Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Pathogenesis of systemic juvenile idiopathic arthritis: some answers, more questions

Abstract

Systemic juvenile idiopathic arthritis (sJIA) has long been recognized as unique among childhood arthritides, because of its distinctive clinical and epidemiological features, including an association with macrophage activation syndrome. Here, we summarize research into sJIA pathogenesis. The triggers of disease are unknown, although infections are suspects. Once initiated, sJIA seems to be driven by innate proinflammatory cytokines. Endogenous Toll-like receptor ligands, including S100 proteins, probably synergize with cytokines to perpetuate inflammation. These and other findings support the hypothesis that sJIA is an autoinflammatory condition. Indeed, IL-1 is implicated as a pivotal cytokine, but the source of excess IL-1 activity remains obscure and the role of IL-1 in chronic arthritis is less clear. Another hypothesis is that a form of hemophagocytic lymphohistiocytosis underlies sJIA, with varying degrees of its expression across the spectrum of disease. Alternatively, sJIA with MAS might be a genetically distinct subtype. Yet another hypothesis proposes that inadequate downregulation of immune activation is central to sJIA, supporting evidence for which includes 'alternative activation' of monocyte and macrophages and possible deficiencies in IL-10 and T regulatory cells. Some altered immune phenotypes persist during clinically inactive disease, which suggests that this stage might represent compensated inflammation. Despite much progress being made, many questions remain, providing fertile ground for future research.

Key Points

  • The contribution of innate immunity to systemic juvenile idiopathic arthritis (sJIA) is prominent, supporting the classification of sJIA as an autoinflammatory disorder

  • Available data suggest that sJIA is a multigenic disease, and that sJIA with macrophage activation syndrome (MAS) could represent a genetically distinct disease subtype

  • IL-1β is a critical proinflammatory cytokine in early sJIA, whereas arthritis in chronic persistent sJIA is possibly driven by other mediators

  • During active disease, mediators of both inflammatory and anti-inflammatory pathways are detected; among the latter are monocyte/macrophages with features of 'alternative activation'

  • It is possible that clinically inactive disease (with no medication) represents a state of compensated inflammation rather than the absence of immune activity

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Perpetuation of innate immune responses in sJIA.
Figure 2: Secretion of IL-1β by monocytes in inflammatory diseases.
Figure 3: A possible positive feedback cycle involving IL-1β and S100 proteins contributes to perpetuation of chronic inflammation in sJIA.

Similar content being viewed by others

References

  1. Petty, R. E. et al. International League of Associations for Rheumatology classification of juvenile idiopathic arthritis: second revision, Edmonton, 2001. J. Rheumatol. 31, 390–392 (2004).

    PubMed  Google Scholar 

  2. Singh-Grewal, D., Schneider, R., Bayer, N. & Feldman, B. M. Predictors of disease course and remission in systemic juvenile idiopathic arthritis: significance of early clinical and laboratory features. Arthritis Rheum. 54, 1595–1601 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Sandborg, C. et al. Candidate early predictors for progression to joint damage in systemic juvenile idiopathic arthritis. J. Rheumatol. 33, 2322–2329 (2006).

    PubMed  Google Scholar 

  4. Spiegel, L. R. et al. Early predictors of poor functional outcome in systemic-onset juvenile rheumatoid arthritis: a multicenter cohort study. Arthritis Rheum. 43, 2402–2409 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Sawhney, S. & Magalhães, C. Paediatric rheumatology—a global perspective. Best Pract. Res. Clin. Rheumatol. 20, 201–221 (2006).

    Article  PubMed  Google Scholar 

  6. Fujikawa, S. & Okuni, M. Clinical analysis of 570 cases with juvenile rheumatoid arthritis: results of a nationwide retrospective survey in Japan. Acta Paediatr. Jpn 39, 245–249 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Deane, S., Selmi, C., Teuber, S. & Gershwin, M. E. Macrophage activation syndrome in autoimmune disease. Int. Arch. Allergy Immunol. 153, 109–120 (2010).

    Article  CAS  PubMed  Google Scholar 

  8. Grom, A. Natural killer cell dysfunction: A common pathway in systemic-onset juvenile rheumatoid arthritis, macrophage activation syndrome, and hemophagocytic lymphohistiocytosis? Arthritis Rheum. 50, 689–698 (2004).

    Article  PubMed  Google Scholar 

  9. Sawhney, S., Woo, P. & Murray, K. J. Macrophage activation syndrome: a potentially fatal complication of rheumatic disorders. Arch. Dis. Child. 85, 421–426 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Behrens, E. M., Beukelman, T., Paessler, M. & Cron, R. Q. Occult macrophage activation syndrome in patients with systemic juvenile idiopathic arthritis. J. Rheumatol. 34, 1133–1138 (2007).

    PubMed  Google Scholar 

  11. Bleesing, J. et al. The diagnostic significance of soluble CD163 and soluble interleukin-2 receptor α-chain in macrophage activation syndrome and untreated new-onset systemic juvenile idiopathic arthritis. Arthritis Rheum. 56, 965–971 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Lindsley, C. B. Seasonal variation in systemic onset juvenile rheumatoid arthritis. Arthritis Rheum. 30, 838–839 (1987).

    Article  CAS  PubMed  Google Scholar 

  13. Oen, K., Fast, M. & Postl, B. Epidemiology of juvenile rheumatoid arthritis in Manitoba, Canada, 1975–1992: cycles in incidence. J. Rheumatol. 22, 745–750 (1995).

    CAS  PubMed  Google Scholar 

  14. Uziel, Y. et al. Seasonal variation in systemic onset juvenile rheumatoid arthritis in Israel. J. Rheumatol. 26, 1187–1189 (1999).

    CAS  PubMed  Google Scholar 

  15. Masters, S., Simon, A., Aksentijevich, I. & Kastner, D. Horror autoinflammaticus: the molecular pathophysiology of autoinflammatory disease. Ann. Rev. Immunol. 27, 621–668 (2009).

    Article  CAS  Google Scholar 

  16. Rigante, D. et al. First report of macrophage activation syndrome in hyperimmunoglobulinemia D with periodic fever syndrome. Arthritis Rheum. 56, 658–661 (2007).

    Article  PubMed  Google Scholar 

  17. Nepom, B. S. & Glass, D. N. Juvenile rheumatoid arthritis and HLA: report of the Park City III workshop. J. Rheumatol. Suppl. 33, 70–74 (1992).

    CAS  PubMed  Google Scholar 

  18. Date, Y. et al. Identification of a genetic risk factor for systemic juvenile rheumatoid arthritis in the 5′-flanking region of the TNFα gene and HLA genes. Arthritis Rheum. 42, 2577–2582 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Fishman, D. et al. The effect of novel polymorphisms in the interleukin-6 (IL-6) gene on IL-6 transcription and plasma IL-6 levels, and an association with systemic-onset juvenile chronic arthritis. J. Clin. Invest. 102, 1369–1376 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ogilvie, E. M. et al. The -174G allele of the interleukin-6 gene confers susceptibility to systemic arthritis in children: a multicenter study using simplex and multiplex juvenile idiopathic arthritis families. Arthritis Rheum. 48, 3202–3206 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Fife, M. S. et al. Novel IL10 gene family associations with systemic juvenile idiopathic arthritis. Arthritis Res. Ther. 8, R148 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Moller, J. et al. IL10 promoter polymorphisms are associated with systemic onset juvenile idiopathic arthritis (SoJIA). Clin. Exp. Rheumatol. 28, 912–918 (2010).

    CAS  PubMed  Google Scholar 

  23. Donn, R. P., Shelley, E., Ollier, W. E. & Thomson, W. A novel 5′-flanking region polymorphism of macrophage migration inhibitory factor is associated with systemic-onset juvenile idiopathic arthritis. Arthritis Rheum. 44, 1782–1785 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. De Benedetti, F. et al. Functional and prognostic relevance of the −173 polymorphism of the macrophage migration inhibitory factor gene in systemic-onset juvenile idiopathic arthritis. Arthritis Rheum. 48, 1398–1407 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Stock, C. J. et al. Comprehensive association study of genetic variants in the IL-1 gene family in systemic juvenile idiopathic arthritis. Genes Immun. 9, 349–357 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Lamb, R., Thomson, W., Ogilvie, E. & Donn, R. Positive association of SLC26A2 gene polymorphisms with susceptibility to systemic-onset juvenile idiopathic arthritis. Arthritis Rheum. 56, 1286–1291 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Gattorno, M. et al. The pattern of response to anti-interleukin-1 treatment distinguishes two subsets of patients with systemic-onset juvenile idiopathic arthritis. Arthritis Rheum. 58, 1505–1515 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Day, T. G. et al. Autoinflammatory genes and susceptibility to psoriatic juvenile idiopathic arthritis. Arthritis Rheum. 58, 2142–2146 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ayaz, N. A. et al. MEFV mutations in systemic onset juvenile idiopathic arthritis. Rheumatology (Oxford) 48, 23–25 (2009).

    Article  CAS  Google Scholar 

  30. Fall, N. et al. Gene expression profiling of peripheral blood from patients with untreated new-onset systemic juvenile idiopathic arthritis reveals molecular heterogeneity that may predict macrophage activation syndrome. Arthritis Rheum. 56, 3793–3804 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Macaubas, C. et al. Distribution of circulating cells in systemic juvenile idiopathic arthritis across disease activity states. Clin. Immunol. 134, 206–216 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. Hinze, C. et al. Immature cell populations and an erythropoiesis gene-expression signature in systemic juvenile idiopathic arthritis: implications for pathogenesis. Arthritis Res. Ther. 12, R123 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Pascual, V., Allantaz, F., Arce, E., Punaro, M. & Banchereau, J. Role of interleukin-1 (IL-1) in the pathogenesis of systemic onset juvenile idiopathic arthritis and clinical response to IL-1 blockade. J. Exp. Med. 201, 1479–1486 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ogilvie, E. M., Khan, A., Hubank, M., Kellam, P. & Woo, P. Specific gene expression profiles in systemic juvenile idiopathic arthritis. Arthritis Rheum. 56, 1954–1965 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Barnes, M. et al. Subtype-specific peripheral blood gene expression profiles in recent-onset juvenile idiopathic arthritis. Arthritis Rheum. 60, 2102–2112 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Allantaz, F. et al. Blood leukocyte microarrays to diagnose systemic onset juvenile idiopathic arthritis and follow the response to IL-1 blockade. J. Exp. Med. 204, 2131–2144 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Quartier, P. et al. A multicentre, randomised, double-blind, placebo-controlled trial with the interleukin-1 receptor antagonist anakinra in patients with systemic-onset juvenile idiopathic arthritis (ANAJIS trial). Ann. Rheum. Dis. 70, 747–754 (2011).

    Article  CAS  PubMed  Google Scholar 

  38. Wilson, D. et al. Follistatin-like protein 1 is a mesenchyme-derived inflammatory protein and may represent a biomarker for systemic-onset juvenile rheumatoid arthritis. Arthritis Rheum. 62, 2510–2516 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ling, X. et al. Plasma profiles in active systemic juvenile idiopathic arthritis: biomarkers and biological implications. Proteomics 10, 4415–4430 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Verbsky, J. & White, A. Effective use of the recombinant interleukin 1 receptor antagonist anakinra in therapy resistant systemic onset juvenile rheumatoid arthritis. J. Rheumatol. 31, 2071–2075 (2004).

    PubMed  Google Scholar 

  41. Irigoyen, P. I., Olson, J., Hom, C. & Ilowite, N. T. Treatment of systemic onset juvenile rheumatoid arthritis with anakinra. Arthritis Rheum. 50, S437 (2004).

    Google Scholar 

  42. Henrickson, M. Efficacy of anakinra in refractory systemic arthritis. Arthritis Rheum. 50, S438 (2004).

    Google Scholar 

  43. Muzaffer, M. A. et al. Differences in the profiles of circulating levels of soluble tumor necrosis factor receptors and interleukin 1 receptor antagonist reflect the heterogeneity of the subgroups of juvenile rheumatoid arthritis. J. Rheumatol. 29, 1071–1078 (2002).

    CAS  PubMed  Google Scholar 

  44. Nigrovic, P. et al. Anakinra as first-line disease modifying therapy in systemic juvenile idiopathic arthritis: report of forty-six patients from an international multicenter series. Arthritis Rheum. 63, 545–555 (2010).

    Article  CAS  Google Scholar 

  45. Tassi, S. et al. Altered redox state of monocytes from cryopyrin-associated periodic syndromes causes accelerated IL-1β secretion. Proc. Natl Acad. Sci. USA 107, 9789–9794 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. van den Ham, H.-J., de Jager, W., Bijlsma, J. W. J., Prakken, B. J. & de Boer, R. J. Differential cytokine profiles in juvenile idiopathic arthritis subtypes revealed by cluster analysis. Rheumatology (Oxford) 48, 899–905 (2009).

    Article  CAS  Google Scholar 

  47. Guma, M. et al. Caspase 1-independent activation of interleukin-1β in neutrophil-predominant inflammation. Arthritis Rheum. 60, 3642–3650 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Joosten, L. A. B. et al. Inflammatory arthritis in caspase 1 gene-deficient mice: contribution of proteinase 3 to caspase 1-independent production of bioactive interleukin-1 β. Arthritis Rheum. 60, 3651–3662 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Metkar, S. S. et al. Human and mouse granzyme A induce a proinflammatory cytokine response. Immunity 29, 720–733 (2008).

    Article  CAS  PubMed  Google Scholar 

  50. Frosch, M. et al. The myeloid-related proteins 8 and 14 complex, a novel ligand of Toll-like receptor 4, and interleukin-1β form a positive feedback mechanism in systemic-onset juvenile idiopathic arthritis. Arthritis Rheum. 60, 883–891 (2009).

    Article  CAS  PubMed  Google Scholar 

  51. Wittkowski, H. et al. S100A12 is a novel molecular marker differentiating systemic-onset juvenile idiopathic arthritis from other causes of fever of unknown origin. Arthritis Rheum. 58, 3924–3931 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. de Benedetti, F. et al. Correlation of serum interleukin-6 levels with joint involvement and thrombocytosis in systemic juvenile rheumatoid arthritis. Arthritis Rheum. 34, 1158–1163 (1991).

    Article  CAS  PubMed  Google Scholar 

  53. de Benedetti, F. et al. Effect of IL-6 on IGF binding protein-3: a study in IL-6 transgenic mice and in patients with systemic juvenile idiopathic arthritis. Endocrinology 142, 4818–4826 (2001).

    Article  CAS  PubMed  Google Scholar 

  54. Cazzola, M. et al. Defective iron supply for erythropoiesis and adequate endogenous erythropoietin production in the anemia associated with systemic-onset juvenile chronic arthritis. Blood 87, 4824–4830 (1996).

    CAS  PubMed  Google Scholar 

  55. Pignatti, P. et al. Abnormal regulation of interleukin 6 in systemic juvenile idiopathic arthritis. J. Rheumatol. 28, 1670–1676 (2001).

    CAS  PubMed  Google Scholar 

  56. Muller, K., Herner, E. B., Stagg, A., Bendtzen, K. & Woo, P. Inflammatory cytokines and cytokine antagonists in whole blood cultures of patients with systemic juvenile chronic arthritis. Rheumatology (Oxford) 37, 562–569 (1998).

    Article  CAS  Google Scholar 

  57. Bradshaw, E. M. et al. Monocytes from patients with type 1 diabetes spontaneously secrete proinflammatory cytokines inducing TH17 cells. J. Immunol. 183, 4432–4439 (2009).

    Article  CAS  PubMed  Google Scholar 

  58. Yokota, S. et al. Efficacy and safety of tocilizumab in patients with systemic-onset juvenile idiopathic arthritis: a randomised, double-blind, placebo-controlled, withdrawal phase III trial. Lancet 371, 998–1006 (2008).

    Article  CAS  PubMed  Google Scholar 

  59. De Benedetti, F. et al. Tocilizumab in patients with systemic juvenile idiopathic arthritis: efficacy data from the placebo-controlled 12-week part of the phase 3 TENDER trial. Arthritis Rheum. 62, S596 (2010).

    Google Scholar 

  60. Nakajima, S. et al. Improvement of reduced serum cartilage oligomeric matrix protein levels in systemic juvenile idiopathic arthritis patients treated with the anti-interleukin-6 receptor monoclonal antibody tocilizumab. Mod. Rheumatol. 19, 42–46 (2009).

    Article  CAS  PubMed  Google Scholar 

  61. Sarma, P. K., Misra, R. & Aggarwal, A. Elevated serum receptor activator of NFκB ligand (RANKL), osteoprotegerin (OPG), matrix metalloproteinase (MMP)3, and ProMMP1 in patients with juvenile idiopathic arthritis. Clin. Rheumatol. 27, 289–294 (2008).

    Article  PubMed  Google Scholar 

  62. Silacci, P. et al. Interleukin (IL)-6 and its soluble receptor induce TIMP-1 expression in synoviocytes and chondrocytes, and block IL-1-induced collagenolytic activity. J. Biol. Chem. 273, 13625–13629 (1998).

    Article  CAS  PubMed  Google Scholar 

  63. Ling, X. et al. Urine peptidomic and targeted plasma protein analyses in the diagnosis and monitoring of systemic juvenile idiopathic arthritis. Clin. Proteomics 6, 175–193 (2010).

    Article  CAS  PubMed  Google Scholar 

  64. Kossakowska, A. E. et al. Interleukin-6 regulation of matrix metalloproteinase (MMP-2 and MMP-9) and tissue inhibitor of metalloproteinase (TIMP-1) expression in malignant non-Hodgkin's lymphomas. Blood 94, 2080–2089 (1999).

    CAS  PubMed  Google Scholar 

  65. de Jager, W. et al. Blood and synovial fluid cytokine signatures in patients with juvenile idiopathic arthritis: a cross-sectional study. Ann. Rheum. Dis. 66, 589–598 (2007).

    Article  CAS  PubMed  Google Scholar 

  66. Takahashi, A. et al. The role of heme oxygenase-1 in systemic-onset juvenile idiopathic arthritis. Mod. Rheumatol. 19, 302–308 (2009).

    Article  CAS  PubMed  Google Scholar 

  67. Martinez, F., Sica, A., Mantovani, A. & Locati, M. Macrophage activation and polarization. Front. Biosci. 13, 453–461 (2008).

    Article  CAS  PubMed  Google Scholar 

  68. Roca, H. et al. CCL2 and interleukin-6 promote survival of human CD11b+ peripheral blood mononuclear cells and induce M2-type macrophage polarization. J. Biol. Chem. 284, 34342–34354 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Srivastava, S. et al. Monocytes are resistant to apoptosis in systemic juvenile idiopathic arthritis. Clin. Immunol. 136, 257–268 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Porta, C. et al. Tolerance and M2 (alternative) macrophage polarization are related processes orchestrated by p50 nuclear factor κB. Proc. Natl Acad. Sci. USA 106, 14978–14983 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kristiansen, M. et al. Identification of the haemoglobin scavenger receptor. Nature 409, 198–201 (2001).

    Article  CAS  PubMed  Google Scholar 

  72. Avcin, T., Tse, S. M. L., Schneider, R., Ngan, B. & Silverman, E. Macrophage activation syndrome as the presenting manifestation of rheumatic diseases in childhood. J. Pediatrics 148, 683–686 (2006).

    Article  Google Scholar 

  73. Schaer, D. et al. Soluble hemoglobin-haptoglobin scavenger receptor CD163 as a lineage-specific marker in the reactive hemophagocytic syndrome. Eur. J. Haematol. 74, 6–10 (2005).

    Article  CAS  PubMed  Google Scholar 

  74. de Kleer. I. et al. Autologous stem cell transplantation for autoimmunity induces immunologic self-tolerance by reprogramming autoreactive T cells and restoring the CD4+CD25+ immune regulatory network. Blood 107, 1696–1702 (2006).

    Article  CAS  PubMed  Google Scholar 

  75. Nistala, K. et al. Interleukin-17-producing T cells are enriched in the joints of children with arthritis, but have a reciprocal relationship to regulatory T cell numbers. Arthritis Rheum. 58, 875–887 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Olivito, B. et al. TH17 transcription factor RORC2 is inversely correlated with FOXP3 expression in the joints of children with juvenile idiopathic arthritis. J. Rheumatol. 36, 2017–2024 (2009).

    Article  CAS  PubMed  Google Scholar 

  77. Agarwal, S., Misra, R. & Aggarwal, A. Interleukin 17 levels are increased in juvenile idiopathic arthritis synovial fluid and induce synovial fibroblasts to produce proinflammatory cytokines and matrix metalloproteinases. J. Rheumatol. 35, 515–519 (2008).

    CAS  PubMed  Google Scholar 

  78. Peck, A. & Mellins, E. Breaking old paradigms: TH17 cells in autoimmune arthritis. Clin. Immunol. 132, 295–304 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Manel, N., Unutmaz, D. & Littman, D. R. The differentiation of human TH17 cells requires transforming growth factor-β and induction of the nuclear receptor RORγt. Nat. Immunol. 9, 641–649 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Toh, M.-L. et al. Role of interleukin 17 in arthritis chronicity through survival of synoviocytes via regulation of synoviolin expression. PLoS ONE 5, e13416 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Koenders, M. et al. Interleukin-1 drives pathogenic TH17 cells during spontaneous arthritis in interleukin-1 receptor antagonist-deficient mice. Arthritis Rheum. 58, 3461–3470 (2008).

    Article  CAS  PubMed  Google Scholar 

  82. Donn, R. et al. Genetic loci contributing to hemophagocytic lymphohistiocytosis do not confer susceptibility to systemic-onset juvenile idiopathic arthritis. Arthritis Rheum. 58, 869–874 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Zhang, K. et al. Macrophage activation syndrome in patients with systemic juvenile idiopathic arthritis is associated with MUNC13-4 polymorphisms. Arthritis Rheum. 58, 2892–2896 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Vastert, S. et al. Mutations in the perforin gene can be linked to macrophage activation syndrome in patients with systemic onset juvenile idiopathic arthritis. Rheumatology (Oxford) 49, 441–449 (2010).

    Article  CAS  Google Scholar 

  85. Yanagimachi M. et al. Association of IRF5 polymorphisms with susceptibility to macrophage activation syndrome in patients with juvenile idiopathic arthritis. J. Rheumatol. 38, 769–774 (2011).

    Article  CAS  PubMed  Google Scholar 

  86. Shimizu, M. et al. Distinct cytokine profiles of systemic-onset juvenile idiopathic arthritis-associated macrophage activation syndrome with particular emphasis on the role of interleukin-18 in its pathogenesis. Rheumatology (Oxford) 49, 1645–1653 (2010).

    Article  CAS  Google Scholar 

  87. Imagawa, T. Differences between systemic onset juvenile idiopathic arthritis and macrophage activation syndrome from the standpoint of the proinflammatory cytokine profiles. Arthritis Rheum. 50, S92 (2004).

    Google Scholar 

  88. Billiau, A. D., Roskams, T., Van Damme-Lombaerts, R., Matthys, P. & Wouters, C. Macrophage activation syndrome: characteristic findings on liver biopsy illustrating the key role of activated, IFN-γ-producing lymphocytes and IL-6- and TNF-α-producing macrophages. Blood 105, 1648–1651 (2005).

    Article  CAS  PubMed  Google Scholar 

  89. Bruck, N. et al. Rapid and sustained remission of systemic juvenile idiopathic arthritis-associated macrophage activation syndrome through treatment with anakinra and corticosteroids. J. Clin. Rheum. 17, 23–27 (2011).

    Article  Google Scholar 

  90. Filipovich, A. Hemophagocytic lymphohistiocytosis and other hemophagocytic disorders. Immunol. Allergy Clin. North Am. 28, 293–313, viii (2008).

    Article  PubMed  Google Scholar 

  91. Voskoboinik, I., Smyth, M. & Trapani, J. Perforin-mediated target-cell death and immune homeostasis. Nat. Rev. Immunol. 6, 940–952 (2006).

    Article  CAS  PubMed  Google Scholar 

  92. Wulffraat, N. M., Rijkers, G. T., Elst, E., Brooimans, R. & Kuis, W. Reduced perforin expression in systemic juvenile idiopathic arthritis is restored by autologous stem-cell transplantation. Rheumatology (Oxford) 42, 375–379 (2003).

    Article  CAS  Google Scholar 

  93. Grom, A. A. et al. Natural killer cell dysfunction in patients with systemic-onset juvenile rheumatoid arthritis and macrophage activation syndrome. J. Pediatrics 142, 292–296 (2003).

    Article  CAS  Google Scholar 

  94. Villanueva, J. et al. Natural killer cell dysfunction is a distinguishing feature of systemic onset juvenile rheumatoid arthritis and macrophage activation syndrome. Arthritis Res. Ther. 7, R30–R37 (2005).

    Article  CAS  PubMed  Google Scholar 

  95. de Jager, W. et al. Defective phosphorylation of interleukin-18 receptor β causes impaired natural killer cell function in systemic-onset juvenile idiopathic arthritis. Arthritis Rheum. 60, 2782–2793 (2009).

    Article  CAS  PubMed  Google Scholar 

  96. Bufler, P. et al. A complex of the IL-1 homologue IL-1F7b and IL-18-binding protein reduces IL-18 activity. Proc. Natl Acad. Sci. USA 99, 13723–13728 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Mazodier, K. et al. Severe imbalance of IL-18/IL-18BP in patients with secondary hemophagocytic syndrome. Blood 106, 3483–3489 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Nold-Petry, C. A. et al. Increased cytokine production in interleukin-18 receptor α-deficient cells is associated with dysregulation of suppressors of cytokine signaling. J. Biol. Chem. 284, 25900–25911 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Sugimoto, T. et al. Interleukin 18 acts on memory T helper cells type 1 to induce airway inflammation and hyperresponsiveness in a naive host mouse. J. Exp. Med. 199, 535–545 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Maeno, N. et al. Increased interleukin-18 expression in bone marrow of a patient with systemic juvenile idiopathic arthritis and unrecognized macrophage-activation syndrome. Arthritis Rheum. 50, 1935–1938 (2004).

    Article  PubMed  Google Scholar 

  101. Coffey, A. J. et al. Host response to EBV infection in X-linked lymphoproliferative disease results from mutations in an SH2-domain encoding gene. Nat. Genet. 20, 129–135 (1998).

    Article  CAS  PubMed  Google Scholar 

  102. Recalcati, S. et al. Differential regulation of iron homeostasis during human macrophage polarized activation. Eur. J. Immunol. 40, 824–835 (2010).

    Article  CAS  PubMed  Google Scholar 

  103. Lukina, E. A., Levina, A. A., Mokeeva, R. A. & YuN, T. The diagnostic significance of serum ferritin indices in patients with malignant and reactive histiocytosis. Br. J. Haematol. 83, 326–329 (1993).

    Article  CAS  PubMed  Google Scholar 

  104. Behrens, E. M. et al. Repeated Toll-like receptor 9 stimulation results in macrophage activation syndrome-like disease in mice. J. Clin. Invest. (in press).

  105. Nguyen, K. D. et al. Serum amyloid A overrides TREG anergy via monocyte-dependent and TREG-intrinsic, SOCS3-associated pathways. Blood 117, 3793–3798 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Smith, A. M. et al. Disordered macrophage cytokine secretion underlies impaired acute inflammation and bacterial clearance in Crohn's disease. J. Exp. Med. 206, 1883–1897 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Scott, J. P., Gerber, P., Maryjowski, M. C. & Pachman, L. M. Evidence for intravascular coagulation in systemic onset, but not polyarticular, juvenile rheumatoid arthritis. Arthritis Rheum. 28, 256–261 (1985).

    Article  CAS  PubMed  Google Scholar 

  108. Bloom, B., Toyoda, M., Petrosian, A. & Jordan, S. Anti-endothelial cell antibodies are prevalent in juvenile idiopathic arthritis: implications for clinical disease course and pathogenesis. Rheumatol. Int. 27, 655–660 (2007).

    Article  CAS  PubMed  Google Scholar 

  109. Gabay, C., Lamacchia, C. & Palmer, G. IL-1 pathways in inflammation and human diseases. Nat. Rev. Rheumatol. 6, 232–241 (2010).

    Article  CAS  PubMed  Google Scholar 

  110. Church, L., Cook, G. & McDermott, M. Primer: inflammasomes and interleukin 1β in inflammatory disorders. Nat. Clin. Pract. Rheumatol. 4, 34–42 (2008).

    Article  CAS  PubMed  Google Scholar 

  111. Gattorno, M. et al. Pattern of interleukin-1β secretion in response to lipopolysaccharide and ATP before and after interleukin-1 blockade in patients with CIAS1 mutations. Arthritis Rheum. 56, 3138–3148 (2007).

    Article  CAS  PubMed  Google Scholar 

  112. Srikrishna, G. et al. Two proteins modulating transendothelial migration of leukocytes recognize novel carboxylated glycans on endothelial cells. J. Immunol. 166, 4678–4688 (2001).

    Article  CAS  PubMed  Google Scholar 

  113. Newton, R. A. & Hogg, N. The human S100 protein MRP-14 is a novel activator of the β2 integrin Mac-1 on neutrophils. J. Immunol. 160, 1427–1435 (1998).

    CAS  PubMed  Google Scholar 

  114. Martinez, F. O., Helming, L. & Gordon, S. Alternative activation of macrophages: an immunologic functional perspective. Ann. Rev. Immunol. 27, 451–483 (2009).

    Article  CAS  Google Scholar 

  115. El Chartouni, C., Schwarzfischer, L. & Rehli, M. Interleukin-4 induced interferon regulatory factor (Irf) 4 participates in the regulation of alternative macrophage priming. Immunobiology 215, 821–825 (2010).

    Article  CAS  PubMed  Google Scholar 

  116. Krausgruber, T. et al. IRF5 promotes inflammatory macrophage polarization and TH1–TH17 responses. Nat. Immunol. 12, 231–238 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

C. P. Vega, University of California, Irvine, CA, is the author of and is solely responsible for the content of the learning objectives, questions and answers of the Medscape, LLC-accredited continuing medical education activity associated with this article.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to researching data for the article, providing substantial contributions to discussions of content and writing the article. E. D. Mellins reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Elizabeth D. Mellins.

Ethics declarations

Competing interests

E. D. Mellins has acted as a consultant for Genentech, and A. A. Grom has acted as a consultant for Novartis. C. Macaubas, the journal Chief Editor J. Buckland and the CME questions author C. P. Vega declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mellins, E., Macaubas, C. & Grom, A. Pathogenesis of systemic juvenile idiopathic arthritis: some answers, more questions. Nat Rev Rheumatol 7, 416–426 (2011). https://doi.org/10.1038/nrrheum.2011.68

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2011.68

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing