Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Vascular effects of biologic agents in RA and spondyloarthropathies

Abstract

Endothelial dysfunction and accelerated atherosclerosis lead to increased cardiovascular morbidity and mortality in patients with rheumatoid arthritis and other inflammatory rheumatic diseases. Sustained inflammation is a major risk factor for cardiovascular disease. Apart from traditional vasculoprotective agents, biologic agents may also exert favorable effects on the vasculature. Indeed, agents that inhibit tumor necrosis factor (TNF) seem to transiently improve endothelial function. Data regarding the effects of biologic agents on atherosclerosis and arterial stiffness are inconsistent. The effects of the various TNF blockers on dyslipidemia might differ: long-term infliximab therapy could be pro-atherogenic, whereas some studies suggest that etanercept and adalimumab may exert beneficial effects on the lipid profile. TNF blockers have been shown to decrease the incidence of cardiovascular events in patients with rheumatoid arthritis. Preliminary data suggest that rituximab also improves endothelial function and dyslipidemia. Further studies are needed to determine the net effects of biologic agents on the vasculature.

Key Points

  • Accelerated atherosclerosis and increased cardiovascular morbidity and mortality have been associated with rheumatoid arthritis (RA), ankylosing spondylitis (AS) and psoriatic arthritis (PsA)

  • The suppression of systemic inflammation and clinical activity of RA, AS or PsA can attenuate atherosclerosis and decrease the risk of cardiovascular disease

  • Biologic agents, including TNF inhibitors and rituximab, might transiently improve endothelial function and could also decrease carotid atherosclerosis and arterial stiffness

  • Biologic agents might have beneficial metabolic effects as they may influence dyslipidemia, lipokine production and insulin resistance

  • Vascular and metabolic effects of biologic agents could translate into clinical importance, as they might improve cardiovascular outcome

  • Data emerging from mostly small, short-term studies are conflicting; therefore, larger follow-up studies are needed to confirm the vascular effects of biologic agents in RA and other types of arthritis

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Inflammatory events in atherosclerosis.

Similar content being viewed by others

References

  1. Kerekes, G. et al. Endothelial dysfunction and atherosclerosis in rheumatoid arthritis: a multiparametric analysis using imaging techniques and laboratory markers of inflammation and autoimmunity. J. Rheumatol. 35, 398–406 (2008).

    CAS  Google Scholar 

  2. Giles, J. T., Post, W., Blumenthal, R. S. & Bathon, J. M. Therapy insight: managing cardiovascular risk in patients with rheumatoid arthritis. Nat. Clin. Pract. Rheumatol. 2, 320–329 (2006).

    CAS  PubMed  Google Scholar 

  3. Shoenfeld, Y. et al. Accelerated atherosclerosis in autoimmune rheumatic diseases. Circulation 112, 3337–3347 (2005).

    Article  Google Scholar 

  4. Szekanecz, Z. et al. Accelerated atherosclerosis in rheumatoid arthritis. Ann. NY Acad. Sci. 1108, 349–358 (2007).

    Article  CAS  Google Scholar 

  5. Nurmohamed, M. T. Cardiovascular risk in rheumatoid arthritis. Autoimmun. Rev. 8, 663–667 (2009).

    Article  Google Scholar 

  6. Kaplan, M. J. Cardiovascular disease in rheumatoid arthritis. Curr. Opin. Rheumatol. 18, 289–297 (2006).

    Article  CAS  Google Scholar 

  7. Szekanecz, Z. & Koch, A. E. Vascular involvement in rheumatic diseases: 'vascular rheumatology'. Arthritis Res. Ther. 10, 224 (2008).

    Article  Google Scholar 

  8. Ross, R. Atherosclerosis—an inflammatory disease. N. Engl. J. Med. 340, 115–126 (1999).

    Article  CAS  Google Scholar 

  9. Klareskog, L., Padyukov, L., Lorentzen, J. & Alfredsson, L. Mechanisms of disease: genetic susceptibility and environmental triggers in the development of rheumatoid arthritis. Nat. Clin. Pract. Rheumatol. 2, 425–433 (2006).

    Article  CAS  Google Scholar 

  10. Rosenvinge, A., Krogh-Madsen, R., Baslund, B. & Pedersen, B. K. Insulin resistance in patients with rheumatoid arthritis: effect of anti-TNFα therapy. Scand. J. Rheumatol. 36, 91–96 (2007).

    Article  CAS  Google Scholar 

  11. Kiortsis, D. N., Mavridis, A. K., Vasakos, S., Nikas, S. N. & Drosos, A. A. Effects of infliximab treatment on insulin resistance in patients with rheumatoid arthritis and ankylosing spondylitis. Ann. Rheum. Dis. 64, 765–766 (2005).

    Article  CAS  Google Scholar 

  12. Gonzalez-Gay, M. A. et al. Anti-tumor necrosis factor-alpha blockade improves insulin resistance in patients with rheumatoid arthritis. Clin. Exp. Rheumatol. 24, 83–86 (2006).

    CAS  PubMed  Google Scholar 

  13. Solomon, D. H. et al. Cardiovascular morbidity and mortality in women diagnosed with rheumatoid arthritis. Circulation 107, 1303–1307 (2003).

    Article  Google Scholar 

  14. Maradit-Kremers, H. et al. Increased unrecognized coronary heart disease and sudden deaths in rheumatoid arthritis: a population-based cohort study. Arthritis Rheum. 52, 402–411 (2005).

    Article  Google Scholar 

  15. Montecucco, F. & Mach, F. Common inflammatory mediators orchestrate pathophysiological processes in rheumatoid arthritis and atherosclerosis. Rheumatology (Oxford) 48, 11–22 (2009).

    Article  CAS  Google Scholar 

  16. Ohsuzu, F. The roles of cytokines, inflammation and immunity in vascular diseases. J. Atheroscler. Thromb. 11, 313–321 (2004).

    Article  CAS  Google Scholar 

  17. Gonzalez-Gay, M. A. et al. Influence of anti-TNF-alpha infliximab therapy on adhesion molecules associated with atherogenesis in patients with rheumatoid arthritis. Clin. Exp. Rheumatol. 24, 373–379 (2006).

    CAS  PubMed  Google Scholar 

  18. Libby, P. Role of inflammation in atherosclerosis associated with rheumatoid arthritis. Am. J. Med. 121 (10 Suppl. 1), S21–S31 (2008).

    Article  CAS  Google Scholar 

  19. McKellar, G. E., McCarey, D. W., Sattar, N. & McInnes, I. B. Role for TNF in atherosclerosis? Lessons from autoimmune disease. Nat. Rev. Cardiol. 6, 410–417 (2009).

    Article  CAS  Google Scholar 

  20. Dixon, W. G. & Symmons, D. P. What effects might anti-TNFα treatment be expected to have on cardiovascular morbidity and mortality in rheumatoid arthritis? A review of the role of TNFα in cardiovascular pathophysiology. Ann. Rheum. Dis. 66, 1132–1136 (2007).

    Article  CAS  Google Scholar 

  21. Szekanecz, Z., Shah, M. R., Pearce, W. H. & Koch, A. E. Interleukin-8 and tumor necrosis factor-α are involved in human aortic endothelial cell migration: the possible role of these cytokines in human aortic aneurysmal blood vessel growth. Pathobiology 62, 134–139 (1994).

    Article  CAS  Google Scholar 

  22. Gonzalez-Gay, M. A. et al. Anti-TNF-α therapy modulates resistin in patients with rheumatoid arthritis. Clin. Exp. Rheumatol. 26, 311–316 (2008).

    CAS  PubMed  Google Scholar 

  23. Migita, K. et al. The serum levels of resistin in rheumatoid arthritis patients. Clin. Exp. Rheumatol. 24, 698–701 (2006).

    CAS  PubMed  Google Scholar 

  24. Toussirot, E., Streit, G. & Wendling, D. The contribution of adipose tissue and adipokines to inflammation in joint diseases. Curr. Med. Chem. 14, 1095–1100 (2007).

    Article  CAS  Google Scholar 

  25. Senolt, L. et al. Resistin in rheumatoid arthritis synovial tissue, synovial fluid and serum. Ann. Rheum. Dis. 66, 458–463 (2007).

    Article  CAS  Google Scholar 

  26. Komai, N., Morita, Y., Sakuta, T., Kuwabara, A. & Kashihara, N. Anti-tumor necrosis factor therapy increases serum adiponectin levels with the improvement of endothelial dysfunction in patients with rheumatoid arthritis. Mod. Rheumatol. 17, 385–390 (2007).

    Article  CAS  Google Scholar 

  27. Kapoor, S. Anti-inflammatory and anti-atherogenic effects of adiponectin in patients with rheumatoid arthritis following anti-TNF therapy. Scand. J. Rheumatol. 38, 158 (2009).

    Article  CAS  Google Scholar 

  28. Otero, M. et al. Changes in plasma levels of fat-derived hormones adiponectin, leptin, resistin and visfatin in patients with rheumatoid arthritis. Ann. Rheum. Dis. 65, 1198–1201 (2006).

    Article  CAS  Google Scholar 

  29. Pieringer, H., Schumacher, S., Stuby, U. & Biesenbach, G. Augmentation index and large-artery remodelling in patients with longstanding rheumatoid arthritis compared with healthy controls. Semin. Arthritis Rheum. doi:10.1016/j.semarthrit.2008.08.005.

  30. Giles, J. T. et al. Coronary arterial calcification in rheumatoid arthritis: comparison with the Multi-Ethnic Study of Atherosclerosis. Arthritis Res. Ther. 11, R36 (2009).

    Article  Google Scholar 

  31. Wållberg-Jonsson, S. K., Caidahl, K., Klintland, N., Nyberg, G. & Rantapää-Dahlqvist, S. Increased arterial stiffness and indication of endothelial dysfunction in long-standing rheumatoid arthritis. Scand. J. Rheumatol. 37, 1–5 (2008).

    Article  Google Scholar 

  32. Soltész, P. et al. A comparative study of arterial stiffness, flow-mediated vasodilation of the bracial artery and the thickness of carotid artery intima-media in patients with systemic autoimmune diseases. Clin. Rheumatol. 28, 655–662 (2009).

    Article  Google Scholar 

  33. Mäki-Petäjä, K. M. et al. Rheumatoid arthritis is associated with increased aortic pulse-wave velocity, which is reduced by anti-tumor necrosis factor-α therapy. Circulation 114, 1185–1192 (2006).

    Article  Google Scholar 

  34. Han, C. et al. Cardiovascular disease and risk factors in patients with rheumatoid arthritis, psoriatic arthritis and ankylosing spondylitis. J. Rheumatol. 33, 2167–2172 (2006).

    PubMed  Google Scholar 

  35. Heeneman, S. & Daemen, M. J. Cardiovascular risks in spondyloarthritides. Curr. Opin. Rheumatol. 19, 358–362 (2007).

    Article  Google Scholar 

  36. Pieringer, H. Impaired endothelial function in patients with ankylosing spondylitis. Rheumatology (Oxford) 45, 1319 (2006).

    Article  CAS  Google Scholar 

  37. van Eijk, I. C. et al. Microvascular function is impaired in ankylosing spondylitis and improves after tumour necrosis factor alpha blockade. Ann. Rheum. Dis. 68, 362–366 (2009).

    Article  CAS  Google Scholar 

  38. Moyssakis, I. et al. Myocardial performance and aortic elasticity are impaired in patients with ankylosing spondylitis. Scand. J. Rheumatol. 18, 1–6 (2009).

    Google Scholar 

  39. Choe, J. Y. et al. No differences of carotid intima-media thickness between young patients with ankylosing spondylitis and healthy controls. Joint Bone Spine 75, 548–553 (2008).

    Article  CAS  Google Scholar 

  40. Mathieu, S. et al. Trend towards increased arterial stiffness or intima-media thickness in ankylosing spondylitis patients without clinically evident cardiovascular disease. Rheumatology (Oxford) 47, 1203–1207 (2008).

    Article  CAS  Google Scholar 

  41. Kimhi, O. et al. Prevalence and risk factors of atherosclerosis in patients with psoriatic arthritis. Semin. Arthritis Rheum. 36, 203–209 (2007).

    Article  Google Scholar 

  42. Späh, F. Inflammation in atherosclerosis and psoriasis: common pathogenic mechanisms and the potential of an integrated treatment approach. Br. J. Dermatol. 159 (Suppl. 2), 10–17 (2008).

    Article  Google Scholar 

  43. Channual, J., Wu, J. J. & Dann, F. J. Effects of tumor necrosis factor-alpha blockade on metabolic syndrome components in psoriasis and psoriatic arthritis and additional lessons learned from rheumatoid arthritis. Dermatol. Ther. 22, 61–73 (2009).

    Article  Google Scholar 

  44. Peters, M. J., Symmons, D. P. M., McCarey, D. W. & Nurmohamed, M. T. Cardiovascular risk management in patients with rheumatoid arthritis and other types of inflammatory arthritis: a EULAR task force. Arthritis Rheum. 58 (Suppl. 9), S421 (2008).

    Google Scholar 

  45. Gonzalez-Juanatey, C. et al. Short-term improvement of endothelial function in rituximab-treated rheumatoid arthritis patients refractory to tumor necrosis factor α blocker therapy. Arthritis Rheum. 59, 1821–1824 (2008).

    Article  CAS  Google Scholar 

  46. Kerekes, G. et al. Effects of rituximab treatment on endothelial dysfunction and lipid profile in rheumatoid arthritis. Clin. Rheumatol. 28, 705–710 (2009).

    Article  Google Scholar 

  47. Hürlimann, D. et al. Anti-tumor necrosis factor-α treatment improves endothelial function in patients with rheumatoid arthritis. Circulation 106, 2184–2187 (2002).

    Article  Google Scholar 

  48. Bilsborough, W. et al. Anti-tumour necrosis factor-α therapy over conventional therapy improves endothelial function in adults with rheumatoid arthritis. Rheumatol. Int. 26, 1125–1131 (2006).

    Article  CAS  Google Scholar 

  49. Gonzalez-Juanatey, C. et al. Active but transient improvement of endothelial function in rheumatoid arthritis patients undergoing long-term treatment with anti-tumor necrosis factor-α antibody. Arthritis Rheum. 51, 447–450 (2004).

    Article  CAS  Google Scholar 

  50. Bosello, S. et al. TNF-α blockade induces a reversible but transient effect of endothelial dysfunction in patients with long-standing severe rheumatoid arthritis. Clin. Rheumatol. 27, 833–839 (2008).

    Article  Google Scholar 

  51. Gonzalez-Juanatey, C. et al. Short-term adalimumab therapy improves endothelial function in patients with rheumatoid arthritis refractory to infliximab. Clin. Exp. Rheumatol. 24, 309–312 (2006).

    CAS  PubMed  Google Scholar 

  52. Del Porto, F. et al. Response to anti-tumour necrosis factor α blockade is associated with reduction of carotid intima-media thickness in patients with active rheumatoid arthritis. Rheumatology (Oxford) 46, 1111–1115 (2007).

    Article  CAS  Google Scholar 

  53. Wong, M. et al. Infliximab improves vascular stiffness in patients with rheumatoid arthritis. Ann. Rheum. Dis. 68, 1277–1284 (2008).

    Article  Google Scholar 

  54. Van Doornum, S., McColl, G. & Wicks, I. P. Tumour necrosis factor antagonists improve the disease activity but not arterial stiffness in rheumatoid arthritis. Rheumatology (Oxford) 44, 1428–1432 (2005).

    Article  CAS  Google Scholar 

  55. Vis, M. et al. Short term effects of infliximab on the lipid profile in patients with rheumatoid arthritis. J. Rheumatol. 32, 252–255 (2005).

    CAS  PubMed  Google Scholar 

  56. Seriolo, B. et al. Effects of anti-TNF-alpha treatment on lipid profile in patients with active rheumatoid arthritis. Ann. NY Acad. Sci. 1069, 414–419 (2006).

    Article  CAS  Google Scholar 

  57. Tam, L. S., Tomlinson, B., Chu, T. T., Li, T. K. & Li, E. K. Impact of TNF inhibition on insulin resistance and lipids levels in patients with rheumatoid arthritis. Clin. Rheumatol. 26, 1495–1498 (2007).

    Article  Google Scholar 

  58. Kiortsis, D. N. et al. Effects of infliximab treatment on lipoprotein profile in patients with rheumatoid arthritis and ankylosing spondylitis. J. Rheumatol. 33, 921–923 (2006).

    CAS  PubMed  Google Scholar 

  59. Soubrier, M. et al. Effects of anti-tumor necrosis factor therapy on lipid profile in patients with rheumatoid arthritis. Joint Bone Spine 75, 22–24 (2008).

    Article  CAS  Google Scholar 

  60. Saiki, O. et al. Infliximab but not methotrexate induces extra-high levels of VLDL-triglyceride in patients with rheumatoid arthritis. J. Rheumatol. 34, 1997–2004 (2007).

    CAS  PubMed  Google Scholar 

  61. Popa, C. et al. Modulation of lipoprotein plasma concentrations during long-term anti-TNF therapy in patients with active rheumatoid arthritis. Ann. Rheum. Dis. 66, 1503–1507 (2007).

    Article  CAS  Google Scholar 

  62. Popa, C. et al. Influence of anti-tumour necrosis factor therapy on cardiovascular risk factors in patients with active rheumatoid arthritis. Ann. Rheum. Dis. 64, 303–305 (2005).

    Article  CAS  Google Scholar 

  63. Garces, S. P. et al. Anti-tumour necrosis factor agents and lipid profile: a class effect? Ann. Rheum. Dis. 67, 895–896 (2008).

    Article  CAS  Google Scholar 

  64. Ablin, J. N. et al. Effect of anti-TNFα treatment on circulating endothelial progenitor cells (EPCs) in rheumatoid arthritis. Life Sci. 79, 2364–2369 (2006).

    Article  CAS  Google Scholar 

  65. Jacobsson, L. T. et al. Treatment with tumor necrosis factor blockers is associated with a lower incidence of first cardiovascular events in patients with rheumatoid arthritis. J. Rheumatol. 32, 1213–1218 (2005).

    CAS  PubMed  Google Scholar 

  66. Dixon, W. G. et al. Reduction in the incidence of myocardial infarction in patients with rheumatoid arthritis who respond to anti-tumor necrosis factor alpha therapy: results from the British Society for Rheumatology Biologics Register. Arthritis Rheum. 56, 2905–2912 (2007).

    Article  CAS  Google Scholar 

  67. Szabó, Z. et al. Effects of rituximab and adalimumab on vascular function in established and early rheumatoid arthritis. Hung. Rheumatol. 49, 137 (2008).

    Google Scholar 

  68. Sidiropoulos, P. I. et al. Sustained improvement of vascular endothelial function during anti-TNFα treatment in rheumatoid arthritis patients. Scand. J. Rheumatol. 38, 6–10 (2009).

    Article  CAS  Google Scholar 

  69. Nishida, K., Okada, Y., Nawata, M., Saito, K. & Tanaka, Y. Induction of hyperadiponectinemia following long-term treatment of patients with rheumatoid arthritis with infliximab (IFX), an anti-TNF-alpha antibody. Endocr. J. 55, 213–216 (2008).

    Article  CAS  Google Scholar 

  70. Spanakis, E. et al. Modest but sustained increase of serum high density lipoprotein cholesterol levels in patients with inflammatory arthritides treated with infliximab. J. Rheumatol. 33, 2440–2446 (2006).

    CAS  PubMed  Google Scholar 

  71. Cauza, E. et al. Intravenous anti-TNF-alpha antibody therapy leads to elevated triglyceride and reduced HDL-cholesterol levels in patients with rheumatoid and psoriatic arthritis. Wien. Klin. Woschenschr. 114, 1004–1007 (2002).

    CAS  Google Scholar 

  72. van Eijk, I. C. et al. Improvement of lipid profile is accompanied by atheroprotective alterations in high-density lipoprotein composition upon tumor necrosis factor blockade: a prospective cohort study in ankylosing spondylitis. Arthritis Rheum. 60, 1324–1330 (2009).

    Article  CAS  Google Scholar 

  73. Lewicki, M., Kotyla, P. & Kucharz, E. Etanercept increases adiponectin level in woman with rheumatoid arthritis. Clin. Rheumatol. 27, 1337–1338 (2008).

    Article  Google Scholar 

  74. Oguz, F. M., Oguz, A. & Uzunlulu, M. The effect of infliximab treatment on insulin resistance in patients with rheumatoid arthritis. Acta Clin. Belg. 62, 218–222 (2007).

    Article  CAS  Google Scholar 

  75. Marra, M. et al. Effect of etanercept on insulin sensitivity in nine patients with psoriasis. Int. J. Immunopathol. Pharmacol. 20, 731–736 (2007).

    Article  CAS  Google Scholar 

  76. van Eijk, I. C. et al. Decrease of fructosamine levels during treatment with adalimumab in patients with both diabetes and rheumatoid arthritis. Eur. J. Endocrinol. 156, 291–293 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by research grants from the Hungarian Scientific Research Fund (Z. Szekanecz) and a Bolyai Research Grant (P. Soltész).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zoltán Szekanecz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szekanecz, Z., Kerekes, G. & Soltész, P. Vascular effects of biologic agents in RA and spondyloarthropathies. Nat Rev Rheumatol 5, 677–684 (2009). https://doi.org/10.1038/nrrheum.2009.219

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2009.219

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing