Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

An integrated genomic analysis of lung cancer reveals loss of DUSP4 in EGFR-mutant tumors

Abstract

To address the biological heterogeneity of lung cancer, we studied 199 lung adenocarcinomas by integrating genome-wide data on copy number alterations and gene expression with full annotation for major known somatic mutations in this cancer. This showed non-random patterns of copy number alterations significantly linked to EGFR and KRAS mutation status and to distinct clinical outcomes, and led to the discovery of a striking association of EGFR mutations with underexpression of DUSP4, a gene within a broad region of frequent single-copy loss on 8p. DUSP4 is involved in negative feedback control of EGFR signaling, and we provide functional validation for its role as a growth suppressor in EGFR-mutant lung adenocarcinoma. DUSP4 loss also associates with p16/CDKN2A deletion and defines a distinct clinical subset of lung cancer patients. Another novel observation is that of a reciprocal relationship between EGFR and LKB1 mutations. These results highlight the power of integrated genomics to identify candidate driver genes within recurrent broad regions of copy number alteration and to delineate distinct oncogenetic pathways in genetically complex common epithelial cancers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Adams J, Cuthbert-Heavens D, Bass S, Knowles MA . (2005). Infrequent mutation of TRAIL receptor 2 (TRAIL-R2/DR5) in transitional cell carcinoma of the bladder with 8p21 loss of heterozygosity. Cancer Lett 220: 137–144.

    Article  CAS  Google Scholar 

  • Adler AS, Lin M, Horlings H, Nuyten DS, van de Vijver MJ, Chang HY . (2006). Genetic regulators of large-scale transcriptional signatures in cancer. Nat Genet 38: 421–430.

    Article  CAS  Google Scholar 

  • Amit I, Citri A, Shay T, Lu Y, Katz M, Zhang F et al. (2007). A module of negative feedback regulators defines growth factor signaling. Nat Genet 39: 503–512.

    Article  CAS  Google Scholar 

  • Armes JE, Hammet F, de SM, Ciciulla J, Ramus SJ, Soo WK et al. (2004). Candidate tumor-suppressor genes on chromosome arm 8p in early-onset and high-grade breast cancers. Oncogene 23: 5697–5702.

    Article  CAS  Google Scholar 

  • Davies H, Hunter C, Smith R, Stephens P, Greenman C, Bignell G et al. (2005). Somatic mutations of the protein kinase gene family in human lung cancer. Cancer Res 65: 7591–7595.

    Article  CAS  Google Scholar 

  • Ding L, Getz G, Wheeler DA, Mardis ER, McLellan MD, Cibulskis K et al. (2008). Somatic mutations affect key pathways in lung adenocarcinoma. Nature 455: 1069–1075.

    Article  CAS  Google Scholar 

  • Ebert BL, Pretz J, Bosco J, Chang CY, Tamayo P, Galili N et al. (2008). Identification of RPS14 as a 5q- syndrome gene by RNA interference screen. Nature 451: 335–339.

    Article  CAS  Google Scholar 

  • Furukawa T, Sunamura M, Motoi F, Matsuno S, Horii A . (2003). Potential tumor suppressive pathway involving DUSP6/MKP-3 in pancreatic cancer. Am J Pathol 162: 1807–1815.

    Article  CAS  Google Scholar 

  • Garnis C, Lockwood WW, Vucic E, Ge Y, Girard L, Minna JD et al. (2006). High resolution analysis of non-small cell lung cancer cell lines by whole genome tiling path array CGH. Int J Cancer 118: 1556–1564.

    Article  CAS  Google Scholar 

  • Ji H, Ramsey MR, Hayes DN, Fan C, McNamara K, Kozlowski P et al. (2007). LKB1 modulates lung cancer differentiation and metastasis. Nature 448: 807–810.

    Article  CAS  Google Scholar 

  • Kendall J, Liu Q, Bakleh A, Krasnitz A, Nguyen KC, Lakshmi B et al. (2007). Oncogenic cooperation and coamplification of developmental transcription factor genes in lung cancer. Proc Natl Acad Sci USA 104: 16663–16668.

    Article  CAS  Google Scholar 

  • Kobayashi S, Shimamura T, Monti S, Steidl U, Hetherington CJ, Lowell AM et al. (2006). Transcriptional profiling identifies cyclin D1 as a critical downstream effector of mutant epidermal growth factor receptor signaling. Cancer Res 66: 11389–11398.

    Article  CAS  Google Scholar 

  • Kwei KA, Kim YH, Girard L, Kao J, Pacyna-Gengelbach M, Salari K et al. (2008). Genomic profiling identifies TITF1 as a lineage-specific oncogene amplified in lung cancer. Oncogene 27: 3635–3640.

    Article  CAS  Google Scholar 

  • Lee SH, Shin MS, Kim HS, Lee HK, Park WS, Kim SY et al. (1999). Alterations of the DR5/TRAIL receptor 2 gene in non-small cell lung cancers. Cancer Res 59: 5683–5686.

    CAS  PubMed  Google Scholar 

  • Lowe SW, Sherri CJ . (2003). Tumor suppression by Ink4a-Arf: progress and puzzles. Curr Opin Genet Dev 13: 77–83.

    Article  CAS  Google Scholar 

  • Marks JL, McLellan MD, Zakowski MF, Lash AE, Kasai Y, Broderick S et al. (2007). Mutational analysis of EGFR and related signaling pathway genes in lung adenocarcinomas identifies a novel somatic kinase domain mutation in FGFR4. PLoS ONE 2: e426–e426.

    Article  Google Scholar 

  • Matsumoto S, Iwakawa R, Takahashi K, Kohno T, Nakanishi Y, Matsuno Y et al. (2007). Prevalence and specificity of LKB1 genetic alterations in lung cancers. Oncogene 26: 5911–5918.

    Article  CAS  Google Scholar 

  • Meyerson M, Franklin WA, Kelley MJ . (2004). Molecular classification and molecular genetics of human lung cancers. Semin Oncol 31: 4–19.

    Article  CAS  Google Scholar 

  • Michaloglou C, Vredeveld LC, Soengas MS, Denoyelle C, Kuilman T, van der Horst CM et al. (2005). BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature 436: 720–724.

    Article  CAS  Google Scholar 

  • Mounawar M, Mukeria A, Le CF, Hung RJ, Renard H, Cortot A et al. (2007). Patterns of EGFR, HER2, TP53, and KRAS mutations of p14arf expression in non-small cell lung cancers in relation to smoking history. Cancer Res 67: 5667–5672.

    Article  CAS  Google Scholar 

  • O'Reilly KE, Rojo F, She QB, Solit D, Mills GB, Smith D et al. (2006). mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res 66: 1500–1508.

    Article  CAS  Google Scholar 

  • Ohgaki H, Kleihues P . (2007). Genetic pathways to primary and secondary glioblastoma. Am J Pathol 170: 1445–1453.

    Article  CAS  Google Scholar 

  • Owens DM, Keyse SM . (2007). Differential regulation of MAP kinase signalling by dual-specificity protein phosphatases. Oncogene 26: 3203–3213.

    Article  CAS  Google Scholar 

  • Parsons DW, Jones S, Zhang X, Lin JC, Leary RJ, Angenendt P et al. (2008). An integrated genomic analysis of human glioblastoma multiforme. Science 321: 1807–1812.

    Article  CAS  Google Scholar 

  • Riely GJ, Kris MG, Rosenbaum D, Marks J, Li AR, Chitale DA et al. (2008). Frequency and distinctive spectrum of KRAS mutations in never smokers with lung adenocarcinoma. Clin Cancer Res 14: 5731–5734.

    Article  CAS  Google Scholar 

  • Samuels Y, Wang Z, Bardelli A, Silliman N, Ptak J, Szabo S et al. (2004). High frequency of mutations of the PIK3CA gene in human cancers. Science 304: 554.

    Article  CAS  Google Scholar 

  • Sato M, Vaughan MB, Girard L, Peyton M, Lee W, Shames DS et al. (2006). Multiple oncogenic changes (K-RAS(V12), p53 knockdown, mutant EGFRs, p16 bypass, telomerase) are not sufficient to confer a full malignant phenotype on human bronchial epithelial cells. Cancer Res 66: 2116–2128.

    Article  CAS  Google Scholar 

  • Schulze A, Nicke B, Warne PH, Tomlinson S, Downward J . (2004). The transcriptional response to Raf activation is almost completely dependent on mitogen-activated protein kinase kinase activity and shows a major autocrine component. Mol Biol Cell 15: 3450–3463.

    Article  CAS  Google Scholar 

  • Sharma SV, Bell DW, Settleman J, Haber DA . (2007). Epidermal growth factor receptor mutations in lung cancer. Nat Rev Cancer 7: 169–181.

    Article  CAS  Google Scholar 

  • Shaw AT, Meissner A, Dowdle JA, Crowley D, Magendantz M, Ouyang C et al. (2007). Sprouty-2 regulates oncogenic K-ras in lung development and tumorigenesis. Genes Dev 21: 694–707.

    Article  CAS  Google Scholar 

  • Shen WH, Wang J, Wu J, Zhurkin VB, Yin Y . (2006). Mitogen-activated protein kinase phosphatase 2: a novel transcription target of p53 in apoptosis. Cancer Res 66: 6033–6039.

    Article  CAS  Google Scholar 

  • Sweet-Cordero A, Mukherjee S, Subramanian A, You H, Roix JJ, Ladd-Acosta C et al. (2005). An oncogenic KRAS2 expression signature identified by cross-species gene-expression analysis. Nat Genet 37: 48–55.

    Article  CAS  Google Scholar 

  • Takano T, Ohe Y, Sakamoto H, Tsuta K, Matsuno Y, Tateishi U et al. (2005). Epidermal growth factor receptor gene mutations and increased copy numbers predict gefitinib sensitivity in patients with recurrent non-small-cell lung cancer. J Clin Oncol 23: 6829–6837.

    Article  CAS  Google Scholar 

  • Tanaka H, Yanagisawa K, Shinjo K, Taguchi A, Maeno K, Tomida S et al. (2007). Lineage-specific dependency of lung adenocarcinomas on the lung development regulator TTF-1. Cancer Res 67: 6007–6011.

    Article  CAS  Google Scholar 

  • The Cancer Genome Atlas Research Network (2008). Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455: 1061–1068.

    Article  Google Scholar 

  • Tresini M, Lorenzini A, Torres C, Cristofalo VJ . (2007). Modulation of replicative senescence of diploid human cells by nuclear ERK signaling. J Biol Chem 282: 4136–4151.

    Article  CAS  Google Scholar 

  • Weir BA, Woo MS, Getz G, Perner S, Ding L, Beroukhim R et al. (2007). Characterizing the cancer genome in lung adenocarcinoma. Nature 450: 893–898.

    Article  CAS  Google Scholar 

  • Zhu CQ, Blackhall FH, Pintilie M, Iyengar P, Liu N, Ho J et al. (2004). Skp2 gene copy number aberrations are common in non-small cell lung carcinoma, and its overexpression in tumors with ras mutation is a poor prognostic marker. Clin Cancer Res 10: 1984–1991.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr Agnes Viale and the MSKCC Genomics Core Laboratory personnel for the generation of microarray data; Dr Laetitia Borsu for assistance with Sequenom assays; Drs Hakim Djaballah and Gabriela E. Sanchez of the MSKCC HTS Core Facility for providing GFP siRNAs; Louis Vargas, Yonghong Xiao and the MSKCC Pathology Core personnel for technical assistance; Drs William Travis, Andre Moreira and David Klimstra for providing pathologic diagnoses; Drs John Minna and Adi Gazdar for providing the human bronchial epithelial cell (HBEC) lines; Drs Alice H Berger, Marasu Niki and Pier Paolo Pandolfi for assistance with reagents and related studies; Dr Roman Thomas for sharing unpublished microarray data, and Dr Harold Varmus for support (to RS). Barry S Taylor is a graduate student in the Department of Physiology and Biophysics, Weill Cornell Graduate School of Medical Sciences. We acknowledge the support of the National Cancer Institute (U01-CA84999 to WG, P01-CA129243 to ML), the Doris Duke Charitable Foundation (to WP), the Long Island League to Abolish Cancer (to WP), the Labrecque Foundation (to WG) and the Lung Cancer Research Foundation (to ML). The MSKCC Sequenom facility is supported by the Anbinder Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Ladanyi.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chitale, D., Gong, Y., Taylor, B. et al. An integrated genomic analysis of lung cancer reveals loss of DUSP4 in EGFR-mutant tumors. Oncogene 28, 2773–2783 (2009). https://doi.org/10.1038/onc.2009.135

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.135

Keywords

This article is cited by

Search

Quick links