Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

OPINION

Pathophysiology, assessment and treatment of psoriatic dactylitis

Abstract

Dactylitis is diffuse swelling of the digits that is usually related to an underlying inflammatory or infiltrative disorder. Psoriatic arthritis (PsA) is the most common severe disease thought to cause dactylitis. Our understanding of the pathogenesis of PsA-related dactylitis comes from experimental animal models of PsA-like disease, as well as advances in imaging and other clinical studies. Clinical trials in PsA have increasingly included dactylitis as an important secondary outcome measure. These studies indicate that cytokines drive multi-locus microanatomical pan-digital pathology. Given the importance of pro-inflammatory cytokines, the pathogenesis of dactylitis is best understood as an initial aberrant innate immune response to biomechanical stress or injury, with subsequent adaptive immune mechanisms amplifying the dactylitis inflammatory response. Regarding the treatment of dactylitis, no studies have been conducted using dactylitis as the primary outcome measure, and the current knowledge comes from analysis of dactylitis as a secondary outcome measure.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Anatomy of dactylitis.
Fig. 2: Enthesitis and osteitis in dactylitis.
Fig. 3: Peri-tendinous tissue vascular changes in dactylitis.
Fig. 4: Potential immune pathways in the pathogenesis of dactylitis.
Fig. 5: Grouping of joints.

Similar content being viewed by others

References

  1. Olivieri, I., Scarano, E., Padula, A., Giasi, V. & Priolo, F. Dactylitis, a term for different digit diseases. Scand. J. Rheumatol. 35, 333–340 (2006).

    CAS  PubMed  Google Scholar 

  2. Gladman, D. D., Ziouzina, O., Thavaneswaran, A. & Chandran, V. Dactylitis in psoriatic arthritis: prevalence and response to therapy in the biologic era. J. Rheumatol. 40, 1357–1359 (2013).

    PubMed  Google Scholar 

  3. Ritchlin, C. T., Colbert, R. A. & Gladman, D. D. Psoriatic arthritis. N. Engl. J. Med. 376, 957–970 (2017).

    PubMed  Google Scholar 

  4. Rothschild, B. M., Pingitore, C. & Eaton, M. Dactylitis: implications for clinical practice. Semin. Arthritis Rheum. 28, 41–47 (1998).

    CAS  PubMed  Google Scholar 

  5. Taylor, W. J. et al. Classification criteria for psoriatic arthritis: development of new criteria from a large international study. Arthritis Rheum. 54, 2665–2673 (2006).

    PubMed  Google Scholar 

  6. Rudwaleit, M. et al. The Assessment of Spondyloarthritis International Society classification criteria for peripheral spondyloarthritis and for spondyloarthritis in general. Ann. Rheum. Dis. 70, 25–31 (2011).

    CAS  PubMed  Google Scholar 

  7. Brockbank, J. E., Stein, M., Schentag, C. T. & Gladman, D. D. Dactylitis in psoriatic arthritis: a marker for disease severity? Ann. Rheum. Dis. 64, 188–190 (2005).

    CAS  PubMed  Google Scholar 

  8. Kavanaugh, A., Helliwell, P. & Ritchlin, C. T. Psoriatic arthritis and burden of disease: patient perspectives from the population-based multinational assessment of psoriasis and psoriatic arthritis (MAPP) survey. Rheumatol. Ther. 3, 91–102 (2016).

    PubMed  PubMed Central  Google Scholar 

  9. Kaeley, G. S., Eder, L., Aydin, S. Z., Gutierrez, M. & Bakewell, C. Dactylitis: a hallmark of psoriatic arthritis. Semin. Arthritis Rheum. 48, 263–273 (2018).

    PubMed  Google Scholar 

  10. McGonagle, D., Conaghan Philip, G. & Emery, P. Psoriatic arthritis: a unified concept twenty years on. Arthritis Rheum. 42, 1080–1086 (2001).

    Google Scholar 

  11. Tinazzi, I. et al. ‘Deep Koebner’ phenomenon of the flexor tendon-associated accessory pulleys as a novel factor in tenosynovitis and dactylitis in psoriatic arthritis. Ann. Rheum. Dis. 77, 922 (2018).

    CAS  PubMed  Google Scholar 

  12. Pattison, E., Harrison, B. J., Griffiths, C. E., Silman, A. J. & Bruce, I. N. Environmental risk factors for the development of psoriatic arthritis: results from a case-control study. Ann. Rheum. Dis. 67, 672–676 (2008).

    CAS  PubMed  Google Scholar 

  13. Ng, J., Tan, A. L. & McGonagle, D. Unifocal psoriatic arthritis development in identical twins following site specific injury: evidence supporting biomechanical triggering events in genetically susceptible hosts. Ann. Rheum. Dis. 74, 948–949 (2015).

    PubMed  Google Scholar 

  14. Jacques, P. et al. Proof of concept: enthesitis and new bone formation in spondyloarthritis are driven by mechanical strain and stromal cells. Ann. Rheum. Dis. 73, 437–445 (2014).

    PubMed  Google Scholar 

  15. Jacques, P. & McGonagle, D. The role of mechanical stress in the pathogenesis of spondyloarthritis and how to combat it. Best Pract. Res. Clin. Rheumatol. 28, 703–710 (2014).

    PubMed  Google Scholar 

  16. Thorarensen, S. M. et al. Physical trauma recorded in primary care is associated with the onset of psoriatic arthritis among patients with psoriasis. Ann. Rheum. Dis. 76, 521–525 (2017).

    PubMed  Google Scholar 

  17. Wilkins, R. A., Siddle, H. J., Redmond, A. C. & Helliwell, P. S. Plantar forefoot pressures in psoriatic arthritis-related dactylitis: an exploratory study. Clin. Rheumatol. 35, 2333–2338 (2016).

    PubMed  PubMed Central  Google Scholar 

  18. Tan, A. L. & McGonagle, D. The need for biological outcomes for biological drugs in psoriatic arthritis. J. Rheumatol. 43, 3–6 (2016).

    CAS  PubMed  Google Scholar 

  19. Mumtaz, A. et al. Development of a preliminary composite disease activity index in psoriatic arthritis. Ann. Rheum. Dis. 70, 272–277 (2011).

    PubMed  Google Scholar 

  20. Helliwell, P. S. et al. The development of candidate composite disease activity and responder indices for psoriatic arthritis (GRACE project). Ann. Rheum. Dis. 72, 986–991 (2013).

    PubMed  Google Scholar 

  21. Ramiro, S., Smolen, J. S., Landewe, R., van der Heijde, D. & Gossec, L. How are enthesitis, dactylitis and nail involvement measured and reported in recent clinical trials of psoriatic arthritis? A systematic literature review. Ann. Rheum. Dis. 77, 782–783 (2017).

    PubMed  Google Scholar 

  22. Salvarani, C. et al. A comparison of cyclosporine, sulfasalazine, and symptomatic therapy in the treatment of psoriatic arthritis. J. Rheumatol. 28, 2274–2282 (2001).

    CAS  PubMed  Google Scholar 

  23. Antoni, C. E. et al. Sustained benefits of infliximab therapy for dermatologic and articular manifestations of psoriatic arthritis: results from the infliximab multinational psoriatic arthritis controlled trial (IMPACT). Arthritis Rheum. 52, 1227–1236 (2005).

    CAS  PubMed  Google Scholar 

  24. Clegg, D. O. et al. Comparison of sulfasalazine and placebo in the treatment of psoriatic arthritis. A Department of Veterans Affairs Cooperative Study. Arthritis Rheum. 39, 2013–2020 (1996).

    CAS  PubMed  Google Scholar 

  25. Helliwell, P. S. et al. Development of an assessment tool for dactylitis in patients with psoriatic arthritis. J. Rheumatol. 32, 1745–1750 (2005).

    PubMed  Google Scholar 

  26. Healy, P. J. & Helliwell, P. S. Measuring dactylitis in clinical trials: which is the best instrument to use? J. Rheumatol. 34, 1302–1306 (2007).

    PubMed  Google Scholar 

  27. Chandran, V. et al. International multicenter psoriasis and psoriatic arthritis reliability trial for the assessment of skin, joints, nails, and dactylitis. Arthritis Rheum. 61, 1235–1242 (2009).

    PubMed  Google Scholar 

  28. Mease, P. et al. Effect of certolizumab pegol on signs and symptoms in patients with psoriatic arthritis: 24-week results of a phase 3 double-blind randomised placebo-controlled study (RAPID-PsA). Ann. Rheum. Dis. 73, 48–55 (2014).

    CAS  PubMed  Google Scholar 

  29. Fournie, B. et al. Extrasynovial ultrasound abnormalities in the psoriatic finger. Prospective comparative power-doppler study versus rheumatoid arthritis. Joint Bone Spine 73, 527–531 (2006).

    PubMed  Google Scholar 

  30. Benjamin, M. & McGonagle, D. The anatomical basis for disease localisation in seronegative spondyloarthropathy at entheses and related sites. J. Anat. 199, 503–526 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Kane, D., Greaney, T., Bresnihan, B., Gibney, R. & FitzGerald, O. Ultrasonography in the diagnosis and management of psoriatic dactylitis. J. Rheumatol. 26, 1746–1751 (1999).

    CAS  PubMed  Google Scholar 

  32. Tinazzi, I. et al. Comprehensive evaluation of finger flexor tendon entheseal soft tissue and bone changes by ultrasound can differentiate psoriatic arthritis and rheumatoid arthritis. Clin. Exp. Rheumatol. 36, 785–790 (2018).

    PubMed  Google Scholar 

  33. McGonagle, D., Gibbon, W. & Emery, P. Classification of inflammatory arthritis by enthesitis. Lancet 352, 1137–1140 (1998).

    CAS  PubMed  Google Scholar 

  34. Olivieri, I. et al. Dactylitis in patients with seronegative spondylarthropathy. Assessment by ultrasonography and magnetic resonance imaging. Arthritis Rheum. 39, 1524–1528 (1996).

    CAS  PubMed  Google Scholar 

  35. Olivieri, I. et al. Toe dactylitis in patients with spondyloarthropathy: assessment by magnetic resonance imaging. J. Rheumatol. 24, 926–930 (1997).

    CAS  PubMed  Google Scholar 

  36. Olivieri, I. et al. Fast spin echo-T2-weighted sequences with fat saturation in dactylitis of spondylarthritis. No evidence of entheseal involvement of the flexor digitorum tendons. Arthritis Rheum. 46, 2964–2967 (2002).

    PubMed  Google Scholar 

  37. Healy, P. J., Groves, C., Chandramohan, M. & Helliwell, P. S. MRI changes in psoriatic dactylitis extent of pathology, relationship to tenderness and correlation with clinical indices. Rheumatology 47, 92–95 (2008).

    CAS  PubMed  Google Scholar 

  38. Tan, A. L. et al. High-resolution MRI assessment of dactylitis in psoriatic arthritis shows flexor tendon pulley and sheath-related enthesitis. Ann. Rheum. Dis. 74, 185–189 (2015).

    PubMed  Google Scholar 

  39. Fukuda, T. et al. Dual energy CT iodine map for delineating inflammation of inflammatory arthritis. Eur. Radiol. 27, 5034–5040 (2017).

    PubMed  Google Scholar 

  40. Weitz, J. E. & Ritchlin, C. T. Mechanistic insights from animal models of psoriasis and psoriatic arthritis. Curr. Rheumatol. Rep. 15, 377 (2013).

    PubMed  Google Scholar 

  41. Sherlock, J. P. et al. IL-23 induces spondyloarthropathy by acting on ROR-gammat+CD3+CD4-CD8- entheseal resident T cells. Nat. Med. 18, 1069–1076 (2012).

    CAS  PubMed  Google Scholar 

  42. Lories, R. J., Matthys, P., de Vlam, K., Derese, I. & Luyten, F. P. Ankylosing enthesitis, dactylitis, and onychoperiostitis in male DBA/1 mice: a model of psoriatic arthritis. Ann. Rheum. Dis. 63, 595–598 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Braem, K., Carter, S. & Lories, R. J. Spontaneous arthritis and ankylosis in male DBA/1 mice: further evidence for a role of behavioral factors in “stress-induced arthritis”. Biol. Proced. Online 14, 10 (2012).

    PubMed  PubMed Central  Google Scholar 

  44. Grosse, J. et al. Mutation of mouse Mayp/Pstpip2 causes a macrophage autoinflammatory disease. Blood 107, 3350–3358 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Sakaguchi, N. et al. Altered thymic T cell selection due to a mutation of the ZAP-70 gene causes autoimmune arthritis in mice. Nature 426, 454–460 (2003).

    CAS  PubMed  Google Scholar 

  46. Vieira-Sousa, E., van Duivenvoorde, L. M., Fonseca, J. E., Lories, R. J. & Baeten, D. L. Review: animal models as a tool to dissect pivotal pathways driving spondyloarthritis. Arthritis Rheum. 67, 2813–2827 (2015).

    Google Scholar 

  47. Ruutu, M. et al. beta-glucan triggers spondylarthritis and Crohn’s disease-like ileitis in SKG mice. Arthritis Rheum. 64, 2211–2222 (2012).

    CAS  PubMed  Google Scholar 

  48. Benham, H. et al. Interleukin-23 mediates the intestinal response to microbial beta-1,3-glucan and the development of spondyloarthritis pathology in SKG mice. Arthritis Rheum. 66, 1755–1767 (2014).

    CAS  Google Scholar 

  49. Khmaladze, I. et al. Mannan induces ROS-regulated, IL-17A–dependent psoriasis arthritis-like disease in mice. Proc. Natl Acad. Sci. USA 111, E3669–E3678 (2014).

    CAS  PubMed  Google Scholar 

  50. Yamamoto, M. et al. Psoriatic inflammation facilitates the onset of arthritis in a mouse model. J. Invest. Dermatol. 135, 445–453 (2015).

    CAS  PubMed  Google Scholar 

  51. Cook, P. W., Brown, J. R., Cornell, K. A. & Pittelkow, M. R. Suprabasal expression of human amphiregulin in the epidermis of transgenic mice induces a severe, early-onset, psoriasis-like skin pathology: expression of amphiregulin in the basal epidermis is also associated with synovitis. Exp. Dermatol. 13, 347–356 (2004).

    CAS  PubMed  Google Scholar 

  52. Zenz, R. et al. Psoriasis-like skin disease and arthritis caused by inducible epidermal deletion of Jun proteins. Nature 437, 369–375 (2005).

    CAS  PubMed  Google Scholar 

  53. Henseler, T. & Christophers, E. Psoriasis of early and late onset: characterization of two types of psoriasis vulgaris. J. Am. Acad. Dermatol. 13, 450–456 (1985).

    CAS  PubMed  Google Scholar 

  54. Haroon, M., Winchester, R., Giles, J. T., Heffernan, E. & FitzGerald, O. Certain class I HLA alleles and haplotypes implicated in susceptibility play a role in determining specific features of the psoriatic arthritis phenotype. Ann. Rheum. Dis. 75, 155–162 (2016).

    CAS  PubMed  Google Scholar 

  55. Winchester, R. et al. Implications of the diversity of class I HLA associations in psoriatic arthritis. Clin. Immunol. 172, 29–33 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. FitzGerald, O., Haroon, M., Giles, J. T. & Winchester, R. Concepts of pathogenesis in psoriatic arthritis: genotype determines clinical phenotype. Arthritis Res. Ther. 17, 115 (2015).

    PubMed  PubMed Central  Google Scholar 

  57. McHugh, K. & Bowness, P. The link between HLA-B27 and SpA—new ideas on an old problem. Rheumatology 51, 1529–1539 (2012).

    PubMed  Google Scholar 

  58. Ritchlin, C. T. et al. Treatment recommendations for psoriatic arthritis. Ann. Rheum. Dis. 68, 1387–1394 (2009).

    CAS  PubMed  Google Scholar 

  59. Coates, L. C. et al. Group for Research and Assessment of Psoriasis and Psoriatic Arthritis 2015 treatment recommendations for psoriatic arthritis. Arthritis Rheum. 68, 1060–1071 (2016).

    Google Scholar 

  60. Gossec, L. et al. European League Against Rheumatism (EULAR) recommendations for the management of psoriatic arthritis with pharmacological therapies: 2015 update. Ann. Rheum. Dis. 75, 499–510 (2016).

    CAS  PubMed  Google Scholar 

  61. Coates, L. & Helliwell, P. S. Methotrexate efficacy in the Tight Control in Psoriatic Arthritis study. J. Rheum. 43, 356–361 (2016).

    CAS  PubMed  Google Scholar 

  62. Rose, S., Toloza, S., Bautista-Molano, W. & Helliwell, P. S. Comprehensive treatment of dactylitis in psoriatic arthritis. J. Rheumatol. 41, 2295–2300 (2014).

    PubMed  Google Scholar 

  63. Kavanaugh, A. et al. Efficacy and safety of ustekinumab in psoriatic arthritis patients with peripheral arthritis and physician-reported spondylitis: post-hoc analyses from two phase III, multicentre, double-blind, placebo-controlled studies (PSUMMIT-1/PSUMMIT-2). Ann. Rheum. Dis. 75, 1984–1988 (2016).

    CAS  PubMed  Google Scholar 

  64. Mease, P. et al. Tofacitinib or adalimumab versus placebo for psoriatic arthritis. N. Engl. J. Med. 377, 1537–1550 (2017).

    CAS  PubMed  Google Scholar 

  65. Kavanaugh, A. et al. Golimumab in psoriatic arthritis: one-year clinical efficacy, radiographic, and safety results from a phase III, randomized, placebo-controlled trial. Arthritis Rheum. 64, 2504–2517 (2012).

    CAS  PubMed  Google Scholar 

  66. Kavanaugh, A. & Mease, P. Treatment of psoriatic arthritis with tumor necrosis factor inhibitors: longer-term outcomes including enthesitis and dactylitis with golimumab treatment in the Longterm Extension of a Randomized, Placebo-controlled Study (GO-REVEAL). J. Rheumatol. Suppl. 89, 90–93 (2012).

    CAS  PubMed  Google Scholar 

  67. Antoni, C. E. et al. Two-year efficacy and safety of infliximab treatment in patients with active psoriatic arthritis: findings of the Infliximab Multinational Psoriatic Arthritis Controlled Trial (IMPACT). J. Rheumatol. 35, 869–876 (2008).

    CAS  PubMed  Google Scholar 

  68. Kavanaugh, A. et al. Infliximab maintains a high degree of clinical response in patients with active psoriatic arthritis through 1 year of treatment: results from the IMPACT 2 trial. Ann. Rheum. Dis. 66, 498–505 (2007).

    CAS  PubMed  Google Scholar 

  69. Baranauskaite, A. et al. Infliximab plus methotrexate is superior to methotrexate alone in the treatment of psoriatic arthritis in methotrexate-naive patients: the RESPOND study. Ann. Rheum. Dis. 71, 541–548 (2012).

    CAS  PubMed  Google Scholar 

  70. Carron, P. et al. Scintigraphic detection of TNF-driven inflammation by radiolabelled certolizumab pegol in patients with rheumatoid arthritis and spondyloarthritis. RMD Open 2, e000265 (2016).

    PubMed  PubMed Central  Google Scholar 

  71. Nash, P. et al. Efficacy and safety of secukinumab administration by autoinjector in patients with psoriatic arthritis: results from a randomized, placebo-controlled trial (FUTURE 3). Arthritis Res. Ther. 20, 47 (2018).

    PubMed  PubMed Central  Google Scholar 

  72. Mease, P. et al. Secukinumab improves active psoriatic arthritis symptoms and inhibits radiographic progression: primary results from the randomised, double-blind, phase III FUTURE 5 study. Ann. Rheum. Dis. 77, 890–897 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Mease, P. J. et al. Ixekizumab, an interleukin-17A specific monoclonal antibody, for the treatment of biologic-naive patients with active psoriatic arthritis: results from the 24-week randomised, double-blind, placebo-controlled and active (adalimumab)-controlled period of the phase III trial SPIRIT-P1. Ann. Rheum. Dis. 76, 79–87 (2017).

    CAS  PubMed  Google Scholar 

  74. Wells, A. F. et al. Apremilast monotherapy in DMARD-naive psoriatic arthritis patients: results of the randomized, placebo-controlled PALACE 4 trial. Rheumatology 57, 1253–1263 (2018).

    Google Scholar 

  75. Gladman, D. et al. Tofacitinib for psoriatic arthritis in patients with an inadequate response to TNF inhibitors. N. Engl. J. Med. 377, 1525–1536 (2017).

    CAS  PubMed  Google Scholar 

  76. Mease, P. J. et al. Efficacy and safety of abatacept, a T cell modulator, in a randomised, double-blind, placebo-controlled, phase III study in psoriatic arthritis. Ann. Rheum. Dis. 76, 1550–1558 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Genovese Mark, C. et al. Apremilast in patients with active rheumatoid arthritis: a phase II, multicenter, randomized, double-blind, placebo-controlled, parallel-group study. Arthritis Rheum. 67, 1703–1710 (2015).

    CAS  Google Scholar 

  78. Smolen, J. S. et al. A randomised phase II study evaluating the efficacy and safety of subcutaneously administered ustekinumab and guselkumab in patients with active rheumatoid arthritis despite treatment with methotrexate. Ann. Rheum. Dis. 76, 831–839 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Kavanaugh, A. et al. Treatment of psoriatic arthritis in a phase 3 randomised, placebo-controlled trial with apremilast, an oral phosphodiesterase 4 inhibitor. Ann. Rheum. Dis. 73, 1020–1026 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Kunwar, S., Dahal, K. & Sharma, S. Anti-IL-17 therapy in treatment of rheumatoid arthritis: a systematic literature review and meta-analysis of randomized controlled trials. Rheumatol. Int. 36, 1065–1075 (2016).

    CAS  PubMed  Google Scholar 

  81. da Silva Junior, G. B., Daher Ede, F. & da Rocha, F. A. Osteoarticular involvement in sickle cell disease. Rev. Bras. Hematol. Hemoter. 34, 156–164 (2012).

    PubMed  PubMed Central  Google Scholar 

  82. Braum, L. S. et al. Characterisation of hand small joints arthropathy using high-resolution MRI — limited discrimination between osteoarthritis and psoriatic arthritis. Eur. Radiol. 23, 1686–1693 (2013).

    PubMed  Google Scholar 

  83. Tan, A. L., Grainger, A. J., Tanner, S. F., Emery, P. & McGonagle, D. A high-resolution magnetic resonance imaging study of distal interphalangeal joint arthropathy in psoriatic arthritis and osteoarthritis: are they the same? Arthritis Rheum. 54, 1328–1333 (2006).

    PubMed  Google Scholar 

  84. Tuttle, K. S., Vargas, S. O., Callahan, M. J., Bae, D. S. & Nigrovic, P. A. Enthesitis as a component of dactylitis in psoriatic juvenile idiopathic arthritis: histology of an established clinical entity. Pediatr. Rheumatol. Online J. 13, 7 (2015).

    PubMed  PubMed Central  Google Scholar 

  85. Nash, P. et al. Ixekizumab for the treatment of patients with active psoriatic arthritis and an inadequate response to tumour necrosis factor inhibitors: results from the 24-week randomised, double-blind, placebo-controlled period of the SPIRIT-P2 phase 3 trial. Lancet 389, 2317–2327 (2017).

    CAS  PubMed  Google Scholar 

  86. Jeong, H. et al. Spondyloarthritis features in zymosan-induced SKG mice. Joint Bone Spine 85, 583–591 (2018).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Abed El Rahman Wattad for providing figure 3a and for help in the preparation of figure 3c. The authors also thank H. Sugimoto for providing figure 2c and d.

Reviewer information

Nature Reviews Rheumatology thanks B. Kirkham and the other anonymous reviewer(s) for their contribution to the peer review of this work

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to researching data for the article, substantial discussion of content and writing, reviewing and editing the manuscript before submission.

Corresponding author

Correspondence to Dennis McGonagle.

Ethics declarations

Competing interests

D.M. declares that he has received research grants from Abbvie, Celgene, Janssen, Merck, Novartis and Pfizer and has acted as a consultant for or received honoraria from Abbvie, Celgene, Eli Lilly, Janssen, Merck, Novartis, Pfizer and UCB. A.L.T. declares she has acted as a consultant for or received honoraria from Abbvie, Eli Lilly, Janssen, Novartis and Pfizer. P.H. declares that he has received research grants from Abbvie and Janssen and has acted as a consultant for or received honoraria from Abbvie, Amgen, Celgene, Galapagos, Janssen, Novartis, Pfizer and UCB. A.W. declares no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Bowstringing

The natural tendency of the tendon to pull away from bone surface on the flexor aspect, which is being restrained by the accessory pulleys.

Cold dactylitis

Dactylitis swelling without pain or tenderness.

Deep Koebner phenomenon

The skeletal counterpart of skin injury in the Koebner phenomenon, whereby enthesis and joint injury can be associated with psoriatic arthritis development.

Digital tuft

The terminal bony prominence at the end of the distal interphalangeal digits.

Koebner phenomenon

The appearance of skin lesions in areas of cutaneous trauma, mainly (but not only) in patients with psoriasis.

Minicircle technology

A method for introduction of DNA into somatic cells with resultant protein expression.

Sesamoiditis

Inflammation of the sesamoid bones and/or their supporting structures.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McGonagle, D., Tan, A.L., Watad, A. et al. Pathophysiology, assessment and treatment of psoriatic dactylitis. Nat Rev Rheumatol 15, 113–122 (2019). https://doi.org/10.1038/s41584-018-0147-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41584-018-0147-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing