Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Bone remodelling in osteoarthritis

Abstract

The classical view of the pathogenesis of osteoarthritis (OA) is that subchondral sclerosis is associated with, and perhaps causes, age-related joint degeneration. Recent observations have demonstrated that OA is associated with early loss of bone owing to increased bone remodelling, followed by slow turnover leading to densification of the subchondral plate and complete loss of cartilage. Subchondral densification is a late event in OA that involves only the subchondral plate and calcified cartilage; the subchondral cancellous bone beneath the subchondral plate may remain osteopenic. In experimental models, inducing subchondral sclerosis without allowing the prior stage of increased bone remodelling to occur does not lead to progressive OA. Therefore, both early-stage increased remodelling and bone loss, and the late-stage slow remodelling and subchondral densification are important components of the pathogenetic process that leads to OA. The apparent paradoxical observations that OA is associated with both increased remodelling and osteopenia, as well as decreased remodelling and sclerosis, are consistent with the spatial and temporal separation of these processes during joint degeneration. This Review provides an overview of current knowledge on OA and discusses the role of subchondral bone in the initiation and progression of OA. A hypothetical model of OA pathogenesis is proposed.

Key Points

  • Subchondral cortical bone and subchondral cancellous bone are architecturally, physiologically and mechanically different, and respond differently in osteoarthritis (OA)

  • The initiation and the progression of OA are distinct pathophysiological processes

  • The early stages of OA are characterized by increased vascularity and reduced bone density

  • Late-stage OA is characterized by decreased bone resorption without a decrease in bone formation, and by the development of subchondral sclerosis

  • Increased bone remodelling is a necessary condition for OA; increased subchondral bone density alone does not lead to OA

  • Antiresorptive agents that suppress bone remodelling during late stages of OA have not proven, and are not likely, to be effective treatments

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Stages of progressive join degradation in OA.
Figure 2: Bone and cartilage density.
Figure 3: Subchondral sclerosis in osteoarthritis.
Figure 4: Changes in bone remodelling in late-stage OA.
Figure 5: Hypothetical model for OA pathogenesis.

Similar content being viewed by others

References

  1. Milz, S. & Putz, R. Quantitative morphology of the subchondral plate of the tibial plateau. J. Anat. 185, 103–110 (1994).

    PubMed  PubMed Central  Google Scholar 

  2. Eckstein, F., Milz, S., Hermann, A. & Putz, R. Thickness of the subchondral mineralised tissue zone (SMZ) in normal male and female and pathological human patellae. J. Anat. 192, 81–90 (1998).

    Article  Google Scholar 

  3. Clark, J. M. & Huber, J. D. The structure of the human subchondral plate. J. Bone Jt Surg. Br. 72, 866–873 (1990).

    Article  CAS  Google Scholar 

  4. Brown, T. D. & Vrahas, M. S. The apparent elastic modulus of the juxtarticular subchondral bone of the femoral head. J. Orthop. Res. 2, 32–38 (1984).

    Article  CAS  Google Scholar 

  5. Brandt, K. D., Myers, S. L. Burr, D. & Albrecht, M. Osteoarthritic changes in canine articular cartilage, subchondral bone, and synovium fifty-four months after transaction of the anterior cruciate ligament. Arthritis Rheum. 34, 1560–1570 (1991).

    Article  CAS  Google Scholar 

  6. Dedrick, D. S. et al. A longitudinal study of subchondral plate and trabecular bone in cruciate-deficient dogs with osteoarthritis followed up for 54 months. Arthritis Rheum. 36, 1460–1467 (1993).

    Article  CAS  Google Scholar 

  7. Green, W. T. Martin, G. N., Eanes, E. D. & Sokoloff, L. Microradiographic study of the calcified layer of articular cartilage. Arch. Pathol. 90, 151–158 (1970).

    CAS  PubMed  Google Scholar 

  8. Mori, S., Harruff, R. & Burr, D. B. Microcracks in articular calcified cartilage of human femoral heads. Arch. Pathol. Lab. Med. 117, 196–198 (1993).

    CAS  PubMed  Google Scholar 

  9. Sokoloff, L. Microcracks in the calcified layer of articular cartilage. Arch. Pathol. Lab. Med. 117, 191–195 (1993).

    CAS  PubMed  Google Scholar 

  10. Burr, D. B. in Osteoarthritis 2nd edn (eds Brandt, K. D., Doherty, M. & Lohmander, L. S.) 125–133 (Oxford University Press, Oxford, 2003).

    Google Scholar 

  11. Brown, T. D., Radin, E. L., Martin, R. B. & Burr, D. B. Finite element studies of some juxtarticular stress changes due to localized subchondral stiffening. J. Biomech. 17, 11–24 (1984).

    Article  CAS  Google Scholar 

  12. Radin, E. L., Paul, I. L., & Lowy, M. A comparison of the dynamic force transmitting properties of subchondral bone and articular cartilage. J. Bone Jt Surg. Am. 52, 444–456 (1970).

    Article  CAS  Google Scholar 

  13. Burr, D. B. & Radin, E. L. Microfractures and microcracks in subchondral bone: are they relevant to osteoarthrisis? Rheum. Dis. Clin. North Am. 29, 675–685 (2003).

    Article  Google Scholar 

  14. Meachim, G. The effect of scarification on articular cartilage in the rabbit. J. Bone Jt Surg. Br. 45, 150–161 (1963).

    Article  Google Scholar 

  15. Radin, E., Paul, I. & Tolkoff, M. Subchondral bone damage in patients with early degenerative joint disease. Arthritis Rheum. 13, 400–405 (1970).

    Article  CAS  Google Scholar 

  16. Radin, E. L. & Rose, R. M. Role of subchondral bone in the initiation and progression of cartilage damage. Clin. Orthop. Rel. Res. 213, 34–40 (2986).

    Google Scholar 

  17. Radin, E. L. et al. Effects of mechanical loading on the tissues of the rabbit knee. J. Orthop. Res. 2, 221–234 (1984).

    Article  CAS  Google Scholar 

  18. Carlson, C. S. et al. Osteoarthritis in cynomolgus macaques: A primate model of naturally occurring disease. J. Orthop. Res. 12, 331–339 (1994).

    Article  CAS  Google Scholar 

  19. Carlson, C. S., Loeser, R. F., Purser, C. B., Gardin, J. F. & Jerome, C. P. Osteoarthritis in cynomolgus macaques. III: effects of age, gender, and subchondral bone thickness on the severity of disease. J. Bone Miner. Res. 11, 1209–1217 (1996).

    Article  CAS  Google Scholar 

  20. Huebner, J. L., Hanes, M. A., Beckman, B., TeKoppele, J. M. & Kraus, V. B. A comparative analysis of bone and cartilage metabolism in two strains of guinea-pig with varying degrees of naturally occurring osteoarthritis. Osteoarthritis Cartilage 10, 758–767 (2002).

    Article  CAS  Google Scholar 

  21. Newberry, W. N., Zukosky, D. K. & Haut. R. C. Subfracture insult to a knee joint causes alterations in the bone and in the functional stiffness of overlying cartilage. J. Orthop. Res. 15, 450–455 (1997).

    Article  CAS  Google Scholar 

  22. Benske, J., Schunke, M. & Tillmann, B. Subchondral bone formation in arthrisis. Polychrome labeling studies in mice. Acta Orthop. Scand. 59, 536–541 (1988).

    Article  CAS  Google Scholar 

  23. Wu, D. D., Burr, D. B., Boyd, R. D. & Radin, E. L. Bone and cartilage changes following experimental varus or valgus tibial angulation. J. Orthop. Res. 8, 572–585 (1990).

    Article  CAS  Google Scholar 

  24. Bettica, P., Cline, G., Hart, D. J., Meyer, J. & Spector, T. D. Evidence for increased bone resorption in patients with progressive knee osteoarthritis: longitudinal results from the Chingford study. Arthritis Rheum. 46, 3178–3184 (2002).

    Article  Google Scholar 

  25. Bolbos, R. I. et al. Relationship between trabecular bone structure and articular cartilage morphology and relaxation times in early OA of the knee joint using parallel MRI at 3T. Osteoarthritis Cartilage 16, 1150–1159 (2008).

    Article  CAS  Google Scholar 

  26. Neogi, T. et al. Cartilage loss occurs in the same subregions as subchondral bone attrition: a within-knee subregion-matched approach from the Multicenter Osteoarthritis Study. Arthritis Rheum. 61, 1539–1544 (2009).

    Article  CAS  Google Scholar 

  27. Amir, G., Pirie, C. J., Rashad, S. & Revell, P. A. Remodelling of subchondral bone in osteoarthritis: a histomorphometric study. J. Clin. Pathol. 45, 990–992 (1992).

    Article  CAS  Google Scholar 

  28. Intema, F. et al. Similarities and discrepancies in subchondral bone structure in two differently induced canine models of osteoarthritis. J. Bone Miner. Res. 25, 1650–1657 (2010).

    Article  Google Scholar 

  29. Sniekers, Y. H. et al. A role for subchondral bone changes in the process of osteoarthritis; a micro-CT study of two canine models. BME Musculoskelet. Disord. 9, 20 (2008).

    Article  Google Scholar 

  30. Bellido, M. et al. Subchondral bone microstructural damage by increased remodeling aggravates experimental osteoarthritis preceded by osteoporosis. Arth. Res. Ther. 12, R152 (2010).

    Article  Google Scholar 

  31. Dieppe, P., Cushnaghan, J., Young, P. & Kirwan, J. Prediction of the progression of joint space narrowing in osteoarthritis of the knee by bone scintigraphy. Ann. Rheum. Dis. 52, 557–563 (1993).

    Article  CAS  Google Scholar 

  32. Mansell, J. P., Tarlton, J. F. & Bailey, A. J. Biochemical evidence for altered subchondral bone collagen metabolism in osteoarthritis of the hip. Br. J. Rheumatol. 36, 16–19 (1997).

    Article  CAS  Google Scholar 

  33. Reichenbach, S. et al. Prevalence of bone attrition on knee radiographs and MRI in a community-based cohort. Osteoarthritis Cartilage 16, 1005–1010 (2008).

    Article  CAS  Google Scholar 

  34. Cox, L. G. E., van Donkelaar, C. C., van Rietbergen, B., Emans, P. J. & Ito, K. Decreased bone tissue mineralization can partly explain subchondral sclerosis observed in osteoarthritis. Bone 50, 1152–1161 (2012).

    Article  CAS  Google Scholar 

  35. Mansell, J. P., Collins, C. & Bailey, A. J. Bone, not cartilage, should be the major focus in osteoarthritis. Nat. Clin. Pract. Rheum. 3, 306–307 (2007).

    Article  Google Scholar 

  36. Massicotte, F. et al. Can. altered production of interleukin-1β, interleukin-6, transforming growth factor-β, and prostaglandin E2 by isolated human subchondral osteoblasts identify two subgroups of osteoarthritic patients. Osteoarthritis Cartilage 10, 491–500 (2002).

    Article  CAS  Google Scholar 

  37. Weng, L.-H., Wang, C.-J., Ko, J.-Y., Sun, Y.-C. & Wang, F.-S. Control of Dkk-1 ameliorates chondrocyte apoptosis, cartilage destruction, and subchondral bone deterioration in osteoarthritic knees. Arthritis Rheum. 62, 1393–1402 (2010).

    Article  CAS  Google Scholar 

  38. Bentolila, V. et al. Intracortical remodeling in adult rat long bones after fatigue loading. Bone 23, 275–281 (1998).

    Article  CAS  Google Scholar 

  39. Verborgt, O., Gibson, G. J. & Schaffler, MB. Loss of osteocyte integrity in association with microdamage and bone remodeling after fatigue in vivo. J. Bone Miner. Res. 15, 60–67 (2000).

    Article  CAS  Google Scholar 

  40. Nakashima, T. et al. Evidence for osteocyte regulation of bone homeostasis through RANKL expression. Nat. Med. 17, 2131–1234 (2011).

    Article  Google Scholar 

  41. Kennedy, O. D. et al.. Activation of resorption in fatigue-loaded bone involves both apoptosis and active pro-osteoclastogenic signaling by distinct osteocyte cell populations. Bone 50, 1115–1122 (2012).

    Article  Google Scholar 

  42. Tat, S. K. et al. Differential modulation of RANKL isoforms by human osteoarthritic subchondral bone osteoblasts: influence of osteotropic factors. Bone 43, 284–291 (2008).

    Article  CAS  Google Scholar 

  43. Kwan Tat, S. et al. Modulation of, OPG, RANK, and RANKL by human chondrocytes and their implication during osteoarthritis. Rheumatology (Oxford) 48, 1482–1490 (2009).

    Article  Google Scholar 

  44. Brown, R. A. et al. Relationship of angiogenesis factor in synovial fluid to various joint diseases. Ann. Rheum. Dis. 42, 301–307 (1983).

    Article  CAS  Google Scholar 

  45. Brown, R. A. & Weiss, J. B. Neovascularisation and its role in the osteoarthritic process. Ann. Rheum. Dis. 47, 881–885 (1988).

    Article  CAS  Google Scholar 

  46. Luyten, F. R., Lories, R. J. U., Verschueren, P. de Vlam, K. & Westhovens, R. Contemporary concepts of inflammation, damage and repair in rheumatic diseases. Best Pract. Res. Clin. Rheumatol. 5, 829–848 (2006).

    Article  Google Scholar 

  47. Botter, S.M. et al. ADAMTS−/− mice have less subchondral bone changes after induction of osteoarthritis through surgical instability: implications for a link between cartilage and sucbchondral bone changes. Osteoarthritis Cartilage 17, 636–645 (2009).

    Article  CAS  Google Scholar 

  48. Duncan, H., Jundt, J. Riddle, J. M., Pitchford, W. & Christopherson, T. The tibial subchondral plate. A scanning electron microscopic study. J. Bone Jt Surg. Am. 69, 1212–1220 (1987).

    Article  CAS  Google Scholar 

  49. Clark, J. M. & Huber, J. D. The structure of the human subchondral plate. J. Bone Jt Surg. Br. 72, 866–873 (1990).

    Article  CAS  Google Scholar 

  50. Lyons, T. J. McClure, S. F., Stoddart, R. W. & McClure, J. The normal human chondro-osseous junctional region: evidence for contact of uncalcified cartilage with subchondral bone and marrow spaces. BMC Musculoskelet. Disord. 7, 52 (2006).

    Article  Google Scholar 

  51. Botter, S. et al. Osteoarthritis induction leads to early and temporal subchondral plate porosity in the tibial plateau of mice: an in vivo microfocal computed tomography study. Arthritis Rheum. 63, 2690–2699 (2011).

    Article  Google Scholar 

  52. Pan, J. et al. In situ measurement of transport between subchondral bone and articular cartilage. J. Orthop. Res. 27, 1347–1352 (2009).

    Article  Google Scholar 

  53. Hwang, J. et al. Increased hydraulic conductance of human articular cartilage and subchondral bone plate with progression of osteoarthritis. Arthritis Rheum. 58, 3831–3842 (2008).

    Article  Google Scholar 

  54. Pan, J. et al. Elevated cross-talk between subchondral bone and cartilage in osteoarthritic joints. Bone 51, 212–217 (2012).

    Article  Google Scholar 

  55. Kadri, A. et al. Osteoprotegerin inhibits cartilage degradation through an effect on trabecular bone in murine experimental osteoarthritis. Arthritis Rheum. 58, 2379–2386 (2008).

    Article  CAS  Google Scholar 

  56. Kadri, A. et al. Inhibition of bone resorption blunts osteoarthritis in mice with high bone remodeling. Ann. Rheum. Dis. 69, 1533–1538 (2010).

    Article  Google Scholar 

  57. Hayami, T. et al. The role of subchondral bone remodeling in osteoarthritis: reduction of cartilage degeneration and prevention of osteophyte formation by alendronate in the rat anterior cruciate ligament transaction model. Arthritis Rheum. 50, 1193–1206 (2004).

    Article  CAS  Google Scholar 

  58. Bellido, M. et al. Improving subchondral bone integrity reduces progression of cartilage damage in experimental osteoarthritis preceded by osteoporosis. Osteoarthritis Cartilage 19, 1228–1236 (2011).

    Article  CAS  Google Scholar 

  59. Myers, S. L. Brandt, K. D., Burr, D. B., O'Connor, B. L. & Albrecht, M. Effects of bisphosphonate on bone histomorphometry and dynamics in the canine cruciate deficiency model of osteoarthritis. J. Rheumatol. 26, 2645–2653 (1999).

    CAS  PubMed  Google Scholar 

  60. Bingham, C. O. 3rd et al. Risedronate decreases biochemical markers of cartilage degradation but does not decrease symptoms or slow radiographic progression in patients with medial compartment osteoarthritis of the knee: results of the two-year multinational knee osteoarthritis structural arthritis study. Arthritis Rheum. 54, 3494–3507 (2006).

    Article  CAS  Google Scholar 

  61. Saag, K. G. Bisphosphonates for osteoarthritis prevention: “Holy Grail” or not? Ann. Rheum. Dis. 67, 1358–1359 (2008).

    Article  Google Scholar 

  62. Fazzalari, N. & Parkinson, I. H. Fractal properties of subchondral cancellous bone in severe osteoarthritis of the hip. J. Bone Miner. Res. 12, 632–640 (1997).

    Article  CAS  Google Scholar 

  63. Arden, N. K., Griffiths, G. O., Hart, D. J., Doyle, D. V. & Spector, T. D. The association between osteoarthritis and osteoporotic fracture: the Chingford study. Br. J. Rheumatol. 35, 1299–1304 (1996).

    Article  CAS  Google Scholar 

  64. Hannan, M. T., Anderson, J. J., Zhang, Y., Levy, D. & Felson, D. T. Bone mineral density and knee osteoarthritis in elderly men and women. The Framingham Study. Arthritis Rheum. 36, 1671–1680 (1993).

    Article  CAS  Google Scholar 

  65. Grynpas, M., Alpert, B., Katz, I., Lieberman, I. & Pritzker, K. P. H. Subchondral bone in osteoarthritis. Calcif. Tissue Int. 49, 20–26 (1991).

    Article  CAS  Google Scholar 

  66. Chan, T. F. et al. Elevated Dickkopf-2 levels contribute to the abnormal phenotype of human osteoarthritic osteoblasts. J. Bone Miner. Res. 26, 1399–1410 (2011).

    Article  CAS  Google Scholar 

  67. Li, X. et al. Dkk2 has a role in terminal osteoblast differentiation and mineralized matrix formation. Nat. Genet. 37, 945–952 (2005).

    Article  CAS  Google Scholar 

  68. Couchourel, D. et al. Altered mineralization of human osteoarthritic osteblasts is due to abnormal type 1 collagen production. Arthritis Rheum. 60, 1438–1450 (2009).

    Article  Google Scholar 

  69. Mansell, J. P. & Bailey, A. J. Abnormal cancellous bone collagen metabolism in osteoarthritis. J. Clin. Invest. 101, 1596–1603 (1998).

    Article  CAS  Google Scholar 

  70. Li, B. & Aspden, R. M. Composition and mechanical properties of cancellous bone from the femoral head of patients with osteoporosis and osteoarthritis. J. Bone Miner. Res. 12, 641–651 (1997).

    Article  CAS  Google Scholar 

  71. Coats, A. M., Zioupos, P. & Aspden, R. M. Material properties of subchondral bone from patients with osteoporosis or osteoarthritis by microindentation testing and electron probe microanalysis. Calcif. Tiss. Int. 73, 66–71 (2003).

    Article  CAS  Google Scholar 

  72. Behets, C., Williams, J. M., Chappard, D. Devogelaer, J. P. & Manicourt, D. H. Effects of calcitonin on subchondral trabecular bone changes and on osteoarthritic cartilage lesions after acute anterior cruciate ligament deficiency. J. Bone. Miner. Res. 19, 1821–1826 (2004).

    Article  CAS  Google Scholar 

  73. Karsdal, M. A. et al. Should subchondral bone turnover be targeted when treating osteoarthritis? Osteoarthritis Cartilage 16, 638–646 (2008).

    Article  CAS  Google Scholar 

  74. Kumarasinghe, D. D. et al. Critical molecular regulators, histomorphometric indices and their correlations in the trabecular bone in primary hip osteoarthritis. Osteoarthritis Cartilage 18, 1337–1344 (2010).

    Article  CAS  Google Scholar 

  75. Hopwood, B., Tsykin, A., Findlay, D. M. & Fazzalari, N. L. Microarray gene expression profiling of osteoarthritic bone suggests altered bone remodelling, WNT and transforming growth factor-beta/bone morphogenic protein signalling. Arthritis Res. Ther. 9, R100 (2007).

    Article  Google Scholar 

  76. Kronenberg, H. Twist genes regulate Runx2 and bone formation. Dev. Cell 6, 317–318 (2004).

    Article  CAS  Google Scholar 

  77. Kuliwaba, J. S., Findaly, D. M., Atkins, G. J., Forwood, M. R. & Fazzalari, N. L. Enhanced expression of osteocalcin mRNA in human osteoarthritic trabecular bone of the proximal femur is associated with decreased expression of interleukin-6 and interleukin-11 mRNA. J. Bone Miner. Res. 15, 332–341 (2000).

    Article  CAS  Google Scholar 

  78. Radin, E. L. et al. in Biomechanics of Diarthrodial Joints 1st ed (eds Mow, V. C., Ratcliffe, A. & Woo, S. L.-Y.) 437–451 (Springer-Verlag, New York, 1990).

    Book  Google Scholar 

  79. Johnson, M. L. et al. Linkage of a gene causing high bone mass to human chromosome 11 (11q12–13). Am. J. Hum. Genet. 60, 1326–1332 (1997).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

D. B. Burr has researched data for the article and wrote the article. Both authors made a substantial contribution to discussion of the content and reviewing and editing of the manuscript before submission.

Corresponding author

Correspondence to David B. Burr.

Ethics declarations

Competing interests

D. B. Burr declares that he has received research grants from Amgen and Eli Lilly. He has also been on the advisory panel for Merck and has been a consultant for Wright Medical. M. A. Gallant declares no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burr, D., Gallant, M. Bone remodelling in osteoarthritis. Nat Rev Rheumatol 8, 665–673 (2012). https://doi.org/10.1038/nrrheum.2012.130

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2012.130

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing