CAS  PubMed  Google Scholar 

  91. Saetta, A., Fanourakis, G., Agapitos, E. & Davaris, P. S. Atherosclerosis of the carotid artery: absence of evidence for CMV involvement in atheroma formation. Cardiovasc. Pathol. 9, 181–183 (2000).

    CAS  PubMed  Google Scholar 

  92. Ridker, P. M., Hennekens, C. H., Stampfer, M. J. & Wang, F. Prospective study of herpes simplex virus, cytomegalovirus, and the risk of future myocardial infarction and stroke. Circulation 98, 2796–2799 (1998).

    CAS  PubMed  Google Scholar 

  93. Espinola-Klein, C. et al. Impact of infectious burden on progression of carotid atherosclerosis. Stroke 33, 2581–2586 (2002).

    CAS  PubMed  Google Scholar 

  94. Ngeh, J. & Goodbourn, C. Chlamydia pneumoniae, Mycoplasma pneumoniae, and Legionella pneumophila in elderly patients with stroke (C-PEPS, M-PEPS, L-PEPS): a case–control study on the infectious burden of atypical respiratory pathogens in elderly patients with acute cerebrovascular disease. Stroke 36, 259–265 (2005).

    PubMed  Google Scholar 

  95. Corrado, E. et al. Markers of inflammation and infection influence the outcome of patients with baseline asymptomatic carotid lesions: a 5-year follow-up study. Stroke 37, 482–486 (2006).

    CAS  PubMed  Google Scholar 

  96. Elkind, M. S. et al. Infectious burden and risk of stroke: the northern Manhattan study. Arch. Neurol. 67, 33–38 (2010).

    PubMed  Google Scholar 

  97. Elkind, M. S. et al. Infectious burden and carotid plaque thickness: the northern Manhattan study. Stroke 41, e117–e122 (2010).

    PubMed  PubMed Central  Google Scholar 

  98. Szklo, M. et al. Individual pathogens, pathogen burden and markers of subclinical atherosclerosis: the Multi-Ethnic Study of Atherosclerosis. J. Cardiovasc. Med. (Hagerstown) 10, 747–751 (2009).

    Google Scholar 

  99. Galobardes, B., Smith, G. D. & Lynch, J. W. Systematic review of the influence of childhood socioeconomic circumstances on risk for cardiovascular disease in adulthood. Ann. Epidemiol. 16, 91–104 (2006).

    PubMed  Google Scholar 

  100. Gussekloo, J., Schaap, M. C., Frölich, M., Blauw, G. J. & Westendorp, R. G. C-reactive protein is a strong but nonspecific risk factor of fatal stroke in elderly persons. Arterioscler. Thromb. Vasc. Biol. 20, 1047–1051 (2000).

    CAS  PubMed  Google Scholar 

  101. Kiechl, S. et al. Chronic infections and the risk of carotid atherosclerosis: prospective results from a large population study. Circulation 103, 1064–1070 (2001).

    CAS  PubMed  Google Scholar 

  102. McColl, B. W., Allan, S. M. & Rothwell, N. J. Systemic infection, inflammation and acute ischemic stroke. Neuroscience 158, 1049–1061 (2009).

    CAS  PubMed  Google Scholar 

  103. Grau, A. J. et al. Leukocyte count as an independent predictor of recurrent ischemic events. Stroke 35, 1147–1152 (2004).

    PubMed  Google Scholar 

  104. Ogata, K. et al. Thrombosis-inducing activity in plasma of patients with acute respiratory tract infection disappears after treatment. Respiration 58, 176–180 (1991).

    CAS  PubMed  Google Scholar 

  105. van der Poll, T. et al. Activation of coagulation after administration of tumor necrosis factor to normal subjects. N. Engl. J. Med. 322, 1622–1627 (1990).

    CAS  PubMed  Google Scholar 

  106. Cermak, J. et al. C-reactive protein induces human peripheral blood monocytes to synthesize tissue factor. Blood 82, 513–520 (1993).

    CAS  PubMed  Google Scholar 

  107. Esmon, C. T., Taylor, F. B. Jr & Snow, T. R. Inflammation and coagulation: linked processes potentially regulated through a common pathway mediated by protein C. Thromb. Haemost. 66, 160–165 (1991).

    CAS  PubMed  Google Scholar 

  108. Lourbakos, A. et al. Activation of protease-activated receptors by gingipains from Porphyromonas gingivalis leads to platelet aggregation: a new trait in microbial pathogenicity. Blood 97, 3790–3797 (2001).

    CAS  PubMed  Google Scholar 

  109. Macko, R. F. et al. Impairments of the protein C system and fibrinolysis in infection-associated stroke. Stroke 27, 2005–2011 (1996).

    CAS  PubMed  Google Scholar 

  110. Zeller, J. A., Lenz, A., Eschenfelder, C. C., Zunker, P. & Deuschl, G. Platelet-leukocyte interaction and platelet activation in acute stroke with and without preceding infection. Arterioscler. Thromb. Vasc. Biol. 25, 1519–1523 (2005).

    CAS  PubMed  Google Scholar 

  111. Gustafsson, C., Blomback, M., Britton, M., Hamsten, A. & Svensson, J. Coagulation factors and the increased risk of stroke in nonvalvular atrial fibrillation. Stroke 21, 47–51 (1990).

    CAS  PubMed  Google Scholar 

  112. Ross, R. Atherosclerosis—an inflammatory disease. N. Engl. J. Med. 340, 115–126 (1999).

    CAS  Google Scholar 

  113. Mayr, M., Kiechl, S., Willeit, J., Wick, G. & Xu, Q. Infections, immunity, and atherosclerosis: associations of antibodies to Chlamydia pneumoniae, Helicobacter pylori, and cytomegalovirus with immune reactions to heat-shock protein 60 and carotid or femoral atherosclerosis. Circulation 102, 833–839 (2000).

    CAS  PubMed  Google Scholar 

  114. De Palma, R. et al. Patients with acute coronary syndrome show oligoclonal T-cell recruitment within unstable plaque: evidence for a local, intracoronary immunologic mechanism. Circulation 113, 640–646 (2006).

    PubMed  Google Scholar 

  115. Keller, T. T. et al. Selective expansion of influenza A virus-specific T cells in symptomatic human carotid artery atherosclerotic plaques. Stroke 39, 174–179 (2008).

    PubMed  Google Scholar 

  116. Niessner, A. et al. Pathogen-sensing plasmacytoid dendritic cells stimulate cytotoxic T-cell function in the atherosclerotic plaque through interferon-alpha. Circulation 114, 2482–2489 (2006).

    CAS  PubMed  Google Scholar 

  117. Wiesel, J. The affection of arterial vessels during acute infections [German]. Zeitschr. f. Heilkunde 27, 262–294 (1906).

    Google Scholar 

  118. Somer, T. & Finegold, S. M. Vasculitides associated with infections, immunization, and antimicrobial drugs. Clin. Infect. Dis. 20, 1010–1036 (1995).

    CAS  PubMed  Google Scholar 

  119. Pesonen, E., Paakkari, I. & Rapola, J. Infection-associated intimal thickening in the coronary arteries of children. Atherosclerosis 142, 425–429 (1999).

    CAS  PubMed  Google Scholar 

  120. Liuba, P., Persson, J., Luoma, J., Yla-Herttuala, S. & Pesonen, E. Acute infections in children are accompanied by oxidative modification of LDL and decrease of HDL cholesterol, and are followed by thickening of carotid intima-media. Eur. Heart J. 24, 515–521 (2003).

    CAS  PubMed  Google Scholar 

  121. Charakida, M. et al. Endothelial response to childhood infection: the role of mannose-binding lectin (MBL). Atherosclerosis 208, 217–221 (2010).

    CAS  PubMed  Google Scholar 

  122. Hallenbeck, J. M. et al. Stroke risk factors prepare rat brainstem tissues for modified local Shwartzman reaction. Stroke 19, 863–869 (1988).

    CAS  PubMed  Google Scholar 

  123. Siren, A. L. et al. Release of proinflammatory and prothrombotic mediators in the brain and peripheral circulation in spontaneously hypertensive and normotensive Wistar-Kyoto rats. Stroke 23, 1643–1650 (1992).

    CAS  PubMed  Google Scholar 

  124. Flex, A. et al. Proinflammatory genetic profiles in subjects with history of ischemic stroke. Stroke 35, 2270–2275 (2004).

    CAS  PubMed  Google Scholar 

  125. Markus, H. S. et al. Genetic and acquired inflammatory conditions are synergistically associated with early carotid atherosclerosis. Stroke 37, 2253–2259 (2006).

    CAS  PubMed  Google Scholar 

  126. Hegele, R. A., Ban, M. R., Anderson, C. M. & Spence, J. D. Infection-susceptibility alleles of mannose-binding lectin are associated with increased carotid plaque area. J. Investig. Med. 48, 198–202 (2000).

    CAS  PubMed  Google Scholar 

  127. Eickhoff, T. C. & Robinson, R. Q. Influenza surveillance, United States, 1960. Public Health Rep. 76, 1099–1106 (1961).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Housworth, J. & Langmuir, A. D. Excess mortality from epidemic influenza, 1957–1966. Am. J. Epidemiol. 100, 40–48 (1974).

    CAS  PubMed  Google Scholar 

  129. Lavallee, P., Perchaud, V., Gautier-Bertrand, M., Grabli, D. & Amarenco, P. Association between influenza vaccination and reduced risk of brain infarction. Stroke 33, 513–518 (2002).

    PubMed  Google Scholar 

  130. Grau, A. J. et al. Influenza vaccination is associated with a reduced risk of stroke. Stroke 36, 1501–1506 (2005).

    PubMed  Google Scholar 

  131. Nichol, K. L. et al. Influenza vaccination and reduction in hospitalizations for cardiac disease and stroke among the elderly. N. Engl. J. Med. 348, 1322–1332 (2003).

    PubMed  Google Scholar 

  132. Davis, M. M. et al. Influenza vaccination as secondary prevention for cardiovascular disease: a science advisory from the American Heart Association/American College of Cardiology. J. Am. Coll. Cardiol. 48, 1498–1502 (2006).

    PubMed  Google Scholar 

  133. Brassard, P., Bourgault, C., Brophy, J., Kezouh, A. & Suissa, S. Antibiotics in primary prevention of stroke in the elderly. Stroke 34, e163–e166 (2003).

    CAS  PubMed  Google Scholar 

  134. Pleiner, J. et al. Simvastatin prevents vascular hyporeactivity during inflammation. Circulation 110, 3349–3354 (2004).

    CAS  PubMed  Google Scholar 

  135. Steiner, S. et al. Simvastatin blunts endotoxin-induced tissue factor in vivo. Circulation 111, 1841–1846 (2005).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

A. J. Grau, researched the data for the article, provided substantial contributions to discussions of the content, and wrote the article. C. Urbanek and F. Palm researched the data for the article, provided substantial contributions to discussions of the content, and contributed equally to review and editing of the manuscript before submission.

Corresponding author

Correspondence to Armin J. Grau.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grau, A., Urbanek, C. & Palm, F. Common infections and the risk of stroke. Nat Rev Neurol 6, 681–694 (2010). https://doi.org/10.1038/nrneurol.2010.163

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2010.163

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing