Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

TLR7 and TLR8 as targets in cancer therapy

Abstract

Small-molecule agonists at Toll-like receptor 7 (TLR7) and TLR8 have sparked a vivid interest in cancer research owing to their profound antitumoral activity. The lead compound of the imidazoquinoline family, imiquimod, is marketed as a topical formulation. It is efficacious against many primary skin tumors and cutaneous metastases. Using different imidazoquinoline species, distinct functions of TLR7 and TLR8 have been discovered. The predominant antitumoral mode of action of these agents is TLR7/8-mediated activation of the central transcription factor nuclear factor-κB, which leads to induction of proinflammatory cytokines and other mediators. Cutaneous dendritic cells are the primary responsive cell type and initiate a strong Th1-weighted antitumoral cellular immune response. Recent research has shown that dendritic cells themselves acquire direct antitumoral activity upon stimulation by imiquimod. In addition, there are a number of secondary effects on the molecular and cellular level that can be explained through the activation of TLR7/8. The proinflammatory activity of imiquimod, but not resiquimod, appears to be augmented by suppression of a regulatory mechanism, which normally limits inflammatory responses. This is achieved independently of TLR7/8 through interference with adenosine receptor signaling pathways. Finally, at higher concentrations imiquimod exerts Bcl-2- and caspase-dependent proapoptotic activity against tumor cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  • Ambach A, Bonnekoh B, Nguyen M, Schön MP, Gollnick H . (2004). Imiquimod, a toll-like receptor-7 agonist, induces perforin in cytotoxic T lymphocytes in vitro. Mol Immunol 40: 1307–1314.

    CAS  Google Scholar 

  • Barland CO, Zettersten E, Brown BS, Ye J, Elias PM, Ghadially R . (2004). Imiquimod-induced interleukin-1 alpha stimulation improves barrier homeostasis in aged murine epidermis. J Invest Dermatol 122: 330–336.

    CAS  Google Scholar 

  • Bath-Hextall F, Bong F, Perkins W, Williams H . (2004). Interventions for basal cell carcinoma of the skin: systematic review. Br Med J 329: 705.

    Google Scholar 

  • Berman B, Sullivan TP, De Araujo T, Nadji T . (2003). Expression of Fas-receptor on basal cell carcinomas after treatment with imiquimod 5% cream or vehicle. Br J Dermatol 149 (Suppl. 66): 59–61.

    CAS  Google Scholar 

  • Bernstein DI, Harrison CJ, Tepe ER, Shahwan A, Miller RL . (1995). Effect of imiquimod as an adjuvant for immunotherapy of genital HSV in guinea pigs. Vaccine 13: 72–76.

    CAS  Google Scholar 

  • Bernstein DI, Harrison CJ, Tomai MA, Miller RL . (2000). Daily or weekly therapy with resiquimod (R848) reduces genital recurrences in herpes simplex virus-infected guinea pigs during and after treatment. J Infect Dis 183: 844–849.

    Google Scholar 

  • Bishop GA, Ramirez LM, Baccam M, Busch LK, Pederson LK, Tomai MA . (2001). The immune response modifier resiquimod mimics CD40-induced B cell activation. Cell Immunol 25: 9–17.

    Google Scholar 

  • Bong AB, Bonnekoh B, Franke I, Schön MP, Ulrich J, Gollnick H . (2002). Imiquimod, a novel immune response modifier, in the treatment of cutaneous metastases of malignant melanoma. Dermatology 205: 135–138.

    CAS  Google Scholar 

  • Bottrell RL, Yang YL, Levy DE, Tomai MA, Reis LF . (1999). The immune response modifier imiquimod requires STAT-1 for induction of interferon, interferon-stimulated genes, and interleukin-6. Antimicrob Agents Chemother 43: 856–861.

    Google Scholar 

  • Brown VL, Atkins CL, Ghali L, Cerio R, Harwood CA, Proby CM . (2005). Safety and efficacy of 5% imiquimod cream for the treatment of skin dysplasia in high-risk renal transplant recipients: randomized, double-blind, placebo-controlled trial. Arch Dermatol 141: 985–993.

    CAS  Google Scholar 

  • Buates S, Matlashewski G . (2001). Identification of genes induced by a macrophage activator, S-28463, using gene expression array analysis. Antimicrob Agents Chemother 45: 1137–1142.

    CAS  Google Scholar 

  • Burns R, Ferbel B, Tomai MA, Miller RL, Gaspari A . (2000). The imidazoquinolines, imiquimod and R-848, induce functional, but not phenotypic, maturation of human epidermal Langerhans cells. Clin Immunol 94: 13–23.

    CAS  Google Scholar 

  • Chen M, Griffith BP, Lucia HL, Hsiung GD . (1988). Efficacy of S-26308 against guinea pig cytomegalovirus infection. Antimicrob Agents Chemother 32: 678–683.

    CAS  Google Scholar 

  • Chong A, Loo WJ, Banney L, Grant JW, Norris PG . (2004). Imiquimod 5% cream in the treatment of mycosis fungoides—a pilot study. J Dermatolog Treat 15: 118–119.

    CAS  Google Scholar 

  • Craft N, Bruhn KW, Nguyen BD, Prins RM, Lin JW, Liau LM et al. (2005). The TLR7 agonist imiquimod enhances the anti-melanoma effects of a recombinant Listeria monocytogenes vaccine. J Immunol 175: 1983–1990.

    CAS  Google Scholar 

  • Deeths MJ, Chapman JT, Dellavalle RP, Zeng C, Aeling JL . (2005). Treatment of patch and plaque stage mycosis fungoides with imiquimod 5% cream. J Am Acad Dermatol 52: 275–280.

    Google Scholar 

  • Dendorfer M, Oppel T, Wollenberg A, Prinz JC . (2003). Topical treatment with imiquimod may induce regression of facial keratoacanthoma. Eur J Dermatol 13: 80–82.

    Google Scholar 

  • Diebold SS, Kaisho T, Hemmi H, Akira S, Reis e Sousa C . (2004). Innate antiviral responses by means of single-stranded RNA. Science 303: 1529–1531.

    CAS  Google Scholar 

  • Dockrell DH, Kinghorn GR . (2001). Imiquimod and resiquimod as novel immunomodulators. J Antimicrob Chemother 48: 751–755.

    CAS  Google Scholar 

  • Dummer R, Urosevic M, Kempf W, Hoek K, Hafner J, Burg G . (2003a). Imiquimod in basal cell carcinoma: how does it work? Br J Dermatol 149 (Suppl. 66): 57–58.

    CAS  Google Scholar 

  • Dummer R, Urosevic M, Kempf W, Kazakov D, Burg G . (2003b). Imiquimod induces complete clearance of a PUVA-resistant plaque in mycosis fungoides. Dermatology 207: 116–118.

    Google Scholar 

  • Fleming CJ, Bryden AM, Evans A, Dawe RS, Ibbotson SH . (2004). A pilot study of treatment of lentigo maligna with 5% imiquimod cream. Br J Dermatol 151: 485–488.

    CAS  Google Scholar 

  • Frotscher B, Anton K, Worm M . (2002). Inhibition of IgE production by the imidazoquinoline resiquimod in nonallergic and allergic donors. J Invest Dermatol 119: 1059–1064.

    CAS  Google Scholar 

  • Geisse J, Caro I, Lindholm J, Golitz L, Stampone P, Owens M . (2004). Imiquimod 5% cream for the treatment of superficial basal cell carcinoma: results from two phase III, randomized, vehicle-controlled studies. J Am Acad Dermatol 50: 722–733.

    Google Scholar 

  • Gerster JF, Lindstrom KJ, Miller RL, Tomai MA, Birmachu W, Bomersine SN et al. (2005). Synthesis and structure-activity-relationships of 1H-imidazo[4,5-c]quinolines that induce interferon production. J Med Chem 48: 3481–3491.

    CAS  Google Scholar 

  • Giannotti B, Vanzi L, Difonzo EM, Pimpinelli N . (2003). The treatment of basal cell carcinomas in a patient with Xeroderma pigmentosum with a combination of imiquimod 5% cream and oral acitretin. Clin Exp Dermatol 28 (Suppl. 1): 33–35.

    Google Scholar 

  • Gibson SJ, Imbertson LM, Wagner TL . (1995). Cellular requirements for cytokine production in response to the immunomodulators imiquimod and S-27609. J Interferon Cytokine Res 15: 537–545.

    CAS  Google Scholar 

  • Gibson SJ, Lindh JM, Riter TR, Gleason RM, Rogers LM, Fuller AE et al. (2002). Plasmacytoid dendritic cells produce cytokines and mature in response to the TLR7 agonists, imiquimod and resiquimod. Cell Immunol 218: 74–86.

    CAS  Google Scholar 

  • Gollnick H, Barasso R, Jappe U, Ward K, Eul A, Carey-Yard M et al. (2001). Safety and efficacy of imiquimod 5% cream in the treatment of penile genital warts in uncircumcised men when applied three times weekly or one per day. Int J STD AIDS 12: 22–28.

    CAS  Google Scholar 

  • Gollnick H, Barona CG, Frank RG, Ruzicka T, Megahed M, Tebbs V et al. (2005). Recurrence rate of superficial basal cell carcinoma following successful treatment with imiquimod 5% cream: interim 2-year results from an ongoing 5-year follow-up study in Europe. Eur J Dermatol 15: 374–381.

    CAS  Google Scholar 

  • Gorden KB, Gorski KS, Gibson SJ, Kedl RM, Kieper WC, Qiu X et al. (2005). Synthetic TLR agonists reveal functional differences between human TLR7 and TLR8. J Immunol 174: 1259–1268.

    CAS  Google Scholar 

  • Gorden KB, Qiu X, Binsfeld CCA, Vasilakos JP, Alkan SS . 2006a. Cutting edge: Activation of murine TLR8 by a combination of imidazoquinoline immune response modifiers and polyT oligodeoxynucleotides. J Immunol 177: 6584–6587.

    CAS  Google Scholar 

  • Gorden KB, Xiaohong Q, Battiste JJL, Wightman PPD, Vasilakos JP, Alkan SS . (2006b). Oligodeoxynucleotides differentially modulate activation of TLR7 and TLR8 by imidazoquinolines. J Immunol 177: 8164–8170.

    CAS  Google Scholar 

  • Gorski KS, Waller EL, Bjornton-Severson J, Hanten JA, Riter CL, Kieper WC et al. (2006). Distinct indirect pathways govern human NK-cell activation by TLR-7 and TLR-8 agonists. Int Immunol 18: 1115–1126.

    CAS  Google Scholar 

  • Hadley G, Derry S, Moore RA . 2006. Imiquimod for actinic keratosis: systematic review and meta-analysis. J Invest Dermatol 126: 1251–1255.

    CAS  Google Scholar 

  • Harrison CJ, Jenski L, Voychehovski T, Bernstein DI . (1988). Modification of immunological responses and clinical disease during topical R-837 treatment of genital HSV-2 infection. Antiviral Res 10: 209–224.

    CAS  Google Scholar 

  • Harrison CJ, Miller RL, Bernstein DI . (1994). Posttherapy suppression of genital herpes simplex virus (HSV) recurrences and enhancement of HSV-specific T-cell memory by imiquimod in guinea pigs. Antimicrob Agents Chemother 38: 2059–2064.

    CAS  Google Scholar 

  • Heil F, Ahmad-Nejad P, Hemmi H, Hochrein H, Ampenberger F, Gellert T et al. (2003). The Toll-like receptor 7 (TLR7)-specific stimulus loxoribine uncovers a strong relationship within the TLR7, 8 and 9 subfamily. Eur J Immunol 33: 2987–2997.

    CAS  Google Scholar 

  • Heil F, Hemmi H, Hochrein H, Ampenberger F, Kirschning C, Akira S et al. (2004). Species-specific recognition of single-stranded RNA via Toll-like receptor 7 and 8. Science 303: 1526–1529.

    CAS  Google Scholar 

  • Hemmi H, Kaisho T, Takeuchi O, Sato S, Sanjo H, Hoshino K et al. (2002). Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nat Immunol 3: 196–200.

    CAS  Google Scholar 

  • Hengge UR, Ruzicka T . (2004). Topical immunomodulation in dermatology: potential of toll-like receptor agonists. Dermatol Surg 30: 1101–1112.

    Google Scholar 

  • Hornung V, Guenthner-Biller M, Bourquin C, Ablasser A, Schlee M, Uematsu S et al. (2005). Sequence-specific potent induction of IFN-alpha by short interfering RNA in plasmacytoid dendritic cells through TLR7. Nat Med 11: 263–270.

    CAS  Google Scholar 

  • Hurwitz DJ, Pincus L, Kupper TS . (2003). Imiquimod: a topically applied link between innate and acquired immunity. Arch Dermatol 139: 1347–1350.

    Google Scholar 

  • Imbertson LM, Beaurline JM, Couture AM, Gibson SJ, Smith RMA, Miller RL et al. (1998). Cytokine induction in hairless mouse and rat skin after topical application of the immune response modifiers imiquimod and S-28463. J Invest Dermatol 110: 734–739.

    CAS  Google Scholar 

  • Judge AD, Sood V, Shaw JR, Fang D, McClintock K, MacLachlan I . (2005). Sequence-dependent stimulation of the mammalian innate immune response by synthetic siRNA. Nat Biotechnol 23: 457–462.

    CAS  Google Scholar 

  • Jurk M, Heil F, Vollmer J, Schetter C, Krieg AM, Wagner H et al. (2002). Human TLR7 or TLR8 independently confer responsiveness to the antiviral compound R-848. Nat Immunol 3: 499.

    CAS  Google Scholar 

  • Jurk M, Kritzler A, Schulte B, Tluk S, Schetter C, Krieg AM et al. (2006). Modulating responsiveness of human TLR7 and 8 to small molecule ligands with T-rich phosphorothiate oligodeoxynucleotides. Eur J Immunol 36: 1815–1826.

    CAS  Google Scholar 

  • Kamin A, Eigentler TK, Radny P, Bauer J, Weide B, Garbe C . (2005). Imiquimod in the treatment of extensive recurrent lentigo maligna. J Am Acad Dermatol 52 (Suppl. 1): 51–52.

    Google Scholar 

  • Kariko K, Buckstein M, Ni H, Weissman D . (2005). Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity 23: 165–175.

    CAS  Google Scholar 

  • Karin M . (2006). Nuclear factor-kappaB in cancer development and progression. Nature 441: 431–436.

    CAS  Google Scholar 

  • Korman N, Moy R, Ling M, Matheson R, Smith S, McKane S et al. (2005). Dosing with 5% imiquimod cream 3 times per week for the treatment of actinic keratosis: results of two phase 3, randomized, double-blind, parallel-group, vehicle-controlled trials. Arch Dermatol 141: 467–473.

    CAS  Google Scholar 

  • Lebwohl M, Dinehart S, Whiting D, Lee PK, Tawfik N, Jorizzo J et al. (2004). Imiquimod 5% cream for the treatment of actinic keratosis: results from two phase III, randomized, double-blind, parallel group, vehicle-controlled trials. J Am Acad Dermatol 50: 714–721.

    Google Scholar 

  • Lee J, Chuang TH, Redecke V, She L, Pitha PM, Carson DA et al. (2003). Molecular basis for immunostimulatory activity of guanine nucleoside analogs: activation of Toll-like receptor 7. Proc Natl Acad Sci USA 100: 6646–6651.

    CAS  Google Scholar 

  • Levy O, Suter EE, Miller RL, Wessels MR . (2006). Unique efficacy of Toll-like receptor 8 agonists in activating human neonatal antigen-presenting cells. Blood 108: 1284–1289.

    CAS  Google Scholar 

  • Lonsdale-Eccles AA, Morgan JM, Nagarajan S, Cruickshank DJ . (2006). Successful treatment of vulval melanoma in situ with topical 5% imiquimod cream. Br J Dermatol 155: 215–217.

    CAS  Google Scholar 

  • Lore K, Betts MR, Brenchley JM, Kuruppu J, Khojasteh S, Perfetto S et al. (2003). Toll-like receptor ligands modulate dendritic cells to augment cytomegalovirus- and HIV-1-specific T cell responses. J Immunol 171: 4320–4328.

    CAS  Google Scholar 

  • Lund JM, Alexopoulou L, Sato A, Karow M, Adams NC, Gale NW et al. (2004). Recognition of single-stranded RNA viruses by Toll-like receptor 7. Proc Natl Acad Sci USA 101: 5598–5603.

    CAS  Google Scholar 

  • Ma Y, Pawar S, Sanchez-Schmitz G, Poisson L, Byers A, Shanen BC et al. (2007). In vitro vaccination site: a novel test bed for immunopotentiators. J Immunol 178: 36.30.

    Google Scholar 

  • Megyeri K, Au W-C, Rosztoczy I . (1995). Stimulation of interferon and cytokine gene expression by imiquimod and stimulation by sendai virus utilize similar signal transduction pathways. Mol Cell Biol 15: 2207–2218.

    CAS  Google Scholar 

  • Meyer T, Nindl I, Schmook T, Ulrich C, Sterry W, Stockfleth E . (2003). Induction of apoptosis by toll-like receptor-7 agonist in tissue cultures. Br J Dermatol 149: 9–14.

    CAS  Google Scholar 

  • Miggin SM, O'Neill LAJ . (2006). New insights into the regulation of TLR signaling. J Leukoc Biol 80: 220–226.

    CAS  Google Scholar 

  • Miller RL, Tomai MA, Harrison CJ, Bernstein DI . (2002). Immunomodulation as a treatment strategy for genital herpes: review of the evidence. Int Immunopharmacol 2: 443–451.

    CAS  Google Scholar 

  • Navi D, Huntley A . (2004). Imiquimod 5% cream and the treatment of cutaneous malignancy. Dermatol Online J 10.

  • Nishiya T, DeFranco AL . (2004). Ligand-regulated chimeric receptor approach reveals distinctive subcellular localization and signaling properties of the Toll-like receptors. J Biol Chem 279: 19008–19017.

    CAS  Google Scholar 

  • Nishiya T, Kajita E, Miwa S, DeFranco AL . (2005). TLR3 and TLR7 are targeted to the same intracellular compartments by distinct regulatory elements. J Biol Chem 280: 37107–37117.

    CAS  Google Scholar 

  • Odashima M, Bamias G, Rivera-Nieves J, Linden J, Nast CC, Moskaluk CA et al. (2005). Activation of A2A adenosine receptor attenuates intestinal inflammation in animal models of inflammatory bowel disease. Gastroenterology 129: 26–33.

    CAS  Google Scholar 

  • Palamara F, Meindl S, Holcmann M, Luhrs P, Stingl G, Sibilia M . (2004). Identification and characterization of pDC-like cells in normal mouse skin and melanomas treated with imiquimod. J Immunol 173: 3051–3061.

    CAS  Google Scholar 

  • Patel K, Goodwin R, Chawla M, Laidler P, Price PE, Finlay AY et al. (2006). Imiquimod 5% cream monotherapy for cutaneous squamous cell carcinoma in situ (Bowen's disease): a randomized, double-blind, placebo-controlled trial. J Am Acad Dermatol 54: 1025–1032.

    Google Scholar 

  • Peris K, Micantonio T, Fargnoli MC . (2003). Successful treatment of keratoacanthoma and actinic keratoses with imiquimod 5% cream. Eur J Dermatol 13: 413–414.

    Google Scholar 

  • Peris K, Micantonio T, Fargnoli MC, Lozzi GP, Chimenti S . (2006). Imiquimod 5% cream in the treatment of Bowen's disease and invasive squamous cell carcinoma. J Am Acad Dermatol 55: 324–327.

    Google Scholar 

  • Pope BL, MacIntyre JP, Kimball E, Lee S, Zhou L, Taylor GR et al. (1995). The immunostimulatory compound 7-allyl-8-oxoguanosine (loxoribine) induces a distinct subset of murine cytokines. Cell Immunol 162: 333–339.

    CAS  Google Scholar 

  • Prins RM, Craft N, Bruhn KW, Khan-Farooqi H, Koya RC, Stripecke R et al. (2006). The TLR-7 agonist, imiquimod, enhances dendritic cell survival and promotes tumor antigen-specific T cell priming: relation to central nervous system antitumor immunity. J Immunol 176: 157–164.

    CAS  Google Scholar 

  • Prinz BM, Hafner J, Dummer R, Burg G, Bruswanger U, Kempf W . (2004). Treatment of Bowen's disease with imiquimod 5% cream in transplant recipients. Transplantation 77: 790–791.

    Google Scholar 

  • Qin J, Yao J, Cui G, Xiao H, Kim TW, Fraczek J et al. (2006). TLR8-mediated NF-kappaB and JNK activation are TAK1-independent and MEKK3-dependent. J Biol Chem 281: 21013–21021.

    CAS  Google Scholar 

  • Ray CM, Kluk M, Grin CM, Grant-Kels JM . (2005). Successful treatment of malignant melanoma in situ with topical 5% imiquimod cream. Int J Dermatol 44: 428–434.

    Google Scholar 

  • Rechtsteiner G, Warger T, Osterloh P, Schild H, Radsak MP . (2005). Cutting edge: priming of CTL by transcutaneous peptide immunization with imiquimod. J Immunol 174: 2476–2480.

    CAS  Google Scholar 

  • Reiter MJ, Testerman TL, Miller RL, Weeks CE, Tomai MA . (1994). Cytokine induction in mice by the immunomodulator imiquimod. J Leukoc Biol 55: 234–240.

    CAS  Google Scholar 

  • Roach JC, Glusman G, Rowen L, Kaur A, Purcell MK, Smith KD et al. (2005). The evolution of vertebrate Toll-like receptors. Proc Natl Acad Sci USA 102: 9577–9578.

    CAS  Google Scholar 

  • Roseeuw D . (2003). The treatment of basal skin carcinomas in two sisters with Xeroderma pigmentosum. Clin Exp Dermatol 28 (Suppl. 1): 30–32.

    Google Scholar 

  • Sauder DN, Smith MH, Senta-McMillian T, Soria I, Meng TC . (2003). Randomized, single-blind, placebo-controlled study of topical application of the immune response modulator resiquimod in healthy adults. Antimicrob Agents Chemother 47: 3846–3852.

    CAS  Google Scholar 

  • Schön M, Bong AB, Drewniok C, Herz J, Geilen CC, Reifenberger J et al. (2003). Tumor-selective induction of apoptosis and the small-molecule immune response modifier imiquimod. J Natl Cancer Inst 95: 1138–1149.

    Google Scholar 

  • Schön M, Schön MP . (2007). The antitumoral mode of action of imiquimod and other imidazoquinolines. Curr Med Chem 14: 681–687.

    Google Scholar 

  • Schön MP, Schön M, Klotz KN . (2006). The small antitumoral immune response modifier imiquimod interacts with adenosine receptor signaling in a TLR7- and TLR8-independent fashion. J Invest Dermatol 126: 1338–1347.

    Google Scholar 

  • Schön MP, Wienrich BG, Drewniok C, Bong AB, Eberle J, Geilen CC et al. (2004). Death receptor-independent apoptosis in malignant melanoma induced by the small-molecule immune response modifier imiquimod. J Invest Dermatol 122: 1266–1276.

    Google Scholar 

  • Schulze HJ, Cribier B, Requena L, Reifenberger J, Ferrandiz C, Garcia Diez A et al. (2005). Imiquimod 5% cream for the treatment of superficial basal cell carcinoma: results from a randomized vehicle-controlled phase III study in Europe. Br J Dermatol 152: 939–947.

    CAS  Google Scholar 

  • Schwarz K, Storni T, Manolova V, Didierlaurent A, Sirard JC, Rothlisberger P et al. (2003). Role of toll-like receptors in costimulating cytotoxic T cell responses. Eur J Immunol 33: 1465–1470.

    CAS  Google Scholar 

  • Shackleton M, Davis ID, Hopkins W, Jackson H, Dimopoulos N, Tai T et al. (2004). The impact of imiquimod, a toll-like receptor-7 ligand (TLR7L), on the immunogenicity of melanoma peptide vaccination with adjuvant Flt3 ligand. Cancer Immun 23: 9.

    Google Scholar 

  • Sidbury R, Neuschler N, Neuschler E, Sun P, Wang XQ, Miller RL et al. (2003). Topically applied imiquimod inhibits vascular tumor growth in vivo. J Invest Dermatol 121: 1205–1209.

    CAS  Google Scholar 

  • Sidky YA, Borden EC, Weeks CE, Reiter MJ, Hatcher JF, Bryan GT . (1992). Inhibition of murine tumor growth by an interferon-inducing imidazoquinoline. Cancer Res 52: 3528–3533.

    CAS  Google Scholar 

  • Smith KJ, Germain M, Skelton H . (2001). Squamous cell carcinoma in situ (Bowen's disease) in renal transplant patients treated with 5% imiquimod and 5% 5-fluorouracil therapy. Dermatol Surg 27: 561–564.

    CAS  Google Scholar 

  • Stanley MA . (2002). Imiquimod and the imidazoquinolones: mechanism of action and therapeutic potential. Clin Exp Dermatol 27: 571–577.

    CAS  Google Scholar 

  • Stary G, Bangert C, Tauber M, Strohal R, Kopp T, Stingl G . (2007). Tumoricidal activity of TLR7/8-activated inflammatory dendritic cells. J Exp Med 204: 1441–1451.

    CAS  Google Scholar 

  • Steinmann A, Funk JO, Schuler G, von den Driesch P . (2000). Topical imiquimod treatment of a cutaneous melanoma metastasis. J Am Acad Dermatol 43: 555–556.

    CAS  Google Scholar 

  • Stephanou A, Latchman DS . (2005). Opposing actions of STAT-1 and STAT-3. Growth Factors 23: 177–182.

    CAS  Google Scholar 

  • Sterry W, Ruzicka T, Herrera E, Takwale A, Bichel J, Andres K et al. (2002). Imiquimod 5% cream for the treatment of superficial and nodular basal cell carcinoma: randomized studies comparing low-frequency dosing with and without occlusion. Br J Dermatol 147: 1227–1236.

    CAS  Google Scholar 

  • Stockfleth E, Meyer T, Benninghoff B, Christophers E . (2001). Successful treatment of actinic keratosis with imiquimod cream 5%: a report of six cases. Br J Dermatol 144: 1050–1053.

    CAS  Google Scholar 

  • Stockfleth E, Meyer T, Benninghoff B, Salasche S, Papadopoulos L, Ulrich C et al. (2002). A randomized, double-blind, vehicle-controlled study to assess 5% imiquimod cream for the treatment of multiple actinic keratoses. Arch Dermatol 138: 1498–1502.

    CAS  Google Scholar 

  • Suchin KR, Junkins-Hopkins JM, Rook AH . (2002). Treatment of stage IA cutaneous T-cell lymphoma with topical application of the immune response modifier imiquimod. Arch Dermatol 138: 1137–1139.

    Google Scholar 

  • Sullivan TP, Dearaujo T, Vincek V, Berman B . (2003). Evaluation of superficial basal cell carcinomas after treatment with imiquimod 5% cream or vehicle for apoptosis and lymphocyte phenotyping. Dermatol Surg 29: 1181–1186.

    Google Scholar 

  • Suzuki H, Wang B, Shivji GM, Toto P, Amerio P, Tomai MA et al. (2000). Imiquimod, a topical immune response modifier, induces migration of Langerhans cells. J Invest Dermatol 114: 135–141.

    CAS  Google Scholar 

  • Szeimies RM, Gerritsen MJ, Gupta G, Ortonne JP, Serresi S, Bichel J et al. (2004). Imiquimod 5% cream for the treatment of actinic keratosis: results from a phase III, randomized, double-blind, vehicle-controlled, clinical trial with histology. J Am Acad Dermatol 51: 547–555.

    Google Scholar 

  • Thomsen LL, Topley P, Daly MG, Brett SJ, Tite JP . (2004). Imiquimod and resiquimod in a mouse model: adjuvants for DNA vaccination by particle-mediated immunotherapeutic delivery. Vaccine 22: 1799–1809.

    CAS  Google Scholar 

  • Tomai MA, Imbertson LM, Stanczak TL, Tygrett LT, Waldschmidt TJ . (2000). The immune response modifiers imiquimod and R-848 are potent activators of B lymphocytes. Cell Immunol 203: 55–65.

    CAS  Google Scholar 

  • Ugurel S, Wagner A, Pföhler C, Tilgen W, Reinhold U . (2002). Topical imiquimod eradicates skin metastases of malignant melanoma but fails to prevent rapid lymphogenous metastatic spread. Br J Dermatol 147: 621–624.

    CAS  Google Scholar 

  • Urosevic M, Dummer R, Conrad C, Beyeler M, Laine E, Burg G et al. (2005). Disease-independent skin recruitment and activation of plasmacytoid predendritic cells following imiquimod treatment. J Natl Cancer Inst 97: 1143–1153.

    CAS  Google Scholar 

  • Urosevic M, Maier T, Benninghoff B, Slade HB, Burg G, Dummer R . (2003). Mechanisms underlying imiquimod-induced regression of basal cell carcinomas in vivo. Arch Dermatol 139: 1325–1332.

    CAS  Google Scholar 

  • Urosevic M, Oberholzer PA, Maier T, Hafner J, Laine E, Slade HB et al. (2004). Imiquimod treatment induces expression of opioid growth factor receptor: a novel tumor antigen induced by interferon-α? Clin Cancer Res 10: 4959–4970.

    CAS  Google Scholar 

  • Vidal D, Matias-Guiu X, Alomar A . (2004). Efficacy of imiquimod for the expression of Bcl-2, Ki67, p53 and basal cell carcinoma apoptosis. Br J Dermatol 151: 656–662.

    CAS  Google Scholar 

  • Wagner TL, Ahonen CL, Couture AM, Gibson SJ, Miller RL, Smith RM et al. (1999). Modulation of TH1 and TH2 cytokine production with the immune response modifiers, R-848 and imiquimod. Cell Immunol 191: 10–19.

    CAS  Google Scholar 

  • Wagner TL, Horton VL, Carlson GL . (1997). Induction of cytokines in Cynomolgus monkeys by the immune response modifiers, imiquimod, S-27609 and S-28463. Cytokine 9: 837–845.

    CAS  Google Scholar 

  • Weeks CE, Gibson SJ . (1994). Induction of interferon and other cytokines by imiquimod and its hydroxylated metabolite R-842 in human blood cells in vitro. J Interferon Cytokine Res 14: 81–85.

    CAS  Google Scholar 

  • Wille-Reece U, Flynn BJ, Lore K, Koup RA, Miles AP, Saul A et al. (2006). Toll-like receptor agonists influence the magnitude and quality of memory T cell responses after prime-boost immunization in nonhuman primates. J Exp Med 203: 1249–1258.

    CAS  Google Scholar 

  • Wolf IH, Cerroni L, Kodama K, Kerl H . (2005). Treatment of lentigo maligna (melanoma in situ) with the immune response modifier imiquimod. Arch Dermatol 141: 510–514.

    CAS  Google Scholar 

  • Wolf IH, Smolle J, Binder B, Cerroni L, Richtig E, Kerl H . (2003). Topical imiquimod in the treatment of metastatic melanoma to skin. Arch Dermatol 139: 273–276.

    Google Scholar 

  • Zeitouni NC, Dawson K, Cheney RT . (2005). Treatment of cutaneous metastatic melanoma with imiquimod 5% cream and the pulsed-dye laser. Br J Dermatol 152: 376–377.

    CAS  Google Scholar 

  • Zuber AK, Brave A, Engstrom G, Zuber B, Ljungberg K, Fredriksson M et al. (2004). Topical delivery of imiquimod to a mouse model as a novel adjuvant for human immunodeficiency virus (HIV) DNA. Vaccine 22: 1791–1798.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a research grant from the Dr Mildred Scheel Stiftung/Deutsche Krebshilfe (10-2196 Schö-2) to MS and MPS, and by a Rudolf Virchow Award from the Deutsche Forschungsgemeinschaft to MPS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M P Schön.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schön, M., Schön, M. TLR7 and TLR8 as targets in cancer therapy. Oncogene 27, 190–199 (2008). https://doi.org/10.1038/sj.onc.1210913

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210913

Keywords

This article is cited by

Search

Quick links