Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Immunogenicity and loss of response to TNF inhibitors: implications for rheumatoid arthritis treatment

Key Points

  • Monoclonal antibodies and fusion proteins induce the formation of antidrug antibodies (ADAs), the occurrence and magnitude of which differs between chimeric antibodies, fully humanized antibodies and fusion proteins

  • The clinical implication of ADAs are unclear, although ADAs are known to cause secondary drug failure

  • Consensus definitions of primary and secondary non-response are lacking, as are evidence-based recommendations on how to guide biologic therapy on the basis of drug level and immunogenicity

  • Testing for ADAs or serum trough drug levels might be indicated in some situations of primary and secondary treatment failure and could prompt changes in dosing or therapeutic agent

  • When switching from an anti-TNF drug (originator) to a biosimilar of that originator, one has to take into consideration that ADAs against the originator will crossreact with the biosimilar, causing treatment failure

  • More information regarding the immunogenicity of the different TNF antagonists and improved ADA testing systems could lead to the development of an immune-pharmacologic strategy for the individualized treatment of rheumatoid arthritis

Abstract

The availability of monoclonal antibodies has revolutionized the treatment of an increasingly broad spectrum of diseases. Inflammatory diseases are among those most widely treated with protein-based therapeutics, termed biologics. Following the first large-scale clinical trials with monoclonal antibodies performed in the 1990s by rheumatologists and clinical immunologists, the approval of these agents for use in daily clinical practice led to substantial progress in the treatment of rheumatic diseases. Despite this progress, however, only a proportion of patients achieve a long-term clinical response. Data on the use of agents blocking TNF, which were among the first biologics introduced into clinical practice, provide ample evidence of primary and secondary treatment inefficacy in patients with rheumatoid arthritis (RA). Important issues relevant to primary and secondary failure of these agents in RA include immunogenicity, methodological problems for the detection of antidrug antibodies and trough drug levels, and the implications for treatment strategies. Although there is no strong evidence to support the routine estimation of antidrug antibodies or serum trough levels during anti-TNF therapy, these assessments might be helpful in a few clinical situations; in particular, they might guide decisions on switching the therapeutic biologic in certain instances of secondary clinical failure.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of TNF antagonists.
Figure 2: Assays for detecting antidrug antibodies to TNF inhibitors.
Figure 3: Methods to detect trough levels of therapeutic antibodies.

Similar content being viewed by others

References

  1. Rothe, A., Power, B. E. & Hudson, P. J. Therapeutic advances in rheumatology with the use of recombinant proteins. Nat. Clin. Pract. Rheumatol. 4, 605–614 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Cantarovich, D. et al. Treatment of acute kidney rejection episodes with monoclonal antibody directed against IL2 receptor: a pilot study. Transplant. Proc. 21, 1785–1786 (1989).

    CAS  PubMed  Google Scholar 

  3. Cantarovich, D. et al. Anti-IL2 receptor monoclonal antibody (33B3.1) in prophylaxis of early kidney rejection in humans: a randomized trial versus rabbit antithymocyte globulin. Transplant. Proc. 21, 1769–1771 (1989).

    CAS  PubMed  Google Scholar 

  4. Horneff, G., Burmester, G. R., Emmrich, F. & Kalden, J. R. Treatment of rheumatoid arthritis with an anti-CD4 monoclonal antibody. Arthritis Rheum. 34, 129–140 (1991).

    Article  CAS  PubMed  Google Scholar 

  5. Elliott, M. J. et al. Randomised double-blind comparison of chimeric monoclonal antibody to tumour necrosis factor α (cA2) versus placebo in rheumatoid arthritis. Lancet 344, 1105–1110 (1994).

    Article  CAS  PubMed  Google Scholar 

  6. Kremer, J. M. et al. Long-term safety, efficacy and inhibition of radiographic progression with abatacept treatment in patients with rheumatoid arthritis and an inadequate response to methotrexate: 3-year results from the AIM trial. Ann. Rheum. Dis. 70, 1826–1830 (2011).

    Article  CAS  PubMed  Google Scholar 

  7. Sfikakis, P. P. The first decade of biologic TNF antagonists in clinical practice: lessons learned, unresolved issues and future directions. Curr. Dir. Autoimmun. 11, 180–210 (2010).

    Article  CAS  PubMed  Google Scholar 

  8. Weinblatt, M. E. et al. Adalimumab, a fully human anti-tumor necrosis factor α monoclonal antibody, for the treatment of rheumatoid arthritis in patients taking concomitant methotrexate: the ARMADA trial. Arthritis Rheum. 48, 35–45 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Keystone, E. C. et al. Once-weekly administration of 50 mg etanercept in patients with active rheumatoid arthritis: results of a multicenter, randomized, double-blind, placebo-controlled trial. Arthritis Rheum. 50, 353–363 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Weinblatt, M. E. et al. A trial of etanercept, a recombinant tumor necrosis factor receptor:Fc fusion protein, in patients with rheumatoid arthritis receiving methotrexate. N. Engl. J. Med. 340, 253–259 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Finckh, A., Simard, J. F., Gabay, C., Guerne, P. A. & SCQM physicians. Evidence for differential acquired drug resistance to anti-tumour necrosis factor agents in rheumatoid arthritis. Ann. Rheum. Dis. 65, 746–752 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. van Dartel, S. A. et al. Difference in the risk of serious infections in patients with rheumatoid arthritis treated with adalimumab, infliximab and etanercept: results from the Dutch rheumatoid arthritis monitoring (DREAM) registry. Ann. Rheum. Dis. 72, 895–900 (2013).

    Article  CAS  PubMed  Google Scholar 

  13. Iannone, F. et al. Longterm retention of tumor necrosis factor-α inhibitor therapy in a large Italian cohort of patients with rheumatoid arthritis from the GISEA registry: an appraisal of predictors. J. Rheumatol. 39, 1179–1184 (2012).

    Article  CAS  PubMed  Google Scholar 

  14. Flendrie, M., Creemers, M. C., Welsing, P. M., den Broeder, A. A. & van Riel, P. L. Survival during treatment with tumour necrosis factor blocking agents in rheumatoid arthritis. Ann. Rheum. Dis. 62 (Suppl. 2), ii30–ii33 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Hetland, M. L. et al. Direct comparison of treatment responses, remission rates, and drug adherence in patients with rheumatoid arthritis treated with adalimumab, etanercept, or infliximab: results from eight years of surveillance of clinical practice in the nationwide Danish DANBIO registry. Arthritis Rheum. 62, 22–32 (2010).

    Article  CAS  PubMed  Google Scholar 

  16. Fafá, B. P. et al. Drug survival and causes of discontinuation of the first anti-TNF in ankylosing spondylitis compared with rheumatoid arthritis: analysis from BIOBADABRASIL. Clin. Rheumatol. 34, 921–927 (2015).

    Article  PubMed  Google Scholar 

  17. Carmona, L., Gómez-Reino, J. J. & BIOBADASER Group. Survival of TNF antagonists in spondylarthritis is better than in rheumatoid arthritis. Data from the Spanish registry BIOBADASER. Arthritis Res. Ther. 8, R72 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Biggioggero, M. & Favalli, E. G. Ten-year drug survival of anti-TNF agents in the treatment of inflammatory arthritides. Drug Dev. Res. 75, S38–S41 (2014).

    Article  CAS  PubMed  Google Scholar 

  19. Duclos, M. et al. Retention rates of tumor necrosis factor blockers in daily practice in 770 rheumatic patients. J. Rheumatol. 33, 2433–2438 (2006).

    CAS  PubMed  Google Scholar 

  20. Schiff, M. H., von Kempis, J., Goldblum, R., Tesser, J. R. & Mueller, R. B. Rheumatoid arthritis secondary non-responders to TNF can attain an efficacious and safe response by switching to certolizumab pegol: a phase IV, randomised, multicentre, double-blind, 12-week study, followed by a 12-week open-label phase. Ann. Rheum. Dis. 73, 2174–2177 (2014).

    Article  CAS  PubMed  Google Scholar 

  21. Navarro Coy, N. C. et al. The 'Switch' study protocol: a randomised-controlled trial of switching to an alternative tumour-necrosis factor (TNF)-inhibitor drug or abatacept or rituximab in patients with rheumatoid arthritis who have failed an initial TNF-inhibitor drug. BMC Musculoskelet. Disord. 15, 452 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fransen, J. & van Riel, P. L. The disease activity score and the EULAR response criteria. Clin. Exp. Rheumatol. 23, S93–S99 (2005).

    CAS  PubMed  Google Scholar 

  23. Emery, P. Optimizing outcomes in patients with rheumatoid arthritis and an inadequate response to anti-TNF treatment. Rheumatology (Oxford) 51 (Suppl. 5), v22–v30 (2012).

    Article  CAS  Google Scholar 

  24. Weyand, C. M. & Goronzy, J. J. Ectopic germinal center formation in rheumatoid synovitis. Ann. NY Acad. Sci. 987, 140–149 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. van Vollenhoven, R. F. Switching between anti-tumour necrosis factors: trying to get a handle on a complex issue. Ann. Rheum. Dis. 66, 849–851 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Talotta, R. et al. Paradoxical expansion of Th1 and Th17 lymphocytes in rheumatoid arthritis following infliximab treatment: a possible explanation for a lack of clinical response. J. Clin. Immunol. 35, 550–557 (2015).

    Article  CAS  PubMed  Google Scholar 

  27. Souto-Carneiro, M. M. et al. Alterations in peripheral blood memory B cells in patients with active rheumatoid arthritis are dependent on the action of tumour necrosis factor. Arthritis Res. Ther. 11, R84 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Klaasen, R., Wijbrandts, C. A., Gerlag, D. M. & Tak, P. P. Body mass index and clinical response to infliximab in rheumatoid arthritis. Arthritis Rheum. 63, 359–364 (2011).

    Article  CAS  PubMed  Google Scholar 

  29. Arnott, I. D. R., McNeill, G. & Satsangi, J. An analysis of factors influencing short-term and sustained response to infliximab treatment for Crohn's disease. Aliment. Pharmacol. Ther. 17, 1451–1457 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Potter, C. et al. Association of rheumatoid factor and anti-cyclic citrullinated peptide positivity, but not carriage of shared epitope or PTPN22 susceptibility variants, with anti-tumour necrosis factor response in rheumatoid arthritis. Ann. Rheum. Dis. 68, 69–74 (2009).

    Article  CAS  PubMed  Google Scholar 

  31. Mugnier, B. et al. Polymorphism at position-308 of the tumor necrosis factor α gene influences outcome of infliximab therapy in rheumatoid arthritis. Arthritis Rheum. 48, 1849–1852 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Viatte, S. et al. Association of HLA-DRB1 haplotypes with rheumatoid arthritis severity, mortality, and treatment response. JAMA. 313, 1645–1656 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Criswell, L. A. et al. The influence of genetic variation in the HLA-DRB1 and LTA-TNF regions on the response to treatment of early rheumatoid arthritis with methotrexate or etanercept. Arthritis Rheum. 50, 2750–2756 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Plant, D. et al. Genome-wide association study of genetic predictors of anti-tumor necrosis factor treatment efficacy in rheumatoid arthritis identifies associations with polymorphisms at seven loci. Arthritis Rheum. 63, 645–653 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Plant, D., Wilson, A. G., Barton, A. Genetic and epigenetic predictors of responsiveness to treatment in RA. Nat. Rev. Rheumatol. 10, 329–337 (2014).

    Article  CAS  PubMed  Google Scholar 

  36. Lee, Y. H. & Bae, S. C. Associations between PTPRC rs10919563 A/G and FCGR2A R131H polymorphisms and responsiveness to TNF blockers in rheumatoid arthritis: a meta-analysis. Rheumatol. Int. 36, 837–844 (2016).

    Article  CAS  PubMed  Google Scholar 

  37. Cui, J. et al. Genome-wide association study and gene expression analysis identifies CD84 as a predictor of response to etanercept therapy in rheumatoid arthritis. PLoS Genet. 9, e1003394 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Fabris, M. et al. The TTTT B lymphocyte stimulator promoter haplotype is associated with good response to rituximab therapy in seropositive rheumatoid arthritis resistant to tumor necrosis factor blockers. Arthritis Rheum. 65, 88–97 (2013).

    Article  CAS  PubMed  Google Scholar 

  39. Lutt, J. R. & Deodhar, A. Rheumatoid arthritis: strategies in the management of patients showing an inadequate response to TNFα antagonists. Drugs 68, 591–606 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Montes, A. et al. Rheumatoid arthritis response to treatment across IgG1 allotype — anti-TNF incompatibility: a case-only study. Arthritis Res. Ther. 18, 63 (2015).

    Article  CAS  Google Scholar 

  41. Tabrizi, M. A., Tseng, C.-M. L. & Roskos, L. K. Elimination mechanisms of therapeutic monoclonal antibodies. Drug Discov. Today 11, 81–88 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Keizer, R. J., Huitema, A. D., Schellens, J. H. & Beijnen, J. S. Clinical pharmacokinetics of therapeutic monoclonal antibodies. Clin. Pharmacokinet. 49, 493–507 (2010).

    Article  CAS  PubMed  Google Scholar 

  43. Souto, A., Maneiro, J. R. & Gómez-Reino, J. J. Rate of discontinuation and drug survival of biologic therapies in rheumatoid arthritis: a systematic review and meta-analysis of drug registries and health care databases. Rheumatology (Oxford) 55, 523–534 (2016).

    CAS  Google Scholar 

  44. Kang, J. H. et al. Drug survival rates of tumor necrosis factor inhibitors in patients with rheumatoid arthritis and ankylosing spondylitis. J. Korean Med. Sci. 29, 1205–1211 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Agarwal, S. K. et al. Predictors of discontinuation of tumor necrosis factor inhibitors in patients with rheumatoid arthritis. J. Rheumatol. 35, 1737–1744 (2008).

    PubMed  PubMed Central  Google Scholar 

  46. Hyrich, K. L., Watson, K. D., Silman, A. J. & Symmons, D. P. Predictors of response to anti-TNF-α therapy among patients with rheumatoid arthritis: results from the British Society for Rheumatology Biologics Register. Rheumatology (Oxford) 45, 1558–1565 (2006).

    Article  CAS  Google Scholar 

  47. Anderson, P. J. Tumor necrosis factor inhibitors: clinical implications of their different immunogenicity profiles. Semin. Arthritis Rheum. 34 (Suppl. 1), 19–22 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Tracey, D., Klareskog, L., Sasso, E. H., Salfeld, J. G. & Tak, P. P. Tumor necrosis factor antagonist mechanisms of action: a comprehensive review. Pharmacol. Ther. 117, 244–279 (2008).

    Article  CAS  PubMed  Google Scholar 

  49. Deora, A. et al. Transmembrane TNF-dependent uptake of anti-TNF antibodies. MAbs 9, 680–695 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Atzeni, F. et al. Investigating the potential side effects of anti-TNF therapy for rheumatoid arthritis: cause for concern? Immunotherapy 7, 353–361 (2015).

    Article  CAS  PubMed  Google Scholar 

  51. Bremmer, M., Deng, A. & Gaspari, A. A mechanism-based classification of dermatologic reactions to biologic agents used in the treatment of cutaneous disease. Part 1. Dermatitis 20, 182–192 (2009).

    Article  CAS  PubMed  Google Scholar 

  52. Vultaggio, A., Maggi, E. & Matucci, A. Immediate adverse reactions to biologicals: from pathogenic mechanisms to prophylactic management. Curr. Opin. Allergy Clin. Immunol. 11, 262–268 (2001).

    Article  Google Scholar 

  53. Leach, M. W. et al. Immunogenicity/hypersensitivity of biologics. Toxicol. Pathol. 42, 293–300 (2014).

    Article  CAS  PubMed  Google Scholar 

  54. Vultaggio, A. et al. Anti-infliximab IgE and non IgE antibodies and induction of infusion-related severe anaphylactic reactions. Allergy 65, 657–661 (2010).

    Article  CAS  PubMed  Google Scholar 

  55. Vultaggio, A. & Castells, M. C. Hypersensitivity reactions to biologic agents. Immunol. Allergy Clin. North Am. 34, 615–632 (2014).

    Article  PubMed  Google Scholar 

  56. Hart, M. H. et al. Differential effect of drug interference in immunogenicity assays. J. Immunol. Methods 372, 196–203 (2011).

    Article  CAS  PubMed  Google Scholar 

  57. Shankar, G. et al. Recommendations for the validation of immunoassays used for detection of host antibodies against biotechnology products. J. Pharm. Biomed. Anal. 48, 1267–1281 (2008).

    Article  CAS  PubMed  Google Scholar 

  58. Krieckaert, C., Rispens, T. & Wolbink, G. Immunogenicity of biological therapeutics: from assay to patient. Curr. Opin. Rheumatol. 24, 306–311 (2012).

    Article  PubMed  Google Scholar 

  59. Aarden, L., Ruuls, S. R. & Wolbink, G. Immunogenicity of anti-tumor necrosis factor antibodies-toward improved methods of anti-antibody measurement. Curr. Opin. Immunol. 20, 431–435 (2008).

    Article  CAS  PubMed  Google Scholar 

  60. Van Stappen, T., Brouwers, E., Vermeire, S. & Gils, A. Validation of a sample pretreatment protocol to convert a drug-sensitive into a drug-tolerant anti-infliximab antibody immunoassay. Drug Test. Anal. 9, 243–247 (2017).

    Article  CAS  PubMed  Google Scholar 

  61. Bian, S., Ferrante, M. & Gils, A. Validation of a drug-resistant anti-adalimumab antibody assay to monitor immunogenicity in the presence of high concentrations of adalimumab. AAPS J. 19, 468–474 (2017).

    Article  CAS  PubMed  Google Scholar 

  62. Van Stappen, T. et al. Clinical relevance of detecting anti-infliximab antibodies with a drug-tolerant assay: post hoc analysis of the TAXIT trial. Gut http://dx.doi.org/10.1136/gutjnl.2016-313071 (2017).

  63. Bourdage, J. S., Cook, C. A., Farrington, D. L., Chain, J. S. & Konrad, R. J. An affinity capture elution (ACE) assay for detection of anti-drug antibody to monoclonal antibody therapeutics in the presence of high levels of drug. J. Immunol. Methods 327, 10–17 (2007).

    Article  CAS  PubMed  Google Scholar 

  64. van Schie, K. A. et al. The antibody response against human and chimeric anti-TNF therapeutic antibodies primarily targets the TNF binding region. Ann. Rheum. Dis. 74, 311–314 (2015).

    Article  CAS  PubMed  Google Scholar 

  65. Wolbink, G. J. et al. Development of antiinfliximab antibodies and relationship to clinical response in patients with rheumatoid arthritis. Arthritis Rheum. 54, 711–715 (2006).

    Article  CAS  PubMed  Google Scholar 

  66. Radstake, T. R. et al. Formation of antibodies against infliximab and adalimumab strongly correlates with functional drug levels and clinical responses in rheumatoid arthritis. Ann. Rheum. Dis. 68, 1739–1745 (2009).

    Article  CAS  PubMed  Google Scholar 

  67. de Vries, M. K. et al. Decreased clinical response to infliximab in ankylosing spondylitis is correlated with anti-infliximab formation. Ann. Rheum. Dis. 66, 1252–1254 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. de Vries, M. K. et al. Inefficacy of infliximab in ankylosing spondylitis is correlated with antibody formation. Ann. Rheum. Dis. 66, 133–134 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. van Schouwenburg, P. A. et al. Adalimumab elicits a restricted anti-idiotypic antibody response in autoimmune patients resulting in functional neutralisation. Ann. Rheum. Dis. 72, 104–109 (2013).

    Article  CAS  PubMed  Google Scholar 

  70. Bartelds, G. M. et al. Clinical response to adalimumab: relationship to anti-adalimumab antibodies and serum adalimumab concentrations in rheumatoid arthritis. Ann. Rheum. Dis. 66, 921–926 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Bartelds, G. M. et al. High levels of human anti-human antibodies to adalimumab in a patient not responding to adalimumab treatment. Ann. Rheum. Dis. 65, 1249–1250 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. de Vries, M. K. et al. Decreased clinical response to adalimumab in ankylosing spondylitis is associated with antibody formation. Ann. Rheum. Dis. 68, 1787–1788 (2009).

    Article  CAS  PubMed  Google Scholar 

  73. Pouw, M. F. et al. Key findings towards optimising adalimumab treatment: the concentration-effect curve. Ann. Rheum. Dis. 74, 513–518 (2015).

    Article  CAS  PubMed  Google Scholar 

  74. Kneepkens, E. L. et al. Lower etanercept levels are associated with high disease activity in ankylosing spondylitis patients at 24 weeks of follow-up. Ann. Rheum. Dis. 74, 1825–1829 (2015).

    Article  CAS  PubMed  Google Scholar 

  75. Chen, D. Y. et al. Significant associations of antidrug antibody levels with serum drug trough levels and therapeutic response of adalimumab and etanercept treatment in rheumatoid arthritis. Ann. Rheum. Dis. 74, e16 (2015).

    Article  CAS  PubMed  Google Scholar 

  76. de Vries, M. K. et al. Immunogenicity does not influence treatment with etanercept in patients with ankylosing spondylitis. Ann. Rheum. Dis. 68, 531–535 (2009).

    Article  CAS  PubMed  Google Scholar 

  77. Kneepkens, E. L. et al. Golimumab trough levels, antidrug antibodies and clinical response in patients with rheumatoid arthritis treated in daily clinical practice. Ann. Rheum. Dis. 73, 2217–2219 (2014).

    Article  CAS  PubMed  Google Scholar 

  78. Reich, K. et al. Successful treatment of moderate to severe plaque psoriasis with the PEGylated Fab' certolizumab pegol: results of a phase II randomized, placebo-controlled trial with a re-treatment extension. Br. J. Dermatol. 167, 180–190 (2012).

    Article  CAS  PubMed  Google Scholar 

  79. Fleischmann, R. et al. Efficacy and safety of certolizumab pegol monotherapy every 4 weeks in patients with rheumatoid arthritis failing previous disease-modifying antirheumatic therapy: the FAST4WARD study. Ann. Rheum. Dis. 68, 805–811 (2009).

    Article  CAS  PubMed  Google Scholar 

  80. Maini, R. N. et al. Therapeutic efficacy of multiple intravenous infusions of anti-tumor necrosis factor α monoclonal antibody combined with low-dose weekly methotrexate in rheumatoid arthritis. Arthritis Rheum. 41, 1552–1563 (1998).

    Article  CAS  PubMed  Google Scholar 

  81. Garcês, S., Demengeot, J. & Benito-Garcia, E. The immunogenicity of anti-TNF therapy in immune-mediated inflammatory diseases: a systematic review of the literature with a meta-analysis. Ann. Rheum. Dis. 72, 1947–1955 (2013).

    Article  CAS  PubMed  Google Scholar 

  82. Maneiro, J. R., Salgado, E. & Gomez-Reino, J. J. Immunogenicity of monoclonal antibodies against tumor necrosis factor used in chronic immune-mediated inflammatory conditions: systematic review and meta-analysis. JAMA Intern. Med. 173, 1416–1428 (2013).

    Article  CAS  PubMed  Google Scholar 

  83. Krieckaert, C. L., Nurmohamed, M. T. & Wolbink, G. J. Methotrexate reduces immunogenicity in adalimumab treated rheumatoid arthritis patients in a dose dependent manner. Ann. Rheum. Dis. 71, 1914–1915 (2012).

    Article  CAS  PubMed  Google Scholar 

  84. Burmester, G. R. et al. Efficacy and safety of ascending methotrexate dose in combination with adalimumab: the randomised CONCERTO trial. Ann. Rheum. Dis. 74, 1037–1044 (2015).

    Article  CAS  PubMed  Google Scholar 

  85. Vogelzang, E. H. et al. Adalimumab trough concentrations in patients with rheumatoid arthritis and psoriatic arthritis treated with concomitant disease-modifying antirheumatic drugs. Ann. Rheum. Dis. 74, 474–475 (2015).

    Article  CAS  PubMed  Google Scholar 

  86. Jani, M., Barton, A., Warren, R. B., Griffiths, C. E. & Chinoy, H. The role of DMARDs in reducing the immunogenicity of TNF inhibitors in chronic inflammatory diseases. Rheumatology (Oxford) 53, 213–222 (2014).

    Article  CAS  Google Scholar 

  87. Smolen, J. S. et al. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2013 update. Ann. Rheum. Dis. 73, 492–509 (2014).

    Article  CAS  PubMed  Google Scholar 

  88. Singh, J. A. et al. 2015 American College of Rheumatology guideline for the treatment of rheumatoid arthritis. Arthritis Rheumatol. 68, 1–25 (2016).

    PubMed  Google Scholar 

  89. Bunescu, A., Seideman, P., Lenkei, R., Levin, K. & Egberg, N. Enhanced Fcγ receptor I, αMβ2 integrin receptor expression by monocytes and neutrophils in rheumatoid arthritis: interaction with platelets. J. Rheumatol. 31, 2347–2355 (2004).

    CAS  PubMed  Google Scholar 

  90. Joseph, A., Munroe, K., Housman, M., Garman, R. & Richards, S. Immune tolerance induction to enzyme-replacement therapy by co-administration of short-term, low-dose methotrexate in a murine Pompe disease model. Clin. Exp. Immunol. 152, 138–146 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Sandborn, W. J. Preventing antibodies to infliximab in patients with Crohn's disease: optimize not immunize. Gastroenterology 124, 1140–1145 (2003).

    Article  CAS  PubMed  Google Scholar 

  92. Rutgeerts, P. et al. Efficacy and safety of retreatment with anti-tumor necrosis factor antibody (infliximab) to maintain remission in Crohn's disease. Gastroenterology 117, 761–769 (1999).

    Article  CAS  PubMed  Google Scholar 

  93. Present, D. H. et al. Infliximab for the treatment of fistulas in patients with Crohn's disease. N. Engl. J. Med. 340, 1398–1405 (1999).

    Article  CAS  PubMed  Google Scholar 

  94. Hanauer, S. B. et al. Maintenance infliximab for Crohn's disease: the ACCENT I randomised trial. Lancet. 359, 1541–1549 (2002).

    Article  CAS  PubMed  Google Scholar 

  95. Ducourau, E. et al. Antibodies toward infliximab are associated with low infliximab concentration at treatment initiation and poor infliximab maintenance in rheumatic diseases. Arthritis Res. Ther. 13, R105 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Rutgeerts, P. et al. Comparison of scheduled and episodic treatment strategies of infliximab in Crohn's disease. Gastroenterology 126, 402–413 (2004).

    Article  CAS  PubMed  Google Scholar 

  97. Mitchison, N. A. Induction of immunological paralysis in two zones of dosage. Proc. R Soc. Lond. B Biol. Sci. 161, 275–292 (1964).

    Article  CAS  PubMed  Google Scholar 

  98. Mease, P. J. et al. Comparative effectiveness of biologic monotherapy versus combination therapy for patients with psoriatic arthritis: results from the Corrona registry. RMD Open 1, e000181 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Favalli, E. G., Biggioggero, M., Marchesoni, A. & Meroni, P. L. Survival on treatment with second-line biologic therapy: a cohort study comparing cycling and swap strategies. Rheumatology (Oxford) 53, 1664–1668 (2014).

    Article  CAS  Google Scholar 

  100. Chatzidionysiou, K. et al. Effectiveness of TNF inhibitor switch in RA: results from the national Swedish register. Ann. Rheum. Dis. 74, 890–896 (2015).

    Article  CAS  PubMed  Google Scholar 

  101. Hyrich, K. L. et al. Outcomes after switching from one anti-tumor necrosis factor α agent to a second anti-tumor necrosis factor α agent in patients with rheumatoid arthritis: results from a large UK national cohort study. Arthritis Rheum. 56, 13–20 (2007).

    Article  CAS  PubMed  Google Scholar 

  102. Lequerré, T. et al. Switching from an anti-TNF monoclonal antibody to soluble TNF-receptor yields better results than vice versa: an observational retrospective study of 72 rheumatoid arthritis switchers. Joint Bone Spine 82, 330–337 (2015).

    Article  CAS  PubMed  Google Scholar 

  103. Mpofu, S., Fatima, F. & Moots, R. J. Anti-TNF-α therapies: they are all the same (aren't they?). Rheumatology (Oxford) 44, 271–273 (2005).

    Article  CAS  Google Scholar 

  104. Levy, R. A. et al. Biology of anti-TNF agents in immune-mediated inflammatory diseases: therapeutic implications. Immunotherapy 8, 1427–1436 (2016).

    Article  CAS  PubMed  Google Scholar 

  105. Buch, M. H. et al. True infliximab resistance in rheumatoid arthritis; a role for lymphotoxin α? Ann. Rheum. Dis. 63, 1344–1346 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Finckh, A. et al. Which subgroup of patients with rheumatoid arthritis benefits from switching to rituximab versus alternative anti-tumour necrosis factor (TNF) agents after previous failure of an anti-TNF agent? Ann. Rheum. Dis. 69, 387–393 (2010).

    Article  CAS  PubMed  Google Scholar 

  107. Finckh, A. et al. B cell depletion may be more effective than switching to an alternative anti-tumor necrosis factor agent in rheumatoid arthritis patients with inadequate response to anti-tumor necrosis factor agents. Arthritis Rheum. 56, 1417–1423 (2007).

    Article  PubMed  Google Scholar 

  108. Du Pan, S. M., Scherer, A., Gabay, C. & Finckh, A. Differential drug retention between anti-TNF agents and alternative biological agents after inadequate response to an anti-TNF agent in rheumatoid arthritis patients. Ann. Rheum. Dis. 71, 997–999 (2012).

    Article  CAS  PubMed  Google Scholar 

  109. Emery, P. et al. Rituximab versus an alternative TNF inhibitor in patients with rheumatoid arthritis who failed to respond to a single previous TNF inhibitor: SWITCH-RA, a global, observational, comparative effectiveness study. Ann. Rheum. Dis. 74, 979–984 (2015).

    Article  CAS  PubMed  Google Scholar 

  110. Frederiksen, M. T. et al. Antibodies against infliximab are associated with de novo development of antibodies to adalimumab and therapeutic failure in infliximab-to-adalimumab switchers with IBD. Inflamm. Bowel Dis. 20, 1714–1721 (2014).

    Article  PubMed  Google Scholar 

  111. Ben-Horin, S. et al. Cross-immunogenicity: antibodies to infliximab in remicade-treated patients with IBD similarly recognise the biosimilar remsima. Gut 65, 1132–1138 (2016).

    Article  CAS  PubMed  Google Scholar 

  112. Yoo, D. H. et al. A randomized, double-blind, parallel-group study to demonstrate equivalence in efficacy and safety of CT-P13 compared with innovator infliximab when coadministered with methotrexate in patients with active rheumatoid arthritis: the PLANETRA study. Ann. Rheum. Dis. 72, 1613–1620 (2013).

    Article  CAS  PubMed  Google Scholar 

  113. Rosas, J. et al. Clinical relevance of monitoring serum levels of adalimumab in patients with rheumatoid arthritis in daily practice. Clin. Exp. Rheumatol. 32, 942–948 (2014).

    PubMed  Google Scholar 

  114. Chen, D. Y. et al. Drug trough levels predict therapeutic responses to dose reduction of adalimumab for rheumatoid arthritis patients during 24 weeks of follow-up. Rheumatology (Oxford) 55, 143–148 (2016).

    Article  CAS  Google Scholar 

  115. Liefferinckx, C. et al. Infliximab trough levels at induction to predict treatment failure during maintenance. Inflamm. Bowel Dis. 23, 1371–1381 (2017).

    Article  PubMed  Google Scholar 

  116. European Medicines Agency. Guideline on immunogenicity assessment of monoclonal antibodies intended for in vivo clinical use. European Medicines Agency http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2012/06/WC500128688.pdf (2012).

  117. Freeman, K. et al. Clinical effectiveness and cost-effectiveness of use of therapeutic monitoring of tumour necrosis factor alpha (TNF-α) inhibitors (LISA-TRACKER® enzyme-linked immunosorbent assay (ELISA) kits, TNF-α Blocker ELISA kits and Promonitor® ELISA kits) versus standard care in patients with Crohn's disease: systematic reviews and economic modelling. Health Technol. Assess. 20, 1–288 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors sincerely thank Martina Seidel for instrumental help with the preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Both authors researched data for article, made substantial contributions to discussion of content, wrote the article and undertook review and/or editing of the manuscript before submission.

Corresponding author

Correspondence to Joachim R. Kalden.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalden, J., Schulze-Koops, H. Immunogenicity and loss of response to TNF inhibitors: implications for rheumatoid arthritis treatment. Nat Rev Rheumatol 13, 707–718 (2017). https://doi.org/10.1038/nrrheum.2017.187

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2017.187

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing