Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

B-cell-directed therapies for autoimmune disease

Abstract

Approval of the anti-CD20 antibody rituximab for the treatment of moderate-to-severe rheumatoid arthritis in patients who fail to respond to anti-tumor-necrosis-factor agents has raised interest in B-cell-directed therapy for this disease. A number of direct and indirect modalities with distinct mechanisms of action are being investigated, including anti-CD20 and anti-CD22 therapies, and new approaches for blocking members of the tumor necrosis factor cytokine family including B cell activating factor (BAFF) and a proliferation ligand (APRIL), which are at late stages of clinical development. Clinical experience is most extensive with rituximab, and suggests that targeting 'autoimmune' memory B cells is a feasible approach for treating autoimmune disease. Although anti-CD20 therapy has only been approved for rheumatoid arthritis thus far, data suggest this approach could be valid for other autoimmune diseases, including systemic lupus erythematosus, Sjögren's syndrome, vasculitides, autoimmune cytopenias, and neurologic and dermatologic autoimmune diseases. Additional studies of direct and indirect B-cell-directed treatments are needed before we can draw conclusions as to the value of this approach in patients with various autoimmune diseases and whether more precisely defined techniques than these are required to target the complex humoral system effectively.

Key Points

  • Approval of rituximab as a B-cell-directed therapy for rheumatoid arthritis has raised interest in B-cell-directed therapies for other autoimmune diseases

  • Studies of B-cell-depletion approaches have shown that peripheral immunoglobulins are probably generated by plasma cells with different lifespans

  • Short-lived plasma cells produce an important array of activity-related autoantibodies, whereas long-lived plasma cells are mainly responsible for protective immunoglobulin titers

  • Approaches that target adaptive immunity, such as B-cell depletion with anti-CD20 antibodies, involve a longer time to clinical response than do approaches that preferentially target innate immunity

  • Anti-CD20 therapy selectively depletes reactive memory B cells that are otherwise refractory to conventional therapy

  • Despite reports of rituximab being effective in patients with treatment-refractory autoimmune diseases other than rheumatoid arthritis, randomized controlled clinical trials are needed to assess the value of this approach

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A schematic of B-cell development.
Figure 2: Mechanisms adopted by the immune system to prevent emergence of autoimmune B cells.
Figure 3: Targets of anti-CD20 antibody therapy.

Similar content being viewed by others

References

  1. Dorner, T. & Burmester, G. R. The role of B cells in rheumatoid arthritis: mechanisms and therapeutic targets. Curr. Opin. Rheumatol. 15, 246–252 (2003).

    Article  Google Scholar 

  2. Manz, R. A., Thiel, A. & Radbruch, A. Lifetime of plasma cells in the bone marrow. Nature 388, 133–134 (1997).

    Article  CAS  Google Scholar 

  3. Amanna, I. J., Carlson, N. E. & Slifka, M. K. Duration of humoral immunity to common viral and vaccine antigens. N. Engl. J. Med. 357, 1903–1915 (2007).

    Article  CAS  Google Scholar 

  4. Radbruch, A. et al. Competence and competition: the challenge of becoming a long-lived plasma cell. Nat. Rev. Immunol. 6, 741–750 (2006).

    Article  CAS  Google Scholar 

  5. Edwards, J. C. W. et al. Efficacy of B-cell-targeted therapy with rituximab in patients with rheumatoid arthritis. N. Engl. J. Med. 350, 2572–2581 (2004).

    Article  CAS  Google Scholar 

  6. Mariette, X. Therapeutic potential for B-cell modulation in Sjögren's syndrome. Rheum. Dis. Clin. North Am. 34, 1025–1033 (2008).

    Article  Google Scholar 

  7. Tarlinton, D. B-cell memory: are subsets necessary? Nat. Rev. Immunol. 6, 785–790 (2006).

    Article  CAS  Google Scholar 

  8. Bendelac, A., Bonneville, M. & Kearney, J. F. Autoreactivity by design: innate B and T lymphocytes. Nat. Rev. Immunol. 1, 177–186 (2001).

    Article  CAS  Google Scholar 

  9. Pillai, S., Cariappa, A. & Moran, S. T. Marginal zone B cells. Annu. Rev. Immunol. 23, 161–196 (2005).

    Article  CAS  Google Scholar 

  10. Tarlinton, D., Radbruch, A., Hiepe, F. & Dorner, T. Plasma cell differentiation and survival. Curr. Opin. Immunol. 20, 162–169 (2008).

    Article  CAS  Google Scholar 

  11. Binard, A. et al. Does BAFF dysregulation play a major role in the pathogenesis of systemic lupus erythematosus? J. Autoimmun. 30, 63–67 (2008).

    Article  CAS  Google Scholar 

  12. Lindh, E. et al. AIRE regulates T-cell-independent B-cell responses through BAFF. Proc. Natl Acad. Sci. USA 105, 18466–18471 (2008).

    Article  CAS  Google Scholar 

  13. Cohen, S. B. et al. Rituximab for rheumatoid arthritis refractory to anti-tumor necrosis factor therapy: results of a multicenter, randomized, double-blind, placebo-controlled, phase III trial evaluating primary efficacy and safety at twenty-four weeks. Arthritis Rheum. 54, 2793–2806 (2006).

    Article  CAS  Google Scholar 

  14. Emery, P. et al. The efficacy and safety of rituximab in patients with active rheumatoid arthritis despite methotrexate treatment—results of a phase IIb randomized, double-blind, placebo-controlled, dose-ranging trial. Arthritis Rheum. 54, 1390–1400 (2006).

    Article  CAS  Google Scholar 

  15. Cambridge, G. et al. Serological changes following B cell depletion therapy in systemic lupus erythematosus: relationship with BLyS. Arthritis Rheum. 50, S645–S646 (2004).

    Google Scholar 

  16. Walsh, C. A. E., Fearon, U., FitzGerald, O., Veale, D. J. & Bresnihan, B. Decreased CD20 expression in rheumatoid arthritis synovium following 8 weeks of rituximab therapy. Clin. Exp. Rheumatol. 26, 656–658 (2008).

    CAS  PubMed  Google Scholar 

  17. Thurlings, R. M. et al. Synovial tissue response to rituximab: mechanism of action and identification of biomarkers of response. Ann. Rheum. Dis. 67, 917–925 (2008).

    Article  CAS  Google Scholar 

  18. Kavanaugh, A. et al. Assessment of rituximab's immunomodulatory synovial effects (ARISE trial). 1: clinical and synovial biomarker results. Ann. Rheum. Dis. 67, 402–408 (2008).

    Article  CAS  Google Scholar 

  19. Vos, K. et al. Early effects of rituximab on the synovial cell infiltrate in patients with rheumatoid arthritis. Arthritis Rheum. 56, 772–778 (2007).

    Article  CAS  Google Scholar 

  20. Cambridge, G. et al. Serologic changes following B lymphocyte depletion therapy for rheumatoid arthritis. Arthritis Rheum. 48, 2146–2154 (2003).

    Article  Google Scholar 

  21. Keogh, K. A., Ytterberg, S. R., Fervenza, F. C. & Specks, U. Rituximab for remission induction in severe ANCA-associated vasculitis: report of a prospective open-label pilot trial in 10 patients [abstract]. Arthritis Rheum. 50, S270 (2004).

    Google Scholar 

  22. Ferraro, A. J., Day, C. J., Drayson, M. T. & Savage, C. O. Effective therapeutic use of rituximab in refractory Wegener's granulomatosis. Nephrol. Dial. Transplant. 20, 622–625 (2005).

    Article  Google Scholar 

  23. Cambridge, G. et al. B cell depletion therapy in systemic lupus erythematosus: relationships among serum B lymphocyte stimulator levels, autoantibody profile and clinical response. Ann. Rheum. Dis. 67, 1011–1016 (2008).

    Article  CAS  Google Scholar 

  24. Dorner, T. & Radbruch, A. Antibodies and B cell memory in viral immunity. Immunity 27, 384–392 (2007).

    Article  Google Scholar 

  25. Vieira, P. & Rajewsky, K. Persistence of memory B-cells in mice deprived of T-cell help. Int. Immunol. 2, 487–494 (1990).

    Article  CAS  Google Scholar 

  26. Odendahl, M. et al. Disturbed peripheral B lymphocyte homeostasis in systemic lupus erythematosus. J. Immunol. 165, 5970–5979 (2000).

    Article  CAS  Google Scholar 

  27. Roll, P., Dorner, T. & Tony, H. P. Anti-CD20 therapy in patients with rheumatoid arthritis—predictors of response and B cell subset regeneration after repeated treatment. Arthritis Rheum. 58, 1566–1575 (2008).

    Article  CAS  Google Scholar 

  28. Anolik, J. H. et al. Delayed memory B cell recovery in peripheral blood and lymphoid tissue in systemic lupus erythematosus after B cell depletion therapy. Arthritis Rheum. 56, 3044–3056 (2007).

    Article  CAS  Google Scholar 

  29. Weller, S. et al. Human blood IgM “memory” B cells are circulating splenic marginal zone B cells harboring a prediversified immunoglobulin repertoire. Blood 104, 3647–3654 (2004).

    Article  CAS  Google Scholar 

  30. Kruetzmann, S. et al. Human immunoglobulin M memory B cells controlling Streptococcus pneumoniae infections are generated in the spleen. J. Exp. Med. 197, 939–945 (2003).

    Article  CAS  Google Scholar 

  31. Martinez-Gamboa, L. et al. Role of the spleen in peripheral memory B-cell homeostasis in patients with autoimmune thrombocytopenia purpura. Clin. Immunol. 130, 199–212 (2009).

    Article  CAS  Google Scholar 

  32. Tsuiji, M. et al. A checkpoint for autoreactivity in human IgM+ memory B cell development. J. Exp. Med. 203, 393–400 (2006).

    Article  Google Scholar 

  33. Tak, P. P. et al. Atacicept in patients with rheumatoid arthritis. Arthritis Rheum. 58, 61–72 (2008).

    Article  CAS  Google Scholar 

  34. Weinblatt, M. et al. Safety of the selective costimulation modulator abatacept in rheumatoid arthritis patients receiving background biologic and nonbiologic disease-modifying antirheumatic drugs—a one-year randomized, placebo-controlled study. Arthritis Rheum. 54, 2807–2816 (2006).

    Article  CAS  Google Scholar 

  35. Dorner, T. & Burmester, G. R. New approaches of B-cell-directed therapy: beyond rituximab. Curr. Opin. Rheumatol. 20, 263–268 (2008).

    Article  Google Scholar 

  36. Eisenberg, R. Targeting B cells in systemic lupus erythematosus: not just déjà vu all over again. Arthritis Res. Ther. 8, 108 (2006).

    Article  Google Scholar 

  37. Looney, R. J., Anolik, J. & Sanz, I. B cells as therapeutic targets for rheumatic diseases. Curr. Opin. Rheumatol. 16, 180–185 (2004).

    Article  CAS  Google Scholar 

  38. Edwards, J. C. W. & Cambridge, G. Sustained improvement in rheumatoid arthritis following a protocol designed to deplete B lymphocytes. Rheumatology 40, 205–211 (2001).

    Article  CAS  Google Scholar 

  39. Leandro, M. J. et al. Treatment of refractory lupus nephritis with B lymphocyte depletion [abstract]. Arthritis Rheum. 48, S378 (2003).

    Article  Google Scholar 

  40. Coles, A. J. et al. Alemtuzumab vs. interferon β1a in early multiple sclerosis. N. Engl. J. Med. 359, 1786–1801 (2008).

    Article  Google Scholar 

  41. Genovese, M. C. et al. Safety and clinical activity of ocrelizumab (a humanized antibody targeting CD20+ B cells) in combination with methotrexate (MTX) in moderate-severe rheumatoid arthritis (RA) patients (pts) (Ph I/II ACTION study). Arthritis Rheum. 54, S66–S67 (2006).

    Google Scholar 

  42. Silverman, G. J. & Boyle, D. L. Understanding the mechanistic basis in rheumatoid arthritis for clinical response to anti-CD20 therapy: the B-cell roadblock hypothesis. Immunol. Rev. 223, 175–185 (2008).

    Article  CAS  Google Scholar 

  43. Sfikakis, P. P. et al. Remission of proliferative lupus nephritis following anti-B cell therapy is preceded by downregulation of the T cell costimulatory molecule CD40-ligand [abstract]. Arthritis Rheum. 50, S227 (2004).

    Article  Google Scholar 

  44. Stasi, R. et al. Response to B-cell-depleting therapy with rituximab reverts the abnormalities of T-cell subsets in patients with idiopathic thrombocytopenic purpura. Blood 110, 2924–2930 (2007).

    Article  CAS  Google Scholar 

  45. Taylor, R. P. & Lindorfer, M. A. Immunotherapeutic mechanisms of anti-CD20 monoclonal antibodies. Curr. Opin. Immunol. 20, 444–449 (2008).

    Article  CAS  Google Scholar 

  46. Stasi, R., Stipa, E., Forte, V., Meo, P. & Amadori, S. To the editor: variable patterns of response to rituximab treatment in adults with chronic idiopathic thrombocytopenic purpura. Blood 99, 3872–3873 (2002).

    Article  CAS  Google Scholar 

  47. Martin, F. & Chan, A. C. Pathogenic roles of B cells in human autoimmunity: insights from the clinic. Immunity 20, 517–527 (2004).

    Article  CAS  Google Scholar 

  48. Hauser, S. L. et al. B-cell depletion with rituximab in relapsing-remitting multiple sclerosis. N. Engl. J. Med. 358, 676–688 (2008).

    Article  CAS  Google Scholar 

  49. Dass, S. et al. Reduction of fatigue in Sjögren syndrome with rituximab: results of a randomised, double-blind, placebo-controlled pilot study. Ann. Rheum. Dis. 67, 1541–1544 (2008).

    Article  CAS  Google Scholar 

  50. Leandro, M. J., Edwards, J. C., Cambridge, G., Ehrenstein, M. R. & Isenberg, D. A. An open study of B lymphocyte depletion in systemic lupus erythematosus. Arthritis Rheum. 46, 2673–2677 (2002).

    Article  Google Scholar 

  51. Keogh, K. A., Wylam, M. E., Fervenza, F. C. & Specks, U. Rituximab—a novel mechanism-based therapy for refractory ANCA associated vasculitis. J. Am. Soc. Nephrol. 14, 38A–39A (2003).

    Google Scholar 

  52. Merrill, J. T. et al. Efficacy and safety of rituximab in patients with moderately to severely active systemic lupus erythematosus (SLE): results from the randomized, double-blind phase II/III study EXPLORER. Arthritis Rheum. 58, 4029–4030 (2008).

    Google Scholar 

  53. ClinicalTrials.gov: a service of the US National Institutes of Health. A study to evaluate the efficacy and safety of rituximab in subjects with ISN/RPS Class III or IV lupus nephritis (LUNAR), [online]

  54. Ng, K. P. et al. B cell depletion therapy in systemic lupus erythematosus: long term follow-up and predictors of response. Ann. Rheum. Dis. 66, 1259–1262 (2007).

    Article  CAS  Google Scholar 

  55. Mease, P. J. B cell-targeted therapy in autoimmune disease: rationale, mechanisms, and clinical application. J. Rheumatol. 35, 1245–1255 (2008).

    CAS  PubMed  Google Scholar 

  56. Wiendl, H. & Hohlfeld, R. Immunopathogenesis and therapy of inflammatory myopathies. Akt. Neurol. 35, 185–191 (2008).

    Article  Google Scholar 

  57. Salama, A. D. & Pusey, C. D. Drug insight: rituximab in renal disease and transplantation. Nat. Clin. Pract. Nephrol. 2, 221–230 (2006).

    Article  CAS  Google Scholar 

  58. Zaja, F. et al. Rituximab for the treatment of type II mixed cryoglobulinemia. Arthritis Rheum. 46, 2252–2254 (2002).

    Article  Google Scholar 

  59. Zand, M. S. Therapeutic antibody agents for B-cell immunomodulation in renal transplantation. Transplantation 84, S11–S19 (2007).

    Article  CAS  Google Scholar 

  60. Wingerchuk, D. M. & Weinshenker, B. C. Neuromyelitis optica. Curr. Treat. Opt. Neurol. 10, 55–66 (2008).

    Article  Google Scholar 

  61. Pranzatelli, M. R. et al. Rituximab (anti-CD20) adjunctive therapy for opsoclonus–myoclonus syndrome. J. Pediatr. Hematol. Oncol. 28, 585–593 (2006).

    Article  CAS  Google Scholar 

  62. Sieb, J. P. Myasthenia gravis: emerging new therapy options. Curr. Opin. Pharmacol. 5, 303–307 (2005).

    Article  CAS  Google Scholar 

  63. Sorce, M., Arico, M. & Bongiorno, M. R. Rituximab in refractory pemphigus vulgaris. Dermatol. Ther. 21, S6–S9 (2008).

    Article  Google Scholar 

  64. Wallet-Faber, N. et al. Epidermolysis bullosa acquisita following bullous pemphigoid, successfully treated with the anti-CD20 monoclonal antibody rituximab. Dermatology 215, 252–255 (2007).

    Article  CAS  Google Scholar 

  65. Garvey, B. Rituximab in the treatment of autoimmune haematological disorders. Br. J. Haematol. 141, 149–169 (2008).

    Article  CAS  Google Scholar 

  66. Wache, A., Gil, L. & Komarnicki, M. Rituximab in haematology and oncology in 10 years of experience. Wspolczesna Onkol. Contemp. Oncol. 12, 173–178 (2008).

    CAS  Google Scholar 

  67. Verlinden, A. et al. Treatment of mixed type autoimmune haemolytic anaemia with autologous peripheral blood stem cell transplantation resulting in disappearance of the warm-type antibody and clinical remission of haemolysis. Acta Clin. Belg. 62, 380 (2007).

    Article  Google Scholar 

  68. Schollkopf, C. et al. Rituximab in chronic cold agglutinin disease: a prospective study of 20 patients. Leuk. Lymphoma 47, 253–260 (2006).

    Article  Google Scholar 

  69. Aggarwal, A. et al. Rituximab for autoimmune haemophilia: a proposed treatment algorithm. Haemophilia 11, 13–19 (2005).

    Article  CAS  Google Scholar 

  70. Sperr, W. R., Lechner, K. & Pabinger, I. Rituximab for the treatment of acquired antibodies to factor VIII. Haematologica 92, 66–71 (2007).

    Article  CAS  Google Scholar 

  71. Stasi, R., Pagano, A., Stipa, E. & Amadori, S. Rituximab chimeric anti-CD20 monoclonal antibody treatment for adults with chronic idiopathic thrombocytopenic purpura. Blood 98, 952–957 (2001).

    Article  CAS  Google Scholar 

  72. Dorner, T. et al. Initial clinical trial of epratuzumab (humanized anti-CD22 antibody) for immunotherapy of systemic lupus erythematosus. Arthritis Res. Ther. 8, (2006).

  73. Steinfeld, S. D. et al. Initial clinical study of immunotherapy in primary Sjögren's syndrome with humanized anti-CD22 antibody epratuzumab. Ann. Rheum. Dis. 64, 311 (2005).

    Article  Google Scholar 

  74. Jacobi, A. M. et al. Differential effects of epratuzumab on peripheral blood B cells of patients with systemic lupus erythematosus versus normal controls. Ann. Rheum. Dis. 67, 450–457 (2008).

    Article  CAS  Google Scholar 

  75. [No authors listed]. Belimumab: anti-BLyS human monoclonal antibody, anti-BLyS monoclonal antibody, BmAb, human monoclonal antibody to B-lymphocyte stimulator. Drugs RD 9, 197–202 (2008).

  76. Dall'Era, M. et al. Reduced B lymphocyte and immunoglobulin levels after atacicept treatment in patients with systemic lupus erythematosus. Arthritis Rheum. 56, 4142–4150 (2007).

    Article  CAS  Google Scholar 

  77. Dall'Era, M. et al. Trial of atacicept in patients with systemic lupus erythematosus (SLE). Arthritis Rheum. 54, 4042–4043 (2006).

    Google Scholar 

  78. Tak, P. P. et al. Atacicept in patients with rheumatoid arthritis. Arthritis Rheum. 58, 61–72 (2008).

    Article  CAS  Google Scholar 

  79. Neubert, K. et al. The proteasome inhibitor bortezomib depletes plasma cells and protects mice with lupus-like disease from nephritis. Nat. Med. 14, 748–755 (2008).

    Article  CAS  Google Scholar 

  80. Dorner, T. & Lipsky, P. E. B-cell targeting: a novel approach to immune intervention today and tomorrow. Exp. Opin. Biol. Ther. 7, 1287–1299 (2007).

    Article  Google Scholar 

  81. Alexander, T. et al. Depletion of the autoreactive immunological memory followed by autologous haemopoietic stem cell transplantation in patients with refractory SLE induces long-term remissions through de novo generation of a juvenile and tolerant immune system. Bone Marrow Transplant. 41, S2–S3 (2008).

    Google Scholar 

  82. Kavanaugh, A. F. B cell targeted therapies: safety considerations. J. Rheumatol. 33, 18–23 (2006).

    Google Scholar 

  83. US Department of Health & Human Services Postmarketing Reviews—Volume 1, Number 1, Fall 2007. Rituximab (marketed as Rituxan®): progressive multifocal leukoencephalopathy (PML), [online]

  84. Calabrese, L. H., Molloy, E. S., Huang, D. R. & Ransohoff, R. M. Progressive multifocal leukoencephalopathy in rheumatic diseases—evolving clinical and pathologic patterns of disease. Arthritis Rheum. 56, 2116–2128 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported in part by SFB 650 and Deutsche Forschungsgemeinschaft grants Do492/5–5 and Do492/7–1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Dörner.

Ethics declarations

Competing interests

T. Dörner declares that he has acted as a consultant for Genentech, he has received grant or research support (including clinical trials) from Immunomedics and has acted as a consultant, been involved in speakers' bureaux (honoraria) and received grant or research support (including clinical trials) from Roche.

Gerd R. Burmester declares that he has received grant or research support (including clinical trials) from Medimmune, and has acted as a consultant, been involved in speakers' bureaux (honoraria) and received grant or research support (including clinical trials) from Roche and UCB.

Andreas Radbruch declares no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dörner, T., Radbruch, A. & Burmester, G. B-cell-directed therapies for autoimmune disease. Nat Rev Rheumatol 5, 433–441 (2009). https://doi.org/10.1038/nrrheum.2009.141

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2009.141

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing